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Abstract— Diversity within sensors and actuators is visible in
many systems. One example is the sensorimotor control system
that contains many types of layers that sense and act with
different speed and accuracy. Each component design faces
the trade-off between speed and accuracy and the diversity of
the system then creates sweet spots with optimal performance.
The focus of this project was to develop a model with diverse
sensing and actuation to explore sweet spots and trade-offs.
The aim was to provide examples of diverse systems using
LQR and display the difference between only using one certain
type of component in comparison with combining components
with different properties. For this study two different types of
sensors and actuators where considered, one type that was fast
but sparse and one that was slow but dense. Distinct sweet spots
were achieved that presented cases where the different types
failed individually and resulted in excellent performance when
combined. The obtained solutions contained a lot of internal
feedback which proved necessary to avoid instability. It was
concluded that diversity is essential for optimal control which
agrees well with the expectations. The results of this paper
function as a bridge between familiar control theory and the
more novel System Level Synthesis framework.

I. INTRODUCTION

In nature and technology there are endless systems and
processes we wish to control. Ideally, we want all the features
of the sensors and actuators to be perfect but that is often
infeasible to achieve due to fundamental limitations. One
trade-off that is present in most systems is the speed and
accuracy trade-off (SAT) which states that what we gain in
terms of accuracy, we must compensate for by reducing the
actuation speed [1]. Therefore, in a system we often end up
with multiple layers of components that are differently fast
and accurate. For example a fast and unconscious reflex layer
and a slow and conscious planning layer as described in [2].

The combined architecture of these diverse layers creates
a final complex system that behaves both fast and accurate
which ends up in a so called Diversity Enabled Sweet Spot
(DeSS) [1]. The DeSS is a sweet spot caused by the diversity
of the components which behaves optimally while all layers
still obey the SAT law.

Recent development of the System Level Synthesis (SLS)
framework enables the ability to model complicated systems
where we can introduce constraints in time and space on the
sensing, actuation and communication within the system. It
is possible to create and combine diversity within the com-
ponents which results in intricate systems and the framework
design accomplishes this without much computational time
due to the scalability of the theory [3].

There is a lot left to be discovered about diverse sensing
and actuation before introducing the concepts in SLS. This

paper aims to provide further understanding of the sweet
spots in diverse systems and present examples of how
they can be modeled using senior preSLS control theory
frameworks. The focus is to explore the impact of diversity
for the fundamental features of DeSS using preSLS control
theory, as well as to create a bridge between familiar theory
and the more novel, powerful features of SLS.

Previous work of Nakahira et al. [2], shows how the
sensorimotor control system can be divided into two separate
subsystems with a mountain bike example. There is one fast
but inaccurate bump-reflex layer and one slow and more
accurate trail-planning layer. This example used a scalar
formulation with no internal feedback pathways (IFP) where
the errors of the system were simply added. IFP refers to
internal feedback loops which are an architectural feature in
the system where the components utilizes information about
previous actions to predict future actions. The work shown
in this paper is different and uses a formulation with multiple
states in a diverse system where IFP becomes necessary.

A brief introduction of control theory concepts and ex-
amples of systems with multiple actuators will be presented
in Section II. Section III describes the system setup and the
resulting model. Analysis of the results will be presented
in Section IV and the extension to the SLS framework is
described in Section V. Final conclusions are discussed in
Section VI.

II. BACKGROUND

Control theory provides many helpful tools to model the
dynamics of a system. For this study a linear–quadratic
regulator (LQR) problem has been used to provide a model of
a system with diverse sensing and actuation. Some necessary
background theory is presented here together with examples
of diverse sensing and actuation in reality which motivates
the interests of this study.

A. Diverse Sensing and Actuation

The initial example that sparked the desire to explore
diverse sensors and actuators is the observation of delays in
the sensorimotor control system. Following the example of
[2], the sensorimotor control system can roughly be divided
into a fast layer with proprioception, and then another slow
layer with the visual cortex. The proprioception is our ability
to sense the position and movements of our body where
the reflexes have a reaction time of around 95.6 ± 10.6 ms
according to experiments by [4].

The visual reaction time is much slower than the pro-
prioception at around 247.6 ± 18.54 ms according to [5].
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Thus suggesting that the part of the sensorimotor control
system related to vision has larger delays. The reason is due
to the large quantity of computations needed to interpret the
information from the raw retinal image. The visual cortex
needs to translate a lot of raw data into a decision of which
actions needs to be taken [6].

Although the reaction time is faster, the proprioception
is however less accurate than vision and when performing
sensorimotor tasks we rely much more on vision for precision
and accuracy in the movement [7]. Thus there exists a SAT
obeying system containing diverse components where one
layer is fast and inaccurate which together with a slow and
accurate layer creates a DeSS.

Within vision there is a lot of internal feedback between
the components of the visual network and IFP is commonly
found in the visual area [8]–[10]. In general the world is
slow changing in relation to the ∼ 200 ms it takes for us
to see everything in a room. Using IFP, our vision can use
predictions to compute error signals which are smaller and
can be sent faster than the full raw image. The internal delays
of vision also result in stale images by the time they arrive
to the motor areas which also motivates the benefits of the
predictions from IFP. There are also experiments which point
to IFP from motor to visual areas [11].

Another motivating example of diverse sensing and ac-
tuation is the immune system response. The complexity of
the immune system is undeniable. The components of the
immune system protect us from pathogens and can initially
be divided into two parts: the innate immunity and the
adaptive immunity [12]. The innate immunity provides a
fast but not very accurate protection and is able to limit
infections to some extent. Here cells like macrophages, neu-
trophils and basophils respond within minutes to hours with
a rapid response. The adaptive immunity is the accurate but
slow defense with specialized protection against pathogens.
In comparison the adaptive immunity may take weeks to
respond but when it does, it works very effectively with T
lymphocytes and B lymphocytes that produces an efficient
and long lasting protection [12]. Thus the immune system
also presents a DeSS system with a fast but inaccurate layer
and an accurate but slow layer.

IFP is also visible in the immune system where T cells
can be further divided into CD4+ T cells, or T helper cells,
and CD8+ T cells, or cytotoxic T cells, which function as
the names suggest. The CD8+ T cells kills abnormal or
damaged cells, which can be virus infected or cancerous
[13]. The CD4+ T cells on the other hand help regulate the
responsiveness of the killer cells and promotes interaction in
between cells in the immune system [14]. The T cells are
activated via negative feedback [15] suggesting a lot of IFP
present in the immune system in order to recognize and be
sensitive to changes and irregularities.

The ubiquity of SAT, DeSS and IFP in both the sensori-
motor system and the immune system motivates us to seek
fundamental theory on the optimal usage of diverse compo-
nents (e.g. diverse sensors and actuators). The current goal
is not to model these biological systems in fine detail, but

to study simple, human-interpretable examples that give rise
to fundamental theory on the existence and characteristics of
DeSS and IFP.

In reality most of the delays are caused by limitations
in communication between components. For this study the
origins of the delays are simplified. The idea is to push
all delays into the sensors and actuators to fit the preSLS
theory. Given the abstractions and simplifications the goal is
to investigate if it is possible to find stories that shows DeSS
and IFP using preSLS theory in a simple and approachable
way.

B. LQR

Linear-quadratic optimization refers to a problem formu-
lation where the objective is to minimize a cost that is
described by a quadratic function, as in Equation (1), and
the system dynamics are described by linear differential
equations, as in Equation (2) [16]. Here xk denotes the state
vector, uk the input, yk the output and the disturbance wk is
assumed to be Gaussian distributed.

J = lim
τ→∞

τ∑
k=1

xTkQxk + uTkRuk (1)

xk+1 = Axk +B1uk +B2wk

yk = Cxk
(2)

The optimal control is given by uk = −Kxk where K is
the optimal controller and is given by:

K = (R+BT1 PB1)−1(BT1 PA)

and P is solved for using the discrete time algebraic Riccati
equation (DARE):

P = ATPA− (ATPB1)(R+BT1 PB1)−1(BT1 PA) +Q
(3)

For this study only the dual problems of State Feedback
(SF) and Full Control (FC) will be considered where either
C = I or B1 = I respectively in Equation (2). The general
Output Feedback (OF) case will not be considered and is left
for future studies. Additionally, the sensor noise is assumed
to to be zero which is equivalent to R = 0 in Equation (1).

One key property of the states is the concept of con-
trollability. A state x is said to be controllable if in finite
time, an input can yield the desired state x. If all states are
controllable then the whole system is controllable [16].

A related theorem states that a system of order n is
controllable if and only if the controllability matrix S has
full rank where the controllability matrix is given by:

S(A,B) =
[
B AB A2B . . . An−1B

]
Here A and B are the matrices of Equation (2) [16].

The properties of this theorem yields a trivial case where
actuation density is demanded. If A = I then the stability
matrix becomes:

S =
[
B B . . . B

]
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Thus B must be of the same rank as A for the system to
be controllable, meaning that for each state we must also
have an actuator. This density requirement of the actuators
is considered trivial and will not be further discussed. The
aim is instead to look at diversity both in time and sparseness
to see how diversity can yield stable control.

III. METHODOLOGY

The cases of diverse sensing and diverse actuation are
managed separately. When modeling diverse sensing, the
actuation is assumed to be perfect and vice versa. This
is to highlight the impact of modifying the components
respectively. For both cases we assume the system setup
to be a ring formation with n states where the closest
neighbors interact with each other as shown in Figure 1.
We assume that all interactions between neighboring states
and own interactions with previous time steps are equal to
some constant α which yields the following (n×n) A matrix
describing the dynamics:

A = a ∗



α α 0 0 . . . α
α α α 0 . . . 0

0 α α α
. . .

...
...

. . . . . . . . . . . . 0

0 0
. . . α α α

α 0 . . . 0 α α


(4)

a is a scaling parameter which scales the eigenvalues of the
A matrix. α has been chosen to be 1/3 to make A neutrally
stable for a = 1, i.e. the maximum eigenvalue is equal to 1.
The scaling parameter a can be adjusted to make eigenvalues
of the A matrix become > 1 which creates an unstable
system.

Fig. 1: The ring formation with n states where each state is
connected to two neighbors.

For both cases of diverse sensing and actuation we con-
sider two types of components: one that is fast but sparse,
and one that is slow but dense, motivated by the examples
discussed in Section II. Sparse and dense in this context
refers to the quantity of sensors or actuators in the system
in comparison to the states. Dense actuation means that we
have as many actuators as states which can act on all states

at once. Sparse actuation on the other hand means that the
control is limited to a smaller section of the system.

A. Diverse Actuation

Suppose that we have a time discrete system with the
following dynamics:

xk+1 = Axk + B1uk + B2wk
yk = Cxk

(5)

where C = I for the diverse actuation SF case. The first n
entries of xk are the actual, real states and the rest denotes the
delayed, internal actuation states. A and B1 are the matrices
containing the dynamics of the entire system, including the
dynamics of the internal, delayed states due to the speed
diversity of the actuators.

The inputs in u are divided into two parts, one actuation
that is fast and sparse, and another actuation which is
slow and dense. The corresponding parts of the B1 matrix,
B1 = [Bf Bs], are denoted Bf for fast and Bs for slow.
The format of the B1 matrix depends on two additional
parameters besides the number of states n: the relative delay
d between the fast and slow actuation, and the dimension m
of the fast actuation, which is how many m eigenvectors of
A that are included in the fast component.

The fast actuators corresponding matrix Bf is of the size
(n · (d+ 1)×m) where the top (n×m) block is a matrix
with the m eigenvectors corresponding to the m largest
eigenvalues of A. The remaining entries of Bf are zero:

Bf =
[
E 0 . . . 0

]T
(6)

where we let E be the block matrix of the m eigenvectors of
A. Thus Bf represents the instant but sparse actuation which
acts in the m "worst directions" of the spread when given
an impulse to the system.

The slow actuators corresponding matrix Bs is of the size
(n · (d+ 1)×n). With no delay Bs = I and with delays we
have that Bs contains d stacked n × n blocks of zeros and
the bottom n× n block is the identity.

Bs =
[
0 0 . . . I

]T
(7)

Thus Bs represents dense actuation, which can act on the
whole system, that is delayed d time steps. To include the
delayed states of the system, the extended matrix A then
becomes:

A =



A I 0 . . . 0

0 0
. . . 0

...
... 0

. . .
... I
0 . . . 0


(8)

where a delay d yields the dimension of A as (n · (d+ 1)×
n · (d+ 1)).

We now formulate an LQR problem with Q = GTG and
R = HTH . Here G =

[
I 0 . . .

]
where I is the identity
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with dimension n and d blocks of zero. Thus only the n
original states are minimized in the objective function and
the delayed internal states are excluded. H = ε · I where
ε → 0 is a small value ensuring numerical feasibility. The
resulting objective function is as Equation (1).

The optimal control action is uk = −Kxk, where K =
(R+ BT1 PB1)−1(BT1 PA), and P is obtained using DARE:

P = ATPA− (ATPB1)(R+ BT1 PB1)−1(BT1 PA) +Q
(9)

The state feedback problem described in Equation (5) and
the LQR weights Q = GTG and R = HTH will be referred
to as the Primal problem or (SF) problem. When H = 0,
which we are assuming by letting ε → 0, the cost of the
objective is calculated as Tr(BT2 PB2).

B. Diverse Sensing

The diverse sensing case is the dual problem of the SF
formulation. Here we instead have the following dynamics:

xk+1 = ATxk + CTuk +GTwk

yk = BT1 xk +HT vk
(10)

where the first n entries of xk are the real states and the rest
now denotes the delayed, internal sensed states. This is the
FC case which corresponds to C = I .

The dual LQR problem has the weights Q = B2BT2 and
R = 0. The optimal controller uk = −Myk = −MBT1 xk,
where M = ATFB1(BT1 FB1 +R)−1 is obtained by solving
DARE:

F = ATFA− (ATFB1)(BT1 FB1 +R)−1(BT1 FA) +Q
(11)

Note that F = P which gives M = KT . Again we have
that the cost when H = 0 is calculated as Tr(BT2 FB2) =
Tr(BT2 PB2), i.e. due to the duality of the two problem
formulations the cost is equal for both cases.

Diverse sensing assumes perfect actuation and thus the
dynamics described by Equation (10) will be referred to as
the Dual problem or (FC) problem.

Later we study the behaviour of the systems with diverse
sensing and actuation when exposed to an impulse in the
first time step. The aim is to search for trade-offs and DeSS
by varying the different parameters and to find interesting
examples showing variations of the performance when using
the fast and slow components separately and combined.

IV. RESULTS AND ANALYSIS

The system setup has four parameters which affect the
outcome: the number of states n, the scaling parameter a,
the delay of the slow component d and the sparseness of
the fast component, which is determined by how many m
eigenvectors of A are included. The open loop with no
control results in an unstable system for a ≥ 1 since for these
values the eigenvalues of A become larger than or equal to
1. For these occasions an impulse given at any place in the
ring will cause the states to grow rapidly.

Fig. 2: Open loop with no actuation when given an impulse
with n = 5, a = 1.5 and cost = ∞.

Fig. 3: Fast-only actuation when given an impulse with n =
5, a = 1.5, m = 1 and cost = 1.800.

One example of this is shown for n = 5, a = 1.5 in
Figure 2. After 5 time steps the impulse with magnitude 1
has doubled and keeps on growing exponentially to infinity
due to the instability of the system. Because of the unstable
system, control action is needed and next we look at the
results from the diverse actuation and the diverse sensing
setup separately.

A. Diverse Actuation

As described above, we consider two types of actuators:
fast and slow. First, we study system performance in the
absence of diverse actuators. We show that both fast-only
actuation and slow-only actuation, on their own, can perform
terribly and incur extreme (sometimes infinite) costs. We then
show that by allowing the system to use diverse actuators (i.e.
both fast and slow), performance is dramatically improved.
This demonstrates the existence of a striking DeSS.

1) Fast-only actuation: Extending the example of the
open loop with n = 5, a = 1.5, applying a fast actuator
with m = 1 yields the following impulse response as shown
in Figure 3. It is clear that the actuation is able to stabilize the
system and can attenuate the impulse completely. This is due
to that the second eigenvalue of the A matrix is smaller than
1 and the fast actuator is able to attenuate the disturbances in
the "worst direction". Thus the system decays to zero after
the impulse.

For m = 1 the relationship between the objective value
and the value of a is shown in Figure 4a. Here it is clear
how the function of the objective value becomes almost
vertical for certain values of a which shows the breaking
points of where the fast-only actuation fails and results in
infinite cost. It is for these breaking points that more than m
eigenvalues become larger than or equal to 1 and for which
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(a) (b)

Fig. 4: Relations of a and n where fast actuation results in
infinite costs for m = 1: (a) Objective value as a function
of a for different n. (b) a values where fast actuation fails
as a function of n.

Fig. 5: Fast-only actuation when given an impulse with n =
5, a = 1.856, m = 1 and cost = ∞.

the eigenvectors in the fast-only actuation are no longer
sufficient to cover all the impulse propagation directions.
Keeping m = 1, the breaking points where the fast-only
actuation fails for the different n values are described in
Table I.

Figure 4b shows the breaking point values of a for which
the fast-only actuation with m = 1 results in infinite costs.
Here it is evident that as the n number of states increase, the
system is less able to control instability.

n 5 6 7 8
a 1.856 1.503 1.336 1.244

TABLE I: Breaking point value for a where fast-only gives
infinite cost with m = 1.

If we examine the case of the blue line in Figure 4a we
get that for n = 5, m = 1 the fast-only actuation fails for
a = 1.856. We now fix the parameters to be n = 5, m =
1 and a = 1.856. The corresponding impulse response for
fast-only actuation is show in Figure 5, and comparing with
Figure 3, we note how the impulse response is different in
this case and does not get attenuated to zero.

The breaking point of where the fast-only actuation fails
occurs when the cost becomes infinite. The fast-only com-
ponent can only act in the "worst case" direction and for this
setup the second and third eigenvalue has become 1 which
yields this step response where the states become constant.
Hence, the fast-only component manages to attenuate the
exponentially growing part of the system but can not act on
the constant steps which yields the infinite cost.

(a) Slow only actuation (b) Fast & slow actuation

Fig. 6: Impulse responses for n = 5, a = 1.856, m = 1 and
d = 3 with cost = a) 13.726, b) 2.279.

2) Slow-only actuation: We now consider the case of
slow-only actuators which are delayed d = 3 time steps.
If the setup with n = 5, m = 1 a = 1.856 is repeated when
only allowing slow actuation with d = 3, the system behaves
as shown in Figure 6a.

Note that the top 5 states of Figure 6a display the actual
states where as the bottom states are the internal, delayed
states. For all following impulse responses, the top 5 states
are the actual ring states of the system and are encircled
with green for clarification. The dashed lines display the
distinction between the delayed states.

In comparison with the impulse response of the open loop
in Figure 2 it is clear that the behaviors of the first three
time steps are the same, and the slow-only actuation behaves
like there is not any control action present. This is due to
the delay of the slow actuators. Once the slow actuators are
caught up, the impulse propagation is killed off immediately,
showing the effects of the slow actuator being dense.

3) Fast & Slow actuation: The combination of the fast
and slow actuation is what is of most interest since this
setup is what creates the diversity of the system. The impulse
response when utilizing both types of actuators is shown in
Figure 6b.

This case shows a combination of the behaviors from both
previous setups where the initial impulse response in the first
three time steps are equal to the fast-only response and then
all impulse propagation is attenuated completely when the
slow actuator has responded.

Since the fast-only actuation yields infinite cost for a =
1.856 we fix the scaling parameter a as this breaking point
and study the objective value of the slow-only compared with
the fast & slow actuation together while varying the delay
d. The corresponding result is shown in Figure 7a.

4) DeSS: A dramatic sweet spot has been found. The
results are clearly showing how much better the performance
is when combining the two different actuators in comparison
with using only fast or slow actuation separately. This
striking sweet spot shows how the mixture of fast and slow
actuation results in a low cost at the same time as the fast-
only actuation results in infinite costs and the costs of the
slow-only actuation is increasing exponentially when the
delay increases. Moving forward, the green line showing
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(a) Objective value

(b) Maximum amplitude

Fig. 7: Objective value and maximum amplitude of slow-
only and fast & slow actuation for n = 5, a = 1.856 and
m = 1.

the fast-only result will be left out since it is infinite when
the fast-only actuation fails, which is where the sweet spots
occur.

Another really important result is the difference in the
worst case maximum amplitude for the different cases. The
slow-only case yields in an infinite maximum amplitude
as the delay increases. This is due to that the slow-only
impulse acts as the open loop until the delayed slow actuation
may operate. When using the combination of fast & slow,
the maximum amplitude instead remains to be close to the
impulse value. Thus the "worst-case" states are significantly
better when using the combination of the actuators which
is also displayed in Figure 7b. Thus, we can conclude that
delayed actuation is acceptable if combined with a fast but
sparse actuator. Hence, the theoretical sweet spot found
here is consistent with what real examples, such as the
sensorimotor control system, suggest.

Building onto the information obtained from Figure 4a we
search for similar sweet spots for higher values of n. From
Table I the corresponding a value that causes the fast-only
actuation to result in infinite cost for n = 8 is a = 1.244.
Studying the objective value for the slow-only and the fast
& slow actuation, with n = 8, a = 1.244 and m = 1, when
varying the delay of the slow actuation yields the following
results shown in Figure 8. Again there is a sweet spot present
where it is clear how the combination of two actuators, who
separately results in infinite or large costs, creates a low-

Fig. 8: Maximum objective value of slow-only and fast &
slow actuation for n = 8, a = 1.244 and m = 1

(a) n = 5 (b) n = 6

(c) n = 7 (d) n = 8

Fig. 9: Objective value as a function of a and d for m = 1
and n = (5, 6, 7, 8).

cost system together. The increase in n causes the vertical
breaking point in a to be pushed to the left in Figure 4a.
However, the decrease of the a value is generating a less
dramatic sweet spot where the delay d needs to increase a lot
in order for the fast & slow actuation to greatly outperform
the slow-only actuation. Decreasing the scaling parameter
a is generating a system with slower dynamics which in
turn requires the delay to increase in order to demonstrate a
visible effect.

The fast-only actuation does not depend on the delay d
and in order to display how the cost depends on a and d for
the slow-only and fast & slow actuation, 3D surface plots
are shown in Figure 9 for different n while keeping the fast
actuator with dimension m = 1.

Here the rainbow colored surface is the objective value
with slow actuation only, and the copper colored surface
shows the objective value of the fast & slow actuation.
What is noticeable is that as the number of states increases,
the performance of the fast & slow actuation gets worse,
signaling that the fast actuation becomes less useful. This is
reasonable since we are keeping m = 1 constant and thus
as the number of states increases the fast actuation becomes
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Fig. 10: Fast-only actuation when given an impulse n = 5,
a = 1.856, m = 3 and cost = 1.079 .

less comprehensive.
5) The (n, m) relation: Since the fast-only actuation

becomes less effective as n increases, we study the impact
of increasing the m value. For m = 1 we picked the
fast actuator to be the eigenvector corresponding to the
largest eigenvalue. When increasing m, more eigenvectors
are included corresponding to the largest eigenvalues in
descending order. If there are multiple eigenvectors corre-
sponding to the same eigenvalue, m is increased to include
both in the fast actuator. For example with n = 5, the second
and the third eigenvalues are equal. If m is chosen to 2 in
this case, it will automatically be increased to 3.

With n = 5 and m = 1 it was previously shown that
a = 1.856 with fast-only actuation yielded an infinite cost.
Increasing to m = 3 instead gives a finite cost with the
corresponding impulse propagation as shown in Figure 10.

In this case, the fast actuation alone is able to attenuate the
impulse which is a big difference from the previous case of
Figure 5. In fact, the fast-only actuation can achieve a stable
system as long as m is larger than or equal to the number of
eigenvalues of A that are ≥ 1. Increasing m has an impact on
the fast actuation that pushes the vertical lines in Figure 4a,
which shows the breaking points of fast-only actuation, to
the right. Thus, intuitively, decreasing the sparseness of the
fast actuation improves the performance in terms of stability.

We now search for similar sweet spots as the one obtained
for n = 5, m = 1, a = 1.856 where the increase in delay
of the slow actuation showed the benefits of using both
actuators as displayed in Figure 7a. a is kept at a = 1.856
and pairs of (n,m) that shows the same sweet spots are
searched for.

We search for two things, first we want that the pair (n,m)
is so that the fast actuation alone leads to infinite cost for
a = 1.856, secondly we want the impact of the fast actuation
to be great enough that the performance of the fast & slow
actuation together outperforms the result of the slow only
actuation. Although the computations are very sensitive to
small changes in the parameters, there seems to be a pattern
of (n,m) pairs that yields what we are searching for. With
a = 1.856 the fast only actuation fails for the pairs (n,m) =
(5, 1), (10, 3), (15, 5), (20, 7), (25, 9), ....

With these pairs of (n,m) where the fast actuation fails
we now repeat the case study of the performance of the
slow only actuation in comparison with the fast & slow
actuation when varying the delay d. The corresponding result

(a) n = 10 and m = 3

(b) n = 25 and m = 9

Fig. 11: Objective value of slow-only and fast & slow
actuation as a function of d with a = 1.856 for different
n and m.

is shown in Figure 11a for (10, 3) and in Figure 11b for
(25, 9). The results for all of the (n,m) pairs (n,m) =
(5, 1), (10, 3), (15, 5), (20, 7), (25, 9) have the same appear-
ance, signaling a pattern for sweet spots.

This result is displaying dramatic sweet spots where the
combination of both fast and slow actuation is essential for
the system to function properly. It is showing that delays in
actuation are acceptable if they are combined with a fast and
sparse response. Even in a very simple system with only two
types of actuators, dramatic DeSS are observed, suggesting
that DeSS is a fundamental feature in the presence of diverse
actuation. These results are however only scratching the
surface of the sweet spots that occurs in a system with
diverse actuators and more complex setups are needed to
describe structures like the sensorimotor control system or
the immune system.

B. Diverse Sensing

We previously considered the case of perfect sensing and
diverse actuation. Mathematically, this is the dual problem
to that of perfect actuation and diverse sensing; thus, our
observations about diverse actuation and DeSS also apply to
diverse sensing.

1) Fast-only sensing: The duality between the SF and FC
cases causes the impulse response of fast-only sensing to
be identical to the impulse response of fast-only actuation.
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(a) Slow-only sensing (b) Fast & slow sensing

Fig. 12: Impulse responses for n = 5, a = 1.856, m = 1
and d = 3 with cost = a) 13.726, b) 2.279.

The lack of the delay elements results in symmetric matrices
and thus the primal problem becomes the same as the dual
problem for the fast-only case.

The physical interpretation of this is that with one compo-
nent that is fast-only and the other one is assumed to perform
perfectly, the sparseness of the fast component plays the
deciding role of the outcome. Meaning that if the actuation
is perfect but the sensing is sparse, we can not sense the
states adequately to attenuate the impulse completely when
introduced to an unstable system. On the other hand if the
sensing is perfect but the actuation is sparse we can not
adequately act on all the states, resulting in the impulse not
being perfectly attenuated.

Given the previous information of Figure 4a, we know
that the fast-only sensing will fail to control the system for
n = 5, m = 1 and a = 1.856. Since the fast-only cases
for both sensing and actuation are the same, the obtained
impulse response from fast-only sensing is the same as in
Figure 5. This is the setup where the system needs a slow
sensor in order to function properly, hence this setup will be
used when studying the system response from an impulse
using slow-only and fast & slow sensing.

2) Slow-only sensing: Using slow-only sensing where the
dense but slow sensors are delayed d = 3 time steps the
impulse response is shown in Figure 12a. Again note that
the top 5 states of Figure 12a display the actual states where
as the bottom states are the internal, delayed, sensed states.
The open loop behavior is clearly visible in the first three
time steps. This is due to the delay of the slow sensing. In the
impulse response it is clear how the internal, delayed states
"grow" for each step while approaching the real states. Once
the slow sensors are caught up, the impulse propagation is
killed off immediately, showing the effects of the slow sensor
being dense and the actuation being perfect.

3) Fast & Slow sensing: Combining the fast and slow
sensors we again obtain a diverse system where the impulse
response, shown in Figure 12b, emulates a merge between
the responses of fast-only and slow-only sensing. The first
d+ 1 time steps are identical to the fast-only step response
and the following time steps are equal to the slow-only
response, i.e. equal to 0. Thus the combination of fast &
slow results in a response that looks like the "best of both

(a) Slow-only (b) Fast & slow

Fig. 13: The optimal controller KT for the diverse sensing
setup with n = 5, a = 1.856, m = 1 and d = 3

worlds".
Due to the duality of the actuation and sensing problems,

the top 5 actual states behave the same, i.e. the ring formation
for both cases looks the same when given an impulse, which
is evident when comparing the corresponding cases in Figure
12 with Figure 6. The duality also yields that the cost of
the different setups are the same, as mentioned in Section
III. Therefore, the figures displaying the costs as function
of the delay d and scaling parameter a still applies to the
sensing problem. The same goes for the dramatic sweet spots
where the diverse system outperforms the separate types
of components substantially. Diverse sensing, like diverse
actuation, produces dramatic DeSS even in a simple system.
This again suggests that DeSS is a fundamental feature in
systems with diversity.

C. IFP

We now observe the structure of the controllers that give
the dramatic DeSS found above; we focus on the case of
diverse sensing. We show that IFP is an essential architectural
feature to enable DeSS and that the removal of it worsens
the performance of the system.

Looking at the impulse responses of Figure 12a and Figure
12b there seems to be a lot of IFP present, meaning that there
is information flow traveling backwards to the sensors within
the system. This is displayed clearly in Figure 13 which
shows the optimal controllers KT of the diverse sensing
problem. The second, third and fourth blocks of KT shows
the IFP of the system. Here the entries of the matrix is shown
using a color map to more easily visualize patterns rather
than showing large matrices full of numbers.

Figure 13a displays the IFP of the case where only the
slow but dense sensing is used. The shape of the A matrix
is clearly visible, which is not a coincidence since this is
what the internal feedback can utilize in terms of predicting
the behaviour of the states in the system. Comparing with
the case where both fast and slow sensors are used in Figure
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13b, the shape is still similar although including the fast
sensor changes the magnitudes of the entries in the controller
corresponding to the slow and dense sensor.

The magnitude of the entires in KT in Figure 13a are
much grater than in Figure 13b suggesting that there is
much more IFP in the slow-only case. Introducing the fast
component in Figure 13 greatly reduces the need for IFP
in the delayed states since the fast action is taken and this
seems to dominate over the now smaller slow-only based
action. It is also clear that there is less IFP present the more
delayed the internal state is, i.e. the magnitudes in the blocks
of KT are decreasing for each delayed step. However, for
both cases it is clear that the system uses IFP to create
optimal control and it is necessary with internal feedback
to know which action has been taken previously such that
the following delayed states does not act poorly.

The presence of IFP is also studied for the diverse ac-
tuation case with the sweet spot setup n = 5, a = 1.856,
m = 1 and d = 3. The optimal controllers of the slow-only
and fast & slow actuation are identical to the transpose of the
optimal controllers in the corresponding sensing case shown
in Figure 13.

Again the presence of IFP is needed to know what
previous action has been taken. The differences between the
sensing and actuation cases are that in the SF case IFP is
needed because of sensing changes, where as in the FC case
IFP is needed because of actuation changes. It is however
important to note that the ring states, i.e. the top n = 5
states that are the actual states, are identical for both the
diverse sensing and actuation cases in Figure 6a, 6b and
Figure 12a, 12b. Thus, delays in either component results in
the same system behaviour, it is only the internal states that
are different.

1) Removing IFP: To further study the impact of IFP we
study the case where it is removed in the controllers KT for
both the slow-only and the fast & slow setup. This is done
by removing the corresponding IFP rows of KT which gives
the resulting controllers that are shown in Figure 14.

The removal of IFP causes dramatic change. Figure 15
shows the impulse response when using slow-only sensing
or actuation with removed IFP, the setup is still n = 5,
a = 1.856, m = 1 and d = 3. Again it is clear how in
both cases of diverse sensing or actuation, the ring states
behave equally where as the differences lay in the delayed,
internal states.

The impulse causes major fluctuation in the states due to
the delayed sensing and actuation. Removing IFP causes a
gap in the system information about the current state and
removes the knowledge of previous actions, which before
could be determined perfectly using the internal feedback.
Without the IFP, the system is no longer are able to calculate
the correct action since the internal feedback of what has
previously been done is removed. This generates a system
which only acts based on what has been sensed d time
steps ago without taking previous, more recent actions into
account.

The behavior is clearly visible in the impulse response

(a) Slow-only (b) Fast & slow

Fig. 14: The optimal controller KT for the diverse sensing
setup with n = 5, a = 1.856, m = 1 and d = 3 with
removed IFP.

(a) Slow only sensing (b) Slow only actuation

Fig. 15: Slow only sensing and actuation with removed IFP
when given an impulse with n = 5, a = 1.856, m = 1,
d = 3 and cost = a) ∞, b) ∞.

where the impulse is attenuated perfectly after d + 1 time
steps when the delayed sensing has caught up with the delay.
But immediately in the next time step the states are fed with
more attenuating control action which causes the 0 states to
become negative. This is due to that the sensed state d time
steps ago was still positive and thus negative actuation was
needed and without the internal feedback there is no way of
telling that this has already been taken care of in the previous
time step.

Thus, more negative actuation is fed into the system
causing the states to become negative. Later, these negative
states will be sensed and positive action will be taken, but
due to the delay and lack of internal feedback the entire
system will begin to fluctuate between positive and negative
states, each time growing in magnitude. Hence without IFP
the system becomes unstable.

This fluctuating behavior for slow-only is shown in Figure
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Fig. 16: Slow-only sensing or actuation with removed IFP
when given an impulse.

(a) Fast & slow actuation (b) Fast & slow sensing

Fig. 17: Fast & slow sensing and actuation with removed
IFP when given an impulse with n = 5, a = 1.856, m = 1,
d = 3 and cost = a) ∞, b) ∞.

16. Due to the increase in magnitude, the fluctuation appears
as a flat line when in fact the states are fluctuating with
exponential increase in magnitude. Since the ring states are
equal for the dual cases, the figure applies to both slow-only
cases of sensing and actuation.

Removing IFP in the fast & slow sensing or actuation case,
using the controller of Figure 14b, the impulse responses are
shown in Figure 17. Again, the ring states are identical for
both cases but the internal, delayed states are different. The
impulse response again fluctuates such that the amplitude
increases to infinity as shown in Figure 18.

Comparing the results of Figure 16 and Figure 18 it is

Fig. 18: Fast & slow sensing or actuation with removed IFP
when given an impulse with n = 5, a = 1.856, m = 1 and
d = 3.

Fig. 19: Fast & slow sensing or actuation with removed IFP
when given an impulse with n = 5, a = 1.5, m = 1 and
d = 3.

evident that the system using both kinds of components be-
haves better since the magnitude of the state values increase
less rapidly. However, for long time intervals, the amplitude
of the states will increase to infinity suggesting that IFP is a
crucial attribute of the system in order to achieve stability.

What is interesting to note is the result of the fast & slow
without IFP for cases where the fast-only component alone
is sufficient for the system to achieve stability. A case when
this occurs, as previously seen in Figure 3, is the setup n =
5, a = 1.5, m = 1. The impulse response of this setup,
without enabling IFP for fast & slow in the controller, gives
the following result as shown in Figure 19.

The fluctuations are decreasing in amplitude and for long
time intervals the impulse is attenuated to 0. However, the
impulse attenuation for fast-only is much faster as we saw in
Figure 3. Thus, including the slow components without IFP
makes the system performance worse because of the delayed
sensing without feedback, suggesting the importance of IFP.

Removing IFP from either the slow-only or fast & slow
case results in worse performances of the system. The setup
that resulted in sweet spots in previous figures, yielded an
unstable system with infinite magnitudes without the internal
feedback pathways thus highlighting the importance of its
presence.

Without IFP, the slow-only setup will always result in
instability because of the delayed reaction. But even with
both fast and slow components the system dynamics are
more limited and the scaling parameter a needs to be small
in order for the system to remain stable. Thus signaling
the importance of IFP when delays are present in order to
reduce control limits. It is also evident that IFP is a necessary
architectural feature to enable DeSS in the presence of
delayed layers.

Given the experience of these results that are presented
in this paper, it is clear that the preSLS control theory is
sufficient to describe a simplified model of diverse systems,
and which functions as a bridge between familiar theory and
future extensions. The key takeaways are that DeSS is a
fundamental feature generated by the diversity of the systems
and that IFP is a fundamental feature necessary to enable

10



DeSS when delays are present.

V. EXTENSION TO SLS

Moving forwards there are two directions of further stud-
ies. One direction is to extend all of the experiences from the
senior, preSLS control theory to the SLS framework. Using
the understanding from the fundamental examples, more
complex applications to the sensorimotor control system or
immune system can be made using SLS. There we still
assume full state feedback with full control but the delays
are moved from the sensors and actuators. Instead, internal
communication and computation delays are imposed which
causes an explosion in IFP which demands a switch to the
SLS framework.

The first key result of this research is that large delays
in sensors or actuators, which exists in the visual cortex,
are acceptable if the components are dense and accurate
and if these delayed components are complemented by
sparse and fast components, like the vestibular system and
proprioception. Extending the implementation of diverse
actuation in SLS is easily done by first creating a con-
catenated B =

[
B1 B2 . . .

]
matrix with all the B : i

matrices describing the separate dynamics of each type of
actuator. Secondly the delayed parts of the diverse actuation
is implemented by constraining the corresponding parts of
the delayed actuator in each block matrix of the Φu matrix
from [3]. The constraint of diverse, delayed actuation and
sensing can then be further analyzed in combination with
implementing locality and communication constraints using
the SLS framework where the scalability property is essential
to be able to describe further complex systems.

The second key result is regarding the presence of IFP
in the optimal controllers for the delayed components. The
necessity of IFP for a well-functioning system is a good
motivator for continued studies of these kinds of systems
using SLS. As the size and complexity grows, the more need
for massive IFP, which will affect the computational time.
Hence when trying to model systems as the sensorimotor
control system or the immune system, that are exhibiting
functions with a lot of IFP, the scalability and locality of the
SLS theory is crucial.

The other direction of further studies would be to combine
the two separate cases of diverse sensing and actuation by
switching to OF dynamics, introduce sensor noise and then
use a Kalman filter [16] to estimate the state of the system.
This could be done with preSLS theory or with SLS to extend
the previously mentioned direction of future studies even
further.

VI. DISCUSSIONS AND CONCLUSIONS

The results of this paper show that there exists dramatic
sweet spots in systems with diverse sensing and actuation
where the components fail to control the system separately
but create a well-functioning setup when combined. The
results also show the importance of internal feedback within
delayed components where the system performance becomes

unstable without the correct feedback information. Exam-
ples of applications where the theory of diverse sensing
and actuation can be implemented include the sensorimotor
control and the immune system. These are all complex
structures which when modeled requires large computations.
This yields SLS as a natural future direction of study.
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