
Mixed Observable RRT: Multi-Agent Mission Planning

in Partially Observable Environments

Kasper Johansson1, Ugo Rosolia2, Wyatt Ubellacker2, Andrew Singletary2, and Aaron D. Ames2

Abstract— This paper considers centralized mission-planning

for a heterogeneous multi-agent system with the aim of locating

a hidden target. We propose a mixed observable setting, consist-

ing of a fully observable state-space and a partially observable

environment, using a hidden Markov model. First, we construct

rapidly exploring random trees (RRTs) to introduce the mixed

observable RRT for finding plausible mission plans giving way-

points for each agent. Leveraging this construction, we present

a path-selection strategy based on a dynamic programming

approach, which accounts for the uncertainty from partial

observations and minimizes the expected cost. Finally, we

combine the high-level plan with model predictive controllers

to evaluate the approach on an experimental setup consisting

of a quadruped robot and a drone. It is shown that agents are

able to make intelligent decisions to explore the area efficiently

and to locate the target through collaborative actions.

I. INTRODUCTION

Planning under uncertainty is important for autonomous
systems. Similar to how humans make decisions based on
what they observe—for instance, when driving on a busy
road or playing sports—autonomous robotic systems must
be able to act based on observations from the environment.
Exploration tasks are one type of problem where robots have
partial knowledge about the environment complemented with
observations along the mission [1]. The seems to exist no
satisfying solution to such exploration when multiple robots
are to cooperate and act simultaneously.

The literature on environment mappings for navigation and
planning is rich [1]–[4]. Exploration can be done using a
policy that maps the system’s state to a control action [5].
The computational burden associated with planning over
policies has been extensively studied [6]–[12], and can be
reduced when a system’s state can be perfectly measured [5],
[6], [11], [13]. Tube model predictive control (MPC) strate-
gies involve another type of feedback policies [7]–[10].
Strategies where only partial state knowledge is available
have been studied in [14]–[16]. In [5] the authors consider
multi-modal measurement noise by planning over a tree of
trajectories where each branch is associated with a unique
set of observations made during a mission.

A popular tool for path-planning is the rapidly exploring
random tree (RRT), which is a sampling based search al-
gorithm [17]. RRTs have been leveraged for path-planning
in various problems, like navigating among moving obsta-
cles [18], kinodynamic motion-planning [19], and probabilis-
tically robust path-planning [20], among many others. The

1KTH Royal Institute of Technology, Stockholm, Sweden. kasperjo@kth.se
2California Institute of Technology, Pasadena, USA. {urosolia,

wubellac, asinglet, ames}@caltech.edu

Fig. 1: A quadruped and a drone are initiated inside the red circles. They
locate a science sample by sharing observations from the environment.

RRT⇤ algorithm is an extension to the RRT [21], and it has
been shown that RRT⇤ converges to the optimal path [22].

In this work we introduce a novel approach to path-
planning in partially observable environments for multi-
agent systems. Agents act simultaneously to locate a target,
as illustrated in Figure 1. We leverage RRTs to generate
a sample of event-based plans, where a plan consists of
a sequence of way-points that changes as a function of
the observations agents make. The best plan is found by
minimizing an expected cost over the tree of plans, as in [5].
To allow a multi-agent system to follow the high-level plan
we leverage MPC algorithms. The contribution is threefold:

• First, we model a cooperative multi-agent exploration
mission using a mixed observable setting (Section II).
Based on this formalism, we modify the standard RRT
algorithm to generate a sample of plans in a discrete
partially observable environment (Section III). This ap-
proach defines the mixed observable RRT (MORRT).

• Next, we introduce a dynamic program for finding the
plan that minimizes the expected cost (Section III).

• Finally, we demonstrate our approach experimentally by
integrating the high-level plan, consisting of way-points
for a heterogeneous multi-agent system, with local MPC
algorithms (Section IV).

Notation: For a vector b 2 Rn, n � 2, and an integer
s 2 {1, . . . , n}, denote b[s] as the sth component of b and b>

as its transpose. diag(b) is a diagonal matrix with elements b.
Let N = {0, 1, . . .} and R0+ = [0,1). Furthermore, given a
set Z , |Z| denotes its number of elements. For an integer k,
we denote the kth Cartesian product as Zk = Z ⇥ . . .⇥ Z .
For two sets Z1,Z2 we define the outer product Z1⌦Z2 =
{(z1, z2) : z1 2 Z1, z2 2 Z2}. The N ⇥N identity matrix is
given by IN⇥N . Lastly, the indicator function 1[y1 = y2] =
1 if y1 = y2 and 0 otherwise.

II. PROBLEM FORMULATION

First we introduce the multi-agent system, and describe the
discrete partially observable environment and its interaction
with the system. Then, we introduce the control objectives.

A. System and Environment Models
Consider a multi-agent system of M agents with the aim

of locating a target that is hidden in R2. Agents have some
prior knowledge of where the target is located, and know
that it is at one of a finite number of known goal nodes, i.e.,
points in R2. As an example, see Figure 1 where a quadruped
and a drone are locating a science sample. In order to find the
hidden target, the agents make observations in observation
areas, i.e., certain regions of the state-space. Observations
are shared between the agents.

We introduce a mission planner that has to compute a set
of way-points for the multi-agent system. Let X a ✓ R2 be
the state-space of agent a 2 {1, . . . ,M}, and X a

obs ✓ R2 its
obstacle region. Denote the space where agent a is free to
move by X a

free = X a\X a
obs. The way-point xa

k+1 is computed
as

xa
k+1 = xa

k +�xa
k, (1)

where �xa
k 2 R2 is the way-point change at time k.

We represent the state of the multi-agent system as xk =
[x1

k, ..., x
M
k].

As the exact location of the target is unknown, the planner
has to compute way-points based on partial observations
which are used to update the belief about the environment.
The planner computes way-points for each agent to minimize
a cost, which is a function over the agent’s state, the way-
point, and the goal nodes, as described further down. The
agents’ belief of where the target is located is modelled
as a partially observable environment. There are a finite
number, G, of goal nodes where the target can be located,
corresponding to G different environment states. In Fig-
ure 1 G = 2, corresponding to points inside of the blue
squares. The discrete environment evolution is modeled using
a hidden Markov model (HMM) [23] given by the tuple
H = (E ,O, T, Z):

• E = {1, . . . , G} is a set of partially observable environ-
ment states.

• O = {1, . . . , G} is the set of observations for the
partially observable state e 2 E .

• The function T : E ⇥ E ⇥ Rn ! [0, 1] describes the
probability of transitioning to a state e0 given the current
environment state e and system’s state x—i.e.,

T (e0, e, x) := P(e0|e, x).

• The function Z : E ⇥ O ⇥ Rn ! [0, 1] describes the
probability of observing o, given the current environ-
ment state e and the system’s state x—i.e.,

Z(e, o, x) := P(o|e, x).

We define the trajectory xa
k = [xa

1 , . . . , x
a
k], where xa

` 2
X a

free, 8` 2 {1, . . . , k}, k � 1. Let j(k) : N ! N
denote the number of observations made until time k, and

let oj(k) = [o0, . . . , oj(k)�1], j(k) � 1, with o0 = ; be
the corresponding vector of observations. We introduce the
belief vector bk 2 B = {b 2 R|E|

0+ :
P|E|

i=1 b[e] = 1}, which
is a sufficient statistics [23]. Here, entry bk[e] represents the
posterior probability, at time k, that the system’s state ek
equals to e 2 E , given the vector of observations oj(k), the
collection of agent trajectories xk = {xa

k}Ma=1, the initial
state x(0) = [x1(0), .., xM (0)], and the initial belief vector
b(0) at time t = 0—i.e., bk[e] = P(e|oj(k),xk, x(0), b(0)).

As mentioned, agents make observations in certain regions
of the state-space, observation areas, to update the belief of
where the target is located. When an observation is made,
the mission plan branches into |O| sub-paths for each agent,
where each sub-path corresponds to one observation, as
shown in Figure 2.

B. Control Objectives
The objective is to find a mission plan for the system to

act in the uncertain environment. During a mission, agents
will make observations, and the executed mission depends
on what observations are made—i.e., the realization of the
stochastic observations. For this reason the mission plan
is a policy, which depends on a fixed number of possible
realizations. In other words the sequence of way-points
changes as a function of the observations. For instance, in
Figure 2, there are three possible paths for the agent to take,
corresponding to observing [0, 0], [0, 1], and [1], respectively.

Let Nmax denote the maximum length of the mission. For a
mission starting at time t = 0 and ending at time N  Nmax,
we denote the policy for agent a by ⇡a = [⇡a

0 , . . . ,⇡
a
Nmax�1],

where at each time k the policy ⇡a
k : Oj(k) ⇥ (R2⇥M)k ⇥

B ! R2 maps the environment observations oj(k) up to
time k, the system’s trajectory xk, the initial state x(t), and
the initial belief b(t) to the way-point �xa

k—i.e., �xa
k =

⇡a
k(oj(k),xk, x(t), b(t)),
Let p = [p1, . . . , pM] denote M paths, one for each agent

a, where pa = [xa
0 , . . . , x

a
Np

] denotes the path of agent a,
for a mission of length Np. We denote the set of possible
paths, for all agents, by P . Each p = [p1, . . . , pM] 2 P
corresponds to a set of paths for each agent, associated with
one realization of observations along a mission. Hence, P is
a mapping from the stochastic observations to the realized
paths. The length of the paths pa 2 p is denoted by Np,
and Nmax = max(Np) such that p 2 P . Given the initial
state x(t) = [x1(t), . . . , xM (t)] and environment belief b(t)
starting at time t = 0, as well as a plan ⇡ = {⇡a}Ma=1, we
define the cost of the policy for agent a as follows:

Ja(x(t), b(t))

= EP

Np�1X

k=0

h(xa
k,�xa

k, ek) + hN (xa
N , eN)

����b(t)
�
,

(2)
where the stage cost h : R2 ⇥ R2 ⇥ E ! R and terminal
cost hN : R2 ⇥ E ! R are functions of the partially
observable environment state e 2 E , and the expectation is
over the stochastic realizations of agent paths P , where each
realization has a corresponding path length Np.

Fig. 2: An MORRT plan for an agent a. Nodes and edges correspond to way-
points and way-point changes, respectively, and each branch i is associated
with a unique observation vector ôi. For this plan I = {0, 1, 2, 3, 4},
corresponding to five branches, where P(3) = P(4) = 1, P(1) = P(2) =
0, O(0) = O(1) = 1, and O(2) = O(3) = O(4) = 0. Furthermore,
branch 0 corresponds to b(t), and branches 1-4 correspond to the vectors of
observations ô1 = [0], ô2 = [1], ô3 = [0, 0], and ô4 = [0, 1], respectively.

III. THE MIXED OBSERVABLE RRT

We now introduce the mixed observable RRT (MORRT).
First, we reformulate the cost (2) as an optimization problem
over the trees of way-points for all agents. Secondly, we
describe how to expand the MORRT. Finally, we explain
how the best plan is found.

A. Cost Reformulation

The objective is first to reformulate the cost (2) as a
summation over system states. We introduce the set of
branches, I, in a plan, and denote I0 = I\{0}. Branch i = 0
corresponds to the initial belief b(t), and each remaining
branch i 2 I0 corresponds to a unique observation vector
ôi = [o0, ..., oj�1], for some integer j 2 N of observations
made until this branch. Each branch has Ni + 1 nodes,
corresponding to system states [si0, ..., s

i
Ni

], where the last
node of a branch is the same as the first node of the child
branches. We use [si,a0 , ..., si,aNi

] to denote the states of agent a
in branch i. Note that si` denotes the system states in branch
i where ` = 0 at the root of this branch, which is equivalent
to the system state xk for some k, where k = 0 at the root
of branch 0. Moreover, let the function P(i) return the parent
branch of branch i, and let O(i) = 1 if branch i ends at an
observation node, and O(i) = 0 otherwise.

Figure 2 shows the plan for an agent a. The agent starts at
s00 = x(0) in the first branch i = 0. An observation is made
at the third node of this branch, and the plan branches into
i = 1, 2. If the agent observes e = 0 in the first branch it
follows branch 1 and makes another observation at the fourth
node of this branch; but, if it observes e = 1 it goes straight
to the blue goal node without making another observation
(branch 2). Black observation nodes, inside of observation
areas, are both the final node of one branch and initial nodes
of the branches originating from the observation node; for
instance, s0,a2 = s1,a0 = s2,a0 , but to make the figure less
cluttered, this is not illustrated.

Following the exact solution from [5] the expectation (2)
can be written, equivalently, as a summation over way-points.
In [5] an observation is made, and the plan branches, at
each time step k. However, we only allow observations in
observation areas, so a plan branches at the beginning of
each branch i 2 I0.

Let ⇥(ok, xk) = diag
�
Z(1, ok, xk) . . . Z(|E|, ok, xk)

�
,

and make the assumption that the environment state stays
fixed—i.e., the target does not move—meaning that
T (ei, ej , xk) = 1 if i = j and T (ei, ej , xk) = 0 otherwise.

Similar to [5], the cost (2) can be rewritten as

Ja(I, x(t), b(t))

=
X

i2I

(
Ni�1X

`=0

X

e2E
vi[e]h(si,a` ,�si,a` , e)

+ 1[O(i) = 0]
X

e2E
vi[e]hN (si,aNi

, e)

)
,

(3)

where oi is the observation made at the beginning of branch i,
s00 = x(t), and vi[e] = ⇥(oi, si0)v

P(i)[e] is the unnormalized
belief. For more details please refer to [5].

Problem 1. For a system of M agents our goal is to solve
the following finite-time optimal control problem:

J⇤(I, x(t), b(t)) = min
I,�s

MX

a=1

Ja(I, x(t), b(t))

s.t. si,a`+1 = si,a` +�si,a` , 8i 2 I
si,a0 = sP(i),aNP(i)

, 8i 2 I0
s0,a0 = xa(0), v00 = b(0),

vi[e] = ⇥(oi, s
i
0)v

P(i)[e], 8i 2 I0,
si,a`+1 2 X a

free, 8i 2 I,
8a 2 {1, . . . ,M},
8` 2 {0, . . . , Ni � 1},

(4)
where �s = {�sa}Ma=1, and each �sa is a matrix of way-
point changes for agent a:

�sa = [�s0,a0 , . . . ,�s0,aN0�1, . . . ,�sI,a0 , . . . ,�sI,aNI�1],

where I = |I|� 1. The above optimization is over both the
set of branches I, and the matrices �sa for each agent.

B. Building the MORRT
We define the function ExtendRRT (T , xrand,�x), which

extends a tree T by adding a node a distance �x from the
nearest node xnear 2 T on the straight line between xnear
and xrand. The RRT⇤ extension [24] can be leveraged by
introducing the cost heuristic for a path as the expected
cost (2) given that the path is taken regardless of what
observations are made.

The mixed observable RRT (MORRT) is expanded as
follows: an observation is recorded when a node is placed
inside an observation area; nodes are added to the tree until
a predetermined number of nodes, observation nodes, have

Fig. 3: The MORRT expansion for Nobs = 1. The tree expands from left to right. The yellow path to the right shows one possible path in the MORRT.

been placed inside observation areas; and new RRTs are
initialized from all observation nodes. We call this search
algorithm the . For simplicity, only one observation is al-
lowed in each observation area for a single plan. Algorithm 1
illustrates the multi-agent RRT. A tree Ta is initiated for
each agent a (line 2). If there exists unexplored observation
areas in the environment—meaning that no nodes have been
placed in these by other RRTs—the tree expands until some
number, Nobs, of observation nodes have been placed inside
unexplored observation areas (lines 3-6). The observation
nodes can be placed in any observation area that is still
unobserved—i.e., multiple observation nodes may end up
in the same observation area as long as they are from the
same RRT. If a node is placed in an observation area that
contains nodes from other RRTs, no observation is recorded.
Moreover, we only allow one observation per path in a single
tree; if two nodes along the same path of the same tree
are placed inside observation areas, an observation is only
recorded for the first node.

If all observation areas are explored, the tree Ta is ex-
panded until its number of nodes equals a constant K (lines
7-10). The multi-agent RRT is defined as the set of all
expanded trees (line 11). Its set of observation nodes, RRT.o,
is initialized as the outer product of all agents’ observation
nodes (line 12). Each observation node na

o from an agent tree
Ta corresponds to a path ending at na

o . The shortenPaths
function (line 13) modifies the observation nodes as follows:
for each set of observation nodes N 2 RRT.o, pick the node
na
o 2 N corresponding to the shortest path of length L, say;

for all other nodes, N0 2 RRT.o\{na
o}, replace them with a

node higher up in the corresponding path, such that this node
corresponds to a path of length L. The nodes in every set
N 2 RRT.o will then correspond to paths of the same length.

Algorithm 1 RRT RRT(M,xinit, Nobs,K,�x)
1: for a = 1, a++, while a <= M do

2: Ta.init(xinit[a])
3: if observationAreas() then

4: while Ta.nobs < Nobs do

5: xrand RandomState()
6: ExtendRRT (Ta, xrand,�x)
7: else

8: while Ta.nnodes < K do

9: xrand RandomState()
10: ExtendRRT (Ta, xrand,�x)
11: RRT [T1, ..., TM]
12: RRT.o T1.o⌦ T2.o⌦ · · ·⌦ TM .o
13: RRT.o shortenPaths(RRT.o)

This set is defined as an observation node for the system.
To reduce computational time, we choose to only keep the
nodes corresponding to paths with lowest cost heuristic to
each observation area and agent (unless it is a single-agent
system, for which we keep all nodes), before taking the outer
product (line 12).

For each RRT that contains observation nodes, a child
RRT, which expands independently of the parent RRT, is
initialized from each of the Nobs observation nodes. All
paths going through the child RRT include the path that
originates from the parent’s start node, going through the
observation node. Algorithm 2 implements the MORRT
leveraging Algorithm 1. In line 1 a “root RRT” is expanded.
This RRT is stored in an array of parent RRTs (line 2).
A child RRT is initialized from each observation node of
the parent RRT. The procedure is repeated for all initialized
RRTs until all observation areas are explored (lines 3-8).

An MORRT for one agent is illustrated in Figure 3 for
Nobs = 1. A blue tree is initialized at the yellow start
node, and expanded until it reaches one of the observation
areas. The observation node is the start node for the red tree,
which is expanded analogously. When the red tree reaches
the second observation area, the green tree is initialized and
expanded until some fixed size, since all observation areas
have been visited by other RRTs. Any path that ends at a
node that has no children is part of a possible plan (a plan
does not have to include all three trees). One possible path is
illustrated in yellow. Finally, note that the three trees would
in general have crossing paths, since they are expanded
independently of each other.

The MORRT generates a tree of RRTs as illustrated, for
one agent, in Figure 4a. Here, the edges correspond to paths
of a single RRT, and the nodes represent observation nodes
connecting separately expanded RRTs. The connecting edges
(or paths) are highlighted while other edges are faded. Nodes
that do not have children—end nodes—are illustrated by
green squares. In the figure each RRT has three observation

Algorithm 2 RRTroot MORRT(M,xinit, Nobs,K,�x)
1: RRTroot RRT(M,xinit, Nobs,K,�x) //ALGO 1

2: parents = [RRTroot]
3: while parents is not empty do

4: RRTparent parents[0]
5: for xobs in RRTparent.o do

6: RRTchild RRT(M,xobs, Nobs,K,�x) //ALGO 1

7: parents.append(RRTchild)

8: parents.remove(RRTparent)

(a) Full MORRT. (b) Best plans, depth h = 2. (c) Best plans, depth h = 1. (d) Best plan (depth h = 0).

Fig. 4: Dynamic program for Nobs = 3 and |O| = 2. The dynamic program works backward from dept h = 2 to depth h = 0 to find the best plan.

Algorithm 3 plan bestPlan(RRT)
1: h = RRT.depth
2: if not RRT.children then

3: for oh�1 2 O
h�1

do

4: for o 2 O do

5: //Find best path

6: else

7: for child in RRT.children do

8: bestPlan(child)
9: for oh�1 2 O

h�1
do

10: for o 2 O do

11: //Choose whether or not to branch

12: //Return plan with lowest expected cost

nodes, implying that Nobs = 3. Moreover, the tree of
RRTs is two levels deep, so there are two observation areas
(one observation area is explored at each observation node,
and different branches are independent of each other and
represent separate plans).

C. Finding the Best Plan From the MORRT
We leverage a dynamic program to find the best plan from

the MORRT. The dynamic program is shown in Algorithm 3,
and illustrated on an example with Nobs = 3 and |O| = 2
(Figure 4). Let h denote an RRTs depth in the tree of
RRTs, letting the root RRT have depth 0. The algorithm
is initialized for the root RRT—bestPlan(RRTroot)—and
explores the tree of RRTs in depth first manner, so RRTs
without children are considered first (line 2). These are the
faded trees at depth h = 2 in Figure 4a. At h = 2, for
each observation node, a plan of |O|h paths—one path for
each observation o 2 O and all possible combinations of
observations oh�1 2 Oh�1 up to this point—is computed
(lines 3-5). These plans are illustrated by the black lines,
from depth h = 2, in Figure 4b; for each observation node at
depth two, the four black lines represent the best path to take
given (o0, o1) = (0, 0), (0, 1), (1, 0), and (1, 1), respectively,
from that point in space.

Next, we consider the RRTs one step higher up in the tree
of RRTs—h = 1 in the example—and proceed similarly
(lines 9-11). For each oh�1, the algorithm considers all o 2
O and decides both whether or not the plan should branch
(make another observation and continue in a child RRT, or
neglect the child RRT), and the best path to take given that
it branches or does not branch. If it is beneficial to branch,
the best branch is computed for the set of observations oh�1,
and the corresponding best plan from the child RRT, from

the previous step, is remembered. In Figure 4c, the plan fully
branches the left- and right most trees, and only branches
one path in the middle tree. Note that there are now only
two paths originating from depth h = 2.

This continues until depth h = 0, where a plan is returned
(Figure 4d). The plan is executed as follows: the agent starts
at the yellow node. It makes an observation o0. If o0 = 0,
the agent goes left and ends the mission; if o0 = 1 the agent
makes another observation o1 and takes one of two paths.

IV. RESULTS

Let us now evaluate the MORRT by considering simula-
tions of both a single-agent and a multi-agent system, as well
as a hardware experiment using a quadruped and a drone.
The implementation code is available online.1

A. Single-Agent Simulation
The single-agent simulation is shown in Figure 5. A

quadruped is initiated below the dark obstacle, and looks for
a science sample that is located either in the top left (e = 0)
or in the top right (e = 1). The initial belief is that the
sample is in either of the top corners with equal probability:
b(0) = [0.5, 0.5]. Observations are made in the blue regions,
and are correct with 80% probability. The quadruped first
visits the bottom observation area (Figure 5a). If it observes
o0 = 0 it follows the blue path to the left of the obstacle
(Figure 5b), but if o0 = 1 it follows the red path to the right
(Figure 5c). Figures 5d and 5e show the plan from the second
observation area, given that the first observation is o0 = 0;

(a) o0 (b) o0 = 0. (c) o0 = 1. (d) o0 = o1 = 0.

(e) o0 = 0 6= o1. (f) o0 = 1 6= o1. (g) o0 = o1 = 1. (h) Full plan.

Fig. 5: Plan for a quadruped, initiated below the dark obastacle. e = 0 and
e = 1 correspond to the target being located at the blue and red goal nodes,
respectively. 80% accurate observations are made in the blue areas.

1https://github.com/kasperjo/MixedObservableRRT.git

(a) First observation o0. (b) Second observation o1. (c) o0 = o1 = 0 (d) o0 6= o1 (e) o0 = o1 = 1

Fig. 6: Mission plan for a quadruped and a drone. The agents explore one goal node each and take one of three paths depending on the observations.

given that the first observation is o0 = 0, the quadruped
follows the blue and purple paths for o1 = 0 and o1 = 1,
respectively. Figures 5f and 5g show the corresponding plan,
given that the first observation is o0 = 1. The full plan with
all seven branches is shown in Figure 5h.

B. Multi-Agent Simulation

This system consists of two robots: a quadruped that can
not traverse the dark region, and a drone that can fly over
the dark region. There is a science sample in one of the
top corners, and the goal is for both robots to locate it.
Observations that are correct with 80% probability are made
inside the blue regions and communicated between agents.

The agents split up to explore one potential target each
(Figure 6a), and the quadruped makes the first observation
o0 in the top left. Regardless of if o0 = 0 or o0 = 1, the drone
continues to the top right to make another observation o1,
and the quadruped changes direction; which is fascinating,
as even if the quadruped observes o0 = 0, the drone does not
change direction, but makes a second observation to account
for the possibility of the first observation being wrong. If
both observations correspond to e = 0, the agents move to
the top left (Figure 6c), and if both observations correspond
to e = 1, the agents move to the top right (Figure 6e). If
the observations are different, the agents end up in-between
(Figure 6d), since the belief is then back to [0.5, 0.5].

C. Hardware Experiment

We show the result from an experiment on hardware where
we consider the exploration mission from Section IV-B, but
without noise.

1) Experimental Setup and Hardware Models: The setup
is illustrated in Figure 1. A quadruped and a drone are
initiated in the origin of a 5m⇥5m environment, and the
mission objective is to locate a science sample.

We model the quadruped and drone as unicycles [25] and
leverage two MPC algorithms to make the agents follow
way-points from the high-level MORRT plan. At 60Hz the
MPC algorithms solve for velocity and yaw-rate inputs,
which are fed to the quadruped and drone.

2) Experimental Results: The experiment is illustrated in
Figure 7. The quadruped observes o0 = 1 in the second snap-
shot, and communicates to the drone. Since the observation
is perfect, both agents move to the top right goal without
making another observation. The drone arrives first and waits
for the quadruped to arrive. Note the difference from the
simulation in Section IV-B, where a second observation was
made to account for the noise.

V. CONCLUSION

In this work we introduced the MORRT, which plans a
mission for heterogeneous multi-agent exploration. Using
MORRTs we presented a dynamic program for finding the
best mission plan, which showed how autonomy can be
enabled in a multi-agent scenario where agents move and
act simultaneously. The approach was illustrated, both in
simulation and on hardware experiments. It was found that
two agents (a quadruped and a drone) made intelligent
collaborative decisions based on their observations from the
environment. Future works include extending the MORRT
approach to account for system dynamics. Another interest-
ing direction is to consider limitations in the communication
between agents.

Fig. 7: Experimental results from the setup in Figure 1.

REFERENCES

[1] P. Nilsson, S. Haesaert, R. Thakker, K. Otsu, C. Vasile, A. akbar Agha-
mohammadi, R. Murray, and A. Ames, “Toward specification-guided
active mars exploration for cooperative robot teams,” in Robotics:
Science and Systems, 2018.

[2] G. Lakemeyer and B. Nebel, Eds., Exploring Artificial Intelligence in
the New Millennium. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
Mass.: MIT Press.

[4] C. Stachniss, Robotic Mapping and Exploration. Berlin: Springer,
2009.

[5] U. Rosolia, Y. Chen, S. Daftry, M. Ono, Y. Yue, and A. D. Ames, “The
mixed-observable constrained linear quadratic regulator problem: the
exact solution and practical algorithms,” 2021.

[6] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization
over state feedback policies for robust control with constraints,”
Automatica, vol. 42, no. 4, pp. 523–533, 2006.

[7] L. Chisci, J. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, pp. 1019–1028, 2001.

[8] D. Mayne, M. Seron, and S. Raković, “Robust model predictive control
of constrained linear systems with bounded disturbances,” Automatica,
vol. 41, no. 2, pp. 219–224, 2005.

[9] S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube MPC scheme based
on robust control invariant set with application to Lipschitz nonlinear
systems,” Systems & Control Letters, vol. 62, no. 2, pp. 194–200,
2013.

[10] J. Fleming, B. Kouvaritakis, and M. Cannon, “Robust tube MPC for
linear systems with multiplicative uncertainty,” IEEE Transactions on
Automatic Control, vol. 60, no. 4, pp. 1087–1092, 2015.

[11] Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach
to controller synthesis,” IEEE Transactions on Automatic Control,
vol. 64, no. 10, pp. 4079–4093, 2019.

[12] A. Liniger, X. Zhang, P. Aeschbach, A. Georghiou, and J. Lygeros,
“Racing miniature cars: Enhancing performance using stochastic MPC
and disturbance feedback,” in 2017 American Control Conference
(ACC), 2017, pp. 5642–5647.

[13] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Ad-
justable robust solutions of uncertain linear programs1,” Mathematical
Programming, vol. 99, pp. 351–376, 2004.

[14] D. Mayne, S. Raković, R. Findeisen, and F. Allgöwer, “Robust output
feedback model predictive control of constrained linear systems,”
Automatica, vol. 42, no. 7, pp. 1217–1222, 2006.

[15] I. Alvarado, D. Limon, T. Alamo, and E. Camacho, “Output feedback
robust tube based MPC for tracking of piece-wise constant references,”
in 2007 46th IEEE Conference on Decision and Control, 2007, pp.
2175–2180.

[16] M. Cannon, Q. Cheng, B. Kouvaritakis, and S. V. Raković, “Stochastic
tube MPC with state estimation,” Automatica, vol. 48, no. 3, pp. 536–
541, 2012.

[17] S. LaValle and J. Kuffner, “Randomized kinodynamic planning.” I. J.
Robotic Res., vol. 20, pp. 378–400, 2001.

[18] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic
navigation in dynamic environment using rapidly-exploring random
trees and gaussian processes,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008, pp. 1056–1062.

[19] J. Kim and J. Ostrowski, “Motion planning a aerial robot using
rapidly-exploring random trees with dynamic constraints,” in 2003
IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), vol. 2, 2003, pp. 2200–2205 vol.2.

[20] M. Kothari and I. Postlethwaite, “A probabilistically robust path
planning algorithm for UAVs using rapidly-exploring random trees,”
Journal of Intelligent & Robotic Systems, vol. 71, 2013.

[21] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” CoRR, vol. abs/1005.0416, 2010.
[Online]. Available: http://arxiv.org/abs/1005.0416

[22] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt*,” in IEEE International
Conference on Robotics and Automation, 2011, pp. 1478–1483.

[23] V. Krishnamurthy, Partially Observed Markov Decision Processes:
From Filtering to Controlled Sensing. Cambridge University Press,
2016.

[24] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[25] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop
steering of unicycle like vehicles via Lyapunov techniques,” IEEE
Robotics Automation Magazine, vol. 2, no. 1, pp. 27–35, 1995.

http://arxiv.org/abs/1005.0416

	Introduction
	Problem Formulation
	System and Environment Models
	Control Objectives

	The Mixed Observable RRT
	Cost Reformulation
	Building the MORRT
	Finding the Best Plan From the MORRT

	Results
	Single-Agent Simulation
	Multi-Agent Simulation
	Hardware Experiment
	Experimental Setup and Hardware Models
	Experimental Results

	Conclusion
	References

