
3D Multi-Contact Gait Design for Prosthesis Using FROST

Elin Samuelsson1

Mentor: Aaron D. Ames2, Co-mentor: Rachel Gehlhar3, Advisor: Jacob Reher3

Abstract— Walking with an energetically passive prosthetic
leg constrains the user in many ways. Powered prostheses are
under development and hold potential to give an amputee
full mobility in various terrains. The goal of this project is
to simulate stable gait trajectories for the powered prosthetic
leg AMPRO3. It should walk as human-like as possible. This
includes the multi-contact behavior of respectively putting
pressure on the heel and toe throughout one step.

The human lower body is modeled as a chain of links
and joints and the gait as a hybrid system with continuous
domains and discrete transitions in between. Using optimization
to minimize energy while fulfilling specific constraints, appro-
priate movements for each joint are found. In simulation, a
feedback controller then drives the joints to follow these desired
paths, generating the actual trajectories. The MATLAB toolkit
FROST, developed by the AMBER lab for this kind of problem,
is used as the control development framework. A natural next
step is to implement the simulated trajectories on the actual
prosthesis and perform experiments. The code is also easy to
modify to generate gaits for other walking behaviors, such as
walking on slopes and stair walking.

I. INTRODUCTION

In the United States, there are approximately 222,000
people suffering from transfemoral (above the knee) am-
putation [1]. The current commercial market mainly offers
energetically passive prostheses, which constrain the user
by both increased metabolic cost and limited locomotion
capabilities [2]. To address this, powered prosthesis are under
development. They hold potential to enable an amputee to
walk more efficiently and with a healthier gait.

In AMBER Lab, led by Aaron D. Ames, the prosthetic
leg AMPRO3 is currently being built. An earlier version,
AMPRO [3], is shown in Fig. 1.

In this project, human-like walking with AMPRO3 on a
flat surface is simulated. The method can be divided into
three steps: modeling, trajectory optimization and simulation.
The model of an amputee wearing AMPRO3 is simply
a system of links and joints. Due to the combination of
continuous and discrete behavior, the gait can be seen as
a hybrid control system. The steps are divided into several
phases, where each phase has certain constraints that need to
be fulfilled. An optimization method finds stable, symmetric

1Elin Samuelsson participates in the Summer Undergraduate Research
Fellowship (SURF) program, California Institute of Technology, Pasadena,
CA 91125, USA. elsamu@kth.se

2Aaron D. Ames are with the Department of Mechanical and Civil
Engineering and the Department of Computing + Mathematical Sci-
ences, California Institute of Technology, Pasadena, CA 91125, USA.
ames@caltech.edu

3Rachel Gehlhar and Jacob Reher are with the Department of Mechanical
and Civil Engineering, California Institute of Technology, Pasadena, CA
91125, USA. {rgehlhar,jreher}@caltech.edu

Fig. 1. Transfemoral test subject wearing an earlier version of the powered
prosthetic device, named AMPRO [3].

joint trajectories that satisfy all constraints. In the simulation,
the amputee-prosthesis model tries to follow those optimal
paths, using a feedback controller. The resulting simulated
walking trajectories can later be used as input to the real
AMPRO3.

The problem is set up in MATLAB, using the software
FROST [4]. It stands for Fast Robot Simulation and Op-
timization Toolkit [4] and is custom-made for dynamical
locomotion. Compared to old implementations, code written
in FROST has a quicker runtime. Problems are also easier
to modify. These advantages motivates the purpose of this
project: to implement a human-prosthesis model in FROST
and simulate human-like gaits.

The project is divided into generating the following types
of gaits:
• Single domain gait: Only one foot is in contact with

the ground at a time.
• Flat-foot gait: The model alternates between standing

on one and two feet.
• Multi-contact gait: Pressure is put on heel and toe,

respectively, as shown in Fig. 2 from [5].
As the complexity increases, we approach actual human gait.
Rolling over the foot, from heel to toe, is crucial. It makes
humans walk fluidly and energy efficiently, and may also
help reduce knee osteoarthritis in transfemoral amputees [6].

II. THEORY

The amputee-prosthesis system is treated as a bipedal
robot. Its state is determined by a set of coordinates q ∈
Q. For bipedal robots, there is one 6-dimensional base

Fig. 2. Multi-contact gait that includes a foot roll, where pressure is put on
the heel, then the toe. The percentages are the time spent in each domain,
relative the whole step [5].

frame, defining the robot’s position and rotation relative
the surroundings. Further, the angles of the joints in the
model are also used as coordinates. Therefore, the number
of such joints + the six base coordinates equals the degrees
of freedom n: Q ⊂ Rn×1. The state of the robot is defined
as x = (q, q̇) ∈ X ⊂ R2n×1 [7].

Bipedal locomotion has a cyclic behavior. Each step can
be divided into continuous domains (e.g. when the leg swings
forward) and discrete transitions (e.g. when the foot strikes
the ground) in between. In a steady-state, these phases are
ordered and periodic. [8] This motivates the use of a hybrid
control system to model human-like gait:

H C = (Γ, D, U, S,∆, FG), (1)

where Γ = (V,E) is a directed circle graph. Using the
notation from [8]: v ∈ V is an arbitrary vertex, denoting one
of the continuous phases. v+ is the subsequent vertex and
e = {v → v+} ∈ E is the discrete transition from v to v+.

The following properties are defined uniquely for each
vertex v: a domain Dv , a set of actuators Uv , a guard Se, a
reset map ∆e and a control system (fv, gv).

A. Holonomic Constraints

The vertices are characterized by which parts of the feet
are in contact with the ground. Any contact with the external
environment generates some holonomic constraints ηv(q).
They require certain positions and rotations to be constant:

ηv ≡ constant, (2)
Jv(q)q̇ = 0, (3)

where Jv(q) = ∂ηv
∂q is the Jacobian matrix of ηv . The

number of holonomic constraints is denoted nv .

B. Continuous Dynamics

The mass and inertia properties of the links in the robot
model are known. From them, the Lagrangian is set up as
kinetic energy minus potential energy [6]:

L =
1

2
q̇M(q)q̇ − P (q). (4)

Using the Euler-Lagrangian equations, the equation of
motion for a given vertex v is written:

M(q)q̈ +H(q, q̇) = Bvuv + JTv (q)Fv(q, q̇, uv), (5)

where Fv(q, q̇, uv) ∈ Rnv×1 is a vector of contact
wrenches, i.e. the constraint forces and/or moments corre-
sponding to each of the holonomic constraints [8].

The holonomic constraints ηv are enforced by requiring
their second order differentiation to equal zero [8]:

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0. (6)

Combining equations (5) and (6), the control system ẋ =
fv(x) + gv(x)uv is obtained. The final expression can be
found in [6].

C. Domains and Guards

The domain Dv is the set of admissible configurations
(q, q̇, uv) for vertex v. It is defined by two inequalities:

Dv =

{
(q, q̇, uv) ∈ X × Uv :

RTv Fv(q, q̇, uv) ≥ 0
hv(q, q̇, uv) ≥ 0

}
.

(7)
Rv contains the coefficients of the normal reaction forces

and the static friction conditions [6]. The purpose of the
force-related inequality is to guarantee that some particular
parts of the feet are in contact with the ground (i.e. have
non-negative normal forces) and are not slipping (i.e. have
sufficient friction forces).

Further, unilateral constraints hv(q, q̇, uv) can be defined
for any part of the model. They are often heights above the
ground for different parts of the feet.

The guard Se is a boundary to Dv . This corresponds to
at least one of the properties of the inequalities reaching the
value zero and while still decreasing:

Dv =

{
(q, q̇, uv) ∈ X × Uv :

He(q, q̇, uv) = 0

Ḣe(q, q̇, uv) < 0

}
, (8)

where He(q, q̇, uv) contains the appropriate elements from
RTv Fv(q, q̇, uv) and/or hv(q, q̇, uv) [8]. For bipedal robots,
those elements are either vertical reaction forces (when parts
of the feet are lifted from the ground) or heights (when parts
of the feet strike the ground).

D. Discrete Dynamics

The discrete transitions of an edge e ∈ E are defined
by the reset map ∆e. It maps the pre-impact states x− in
Dv to the post-impact states x+ in Dv+ . The configuration
is always invariant, meaning the values of the base frame
and all joints in q ∈ Q cannot change over the transition’s
infinitesimal time step:

q− = q+. (9)

The velocities, however, are allowed to make jumps.
Study the strike impact. The swing foot has a velocity
downwards, but when the foot strikes the ground, the vertical
velocity immediately becomes zero (given that no slipping or
rebound occurs). This creates a discontinuity. Such impacts
are assumed to be perfectly plastic, meaning they have to
fulfill the plastic impact equation [6]:[

M(q−) −JTv+(q−)
Jv+(q−) 0

] [
q̇+

δFv

]
=

[
M(q−)q̇−

0

]
.

(10)

Worth noting is that the velocities are allowed to take
jumps in the discrete transitions, but they do not have
to. Lifting a foot from the ground does not cause any
discontinuities and the velocity still fulfills the invariance
condition: q̇− = q̇+.

E. Virtual Constraints

The crucial constraints for generating gaits are the virtual
constraints, also termed outputs. For each vertex v there are
one relative degree 1 scalar y1,v and one relative degree 2
vector y2,v . They are defined as the difference between actual
and desired outputs [8]:

y1,v(q, q̇) = ẏa1,v(q, q̇)− yd1,v(αv), (11)

y2,v(q) = ya2,v(q)− yd2,v(τ(q), αv). (12)

y1,v is velocity-modulating and its desired path is constant:

yd1,v = vd. (13)

The vector y2,v is position-modulating. Each vector el-
ement is an output o ∈ Ov , which desired trajectory is a
Bézier polynomial of degree M:

yd2(τ, αo) :=

M∑
k=0

αo[k]
M !

k!(M − k)!
τk(1− τ)M−k. (14)

τ is a state-based parameterization of time [8], taking
values from 0 to 1 throughout one phase.

F. Partial Hybrid Zero Dynamics

The goal is to drive the virtual constraints towards zero
exponentially (y1,v, y2,v) → 0. The feedback linearization
control law from equation (28) in [9] is implemented to
make the zero dynamics submanifold invariant within all the
continuous domains [8].

In the discrete transitions, the configuration q is kept
invariant but discontinuities in the velocities q̇ are allowed. In
terms of the virtual constraints, it corresponds to only requir-
ing the position-modulating outputs y2,v(q) to be invariant
through the impacts [7].

This motivates the definition of the partial zero dynamics
surface:

PZv = {(q, q̇) ∈ X | y2,v(q) = 0, ẏ2,v(q, q̇) = 0}. (15)

PZv is said to be an impact invariant submanifold, if there
exists parameters vd and {{αo}o∈Ov

}v∈V such that the reset
map ∆e(x) from x ∈ Se ∩ PZv ends up in PZv+ [8].

Further, the union PZ = ∪v∈V PZv is hybrid invariant if
it is invariant over all continuous phases v ∈ V and impact
invariant over all discrete transitions e ∈ E. In other words,
solutions (q, q̇) that start in PZ will stay in PZ throughout
the whole cyclic graph. If so, it is said that the hybrid control
system has a partial hybrid zero dynamics (PHZD) [8].

III. METHODOLOGY

The goal of this project is to find stable joint trajectories
that give rise to a human-like gait.

To summarize the background section: for each phase, de-
noted by a vertex v ∈ V , the optimal vd and {{αo}o∈Ov

}v∈V
need to be found. They parametrize the desired output
trajectories, which should fulfill all constraints defined in the
domain. This includes holonomic, force-related and unilat-
eral as well as additional physical constraints. To generate
stable trajectories, the parameters also need to make each
PZv impact invariant, i.e. give the hybrid control system
a PHZD. The final results, the joint trajectories, are simply
the movements of the individual joints required to drive the
actual output trajectories towards the desired ones.

A. FROST

AMBER Lab has developed FROST (Fast Robot Simu-
lation and Optimization Toolkit) for MATLAB. It provides
tools for all three steps of the implementation: modeling,
trajectory optimization and simulation.

The main task of this project is to set up the hybrid control
systems correctly. FROST uses that information to generate
optimal symbolical expressions for all future calculations.
This makes the software powerful. It significantly improves
the runtime of both optimization and simulation [4].

FROST provides an optimal trajectory planning function,
i.e. a function that finds the optimal parameters vd and
{{αo}o∈Ov}v∈V . It uses advanced direct collocation algo-
rithms, about which details can be found in [4]. The contin-
uous phases are uniformly discretized and the optimization
problem is solved separately at each node. Then continuous
curves are fitted to the node solutions, generating values for
vd and {{αo}o∈Ov

}v∈V . They are iteratively improved, until
the optimal parameters are found or the maximum number
of iterations is exceeded.

The user decides the number of nodes. There is a trade-
off: the fewer nodes, the shorter runtime, but too few nodes
may not restrict the fitted curve enough and can result in
unreasonable and divergent trajectories.

B. Modeling

The amputee-prosthesis model is shown in Fig. 3. from
[7], but with the springs removed. Roll joints are denoted φ,
pitch joints θ and yaw joints ψ. The model has 21 degrees
of freedom and the coordinates q ∈ Q ⊂ R21×1 consist of:
• 6 base coordinates Rb = {xb, yb, zb, φb, θb, ψb}
• 3 waist joints qw = {φw, θw, ψw}
• 6 joints in left leg ql = {φlh, θlh, ψlh, θlk, φla, θla}
• 6 joints in right leg qr = {φrh, θrh, ψrh, θrk, φra, θra}
Since symmetric gaits are made, it does not matter if

the right or left leg is the stance leg. After each step
cycle, a relabeling occurs, mirroring the model: left↔ right.
Therefore, the stance leg will always be defined as the right
leg.

To set up a hybrid system in FROST, the contacts for each
vertex has to be defined. When adding a contact, holonomic
constraints are automatically generated. A planar contact

Fig. 3. The amputee-prosthesis model is a chain of links and joints [7]. It
has 21 degrees of freedom, since the springs rrs and rls has been removed.

gives six constraints, position and rotation has to be constant
in all directions, while a linear contact only gives five, since
it allows rotation around one axis.

We have the three possible contacts of each foot: the foot
sole (planar), the toe (linear) and the heel (linear).

To have full ranked matrices and be able to perform all
necessary calculations, the following needs to be fulfilled:
virtual constraints + # holonomic constraints = # degrees of
freedom. For the human-like gaits, the velocity-modulating
actual output is always the linearized hip position:

ya1,v = δphip(q) (16)

= Laθra + (La + Lc)θrk + (La + Lc + Lt)θrh, (17)

where La, Lc and Lt denote the length of the ankle,
calf and thigh link, respectively. In equation (11), ya1,v is
differentiated. It becomes the linearized hip velocity, which
is enforced to be constant = vd.

The position-modulating actual outputs are linear
combinations of the coordinates in q\Rb ∈ R15×1. All
vertices have a different amount of holonomic constraints,
and therefore a different choice of virtual constraints. They
can be chosen in various ways, as long as they are linearly
independent. Heuristics led to this batch:

1. Stance ankle pitch yasap = θra
2. Stance knee pitch yaskp = θrk
3. Stance torso pitch yastp = −θra − θrk − θrh
4. Stance ankle roll yasar = φra
5. Stance torso roll yastr = −φra − φrh
6. Stance hip yaw yashy = ψrh
7. Waist roll yawr = φw
8. Waist pitch yawp = θw
9. Waist yaw yawy = ψw
10. Non-stance knee pitch yanskp = θlk
11. Non-stance slope yansl = −θra − θrk − θrh

... + Lc

Lc+Lt
θlk + θlh

...
12. Non-stance leg roll yanslr = φra − φla
13. Non-stance foot roll yansfr = zlfi − zlfo
14. Non-stance foot pitch yansfp = zlft − zlfh
15. Non-stance foot yaw yansfy = ylft − ylfh

To fully control the outputs, # actuators = # virtual con-
straints is needed. However, the amputee-prosthesis model
has a maximum of 15 actuators, since it has 15 joints. This
makes one of the multi-contact domains under-actuated.

The triggers for the guards are either the vertical reaction
force or the height above the ground for a sole/toe/heel.

The hybrid control systems for each gait are drawn in
Fig. 4., Fig. 5. and Fig. 6. Inspiration was taken from [5]
and [8]. Details about the specific domains are presented
below.

Single support domain
• 1 planar contact: right sole → 6 holonomic constraints.
• 1 velocity-modulating virtual constraint: δphip.
• 14 position-modulating virtual constraints: no. 2-15.
• 15 actuators: all joints {qw, ql, qr}.
Double support domain
• 2 planar contacts: right sole and left sole → 12 holo-

nomic constraints.
• 1 velocity-modulating virtual constraint: δphip.
• 8 position-modulating virtual constraints: no. 2-9.
• 9 actuators: the waist and right leg joints {qw, qr}.

Single
Support

Foot Strike
with Relabeling

hlf = 0 and ḣlf < 0

Fig. 4. The hybrid system for single domain gait, with one domain and
one transition. h is height above the ground. The indexes stand for left foot.

Double
Support

Single
Support

Foot Lift
Flf = 0 and Ḟlf < 0

Foot Strike
with Relabeling

hlf = 0 and ḣlf < 0

Fig. 5. The hybrid control system for flat-foot gait, with 2 domains and
2 transitions. h is height above the ground and F is vertical contact force.
The indexes stand for right/left foot.

Over-
Actuated

Fully-
Actuated

Under-
Actuated

Right Toe Strike
hrt = 0 and ḣrt < 0

Left Heel Strike
with Relabeling

hlh = 0 and ḣlh < 0

Right Heel Lift
Frh = 0 and Ḟrh < 0

Fig. 6. The hybrid control system for multi-contact gait, with 3 domains
and 3 transitions. h is height above the ground and F is vertical contact
force. The indexes stand for right/left heel/toe.

Over-actuated domain
• 2 linear contacts: left toe and right heel→ 10 holonomic

constraints.
• 1 velocity-modulating virtual constraint: δphip.
• 10 position-modulating virtual constraints: no. 1-10.
• 11 actuators: the waist and right leg joints plus the left

knee pitch and left ankle pitch {qw, θlk, θla, qr}.
Fully-actuated domain
• 1 planar contact: right sole → 6 holonomic constraints.
• 1 velocity-modulating virtual constraint: δphip.
• 14 position-modulating virtual constraints: no. 2-15.
• 15 actuators: all joints {qw, ql, qr}.
Under-actuated domain
• 1 linear contact: right toe → 5 holonomic constraints.
• 1 velocity-modulating virtual constraint: δphip.
• 15 position-modulating virtual constraints: no. 1-15.
• 15 actuators (= under-actuated): all joints {qw, ql, qr}.

C. Trajectory optimization

A heuristic assumption is that humans walk in the most
efficient way possible. To implement, a cost function is
added: the total torque of the joints. The FROST optimization
method then tries to find trajectories that minimize the
cost function (i.e. minimize energy) while still fulfilling all
constraints.

Before running the optimization, limits for a number of
values are set. They help the program find a convergent gait,
but they can also impede the optimization if they are chosen
poorly. The most influential are the linearized hip position
and the step length, which have to be chosen wisely.

The output is the parameters vd and {{αo}o∈Ov
}v∈V .

Fig. 7. Desired (blue) and actual (red) output trajectories for single domain
gait. Step number 5 and 6 of a long step sequence are plotted.

D. Simulation

Lastly, the simulation function in FROST is called. The
output is trajectories for a number of variables, including the
joint trajectories that are sought.

IV. RESULTS

For single domain gait, Fig. 7. confirms that desired output
trajectories (blue lines) have been generated and that the
simulation is able to follow them (red lines). The periodic
phase portraits in Fig. 8. validates that the optimization is
solving the right problem, one that results in a convergent
gait. When running the animation, the gait looks human-like,
see snapshots in Fig. 9.

Stable joint trajectories have not yet been obtained for
the other, more complex gaits. The optimization method in
FROST does not converge, i.e. it does not find a solution
that satisfies all the necessary constraints.

If the periodicity condition is disregarded, the optimiza-
tion method can find a solution over two domains. When
watching the animation, the resulting parameters vd and
{{αo}o∈Ov

}v∈V give a motion that looks human-like, see

Fig. 8. Stable phase portraits for single domain gait. The 10 first steps of
a long step sequence are plotted.

snapshots in Fig. 10. The simulation function does however
generate divergent joint trajectories and the animated robot
then falls over.

A. Discussion

Using FROST, each implementation is built up by multiple
MATLAB scripts. There is one script for the hybrid control
system, one for each domain, one for each guard etc. It is
therefore easy to modify the implementation. One building
block can be replaced or updated without messing up the
rest of the code too much. This is an important advantage of
FROST.

This particular project was limited to 10 weeks. Within this
time, all hybrid systems were set up, but some optimization
methods could not find a solution. This work continues in
the AMBER lab.

There are several possible explanations to why the op-
timization methods do not converge. First of all, the limits
may not be chosen properly. They are necessary because they
specify where to search for solutions, but as mentioned in
section III. C., they might also block the optimization from

Fig. 9. Snapshots from the animation of one step in single domain gait.

Fig. 10. Snapshots from the animation of Over-actuated domain to Fully-
actuated domain in multi-contact gait.

finding a solution.
For some limit choices, the optimization reaches very

small errors. Such small errors usually lead to convergence,
but, for some reason, not in this case. So far, Bézier poly-
nomials of degree 4 have been used in all implementations.
A recent theory is that this is too restrictive for the output
trajectories of flat-foot and multi-contact gait. Therefore,
degree 6 polynomials are currently implemented instead.

Alternatively, degree 4 might not be restrictive enough.
Study the double support domain. It is a short domain where
basically all that happens is that the hip moves forward. Both
feet are glued to the ground. A Bézier of degree 4 seems to
give an unnecessarily amount of freedom for such basic joint
movements. It might be advantageous to vary the degree of
the polynomials between the different domains, depending
on their complexity.

V. CONCLUSIONS

From this project it is concluded that it is appropriate to
use the software FROST to model hybrid control systems
and generate human-like gaits for AMPRO3. A stable single
domain gait has already been found. Regarding flat-foot gait
and multi-contact gait, some work still remains.

The final goal is to implement the simulated trajectories
on the actual prosthesis and perform experiments.

The model used in this project is symmetric. It would
be interesting to generate gaits for an asymmetric amputee-
prosthesis model as well, since that is more realistic.

Further, the FROST code would be easy to modify to
simulate other walking behaviors for the amputee-prosthesis

model, such as walking on slopes and stair walking.

VI. ACKNOWLEDGMENTS

I would like to thank Aaron D. Ames for giving me the
opportunity to work and learn in the AMBER Lab. I would
also like to thank Rachel Gehlhar and Jacob Reher for their
help throughout the project.

REFERENCES

[1] T. R. Dillingham et al., ”Limb amputation and limb deficiency: Epi-
demiology and recent trends in the United States,” Southern Medical
Journal, 2002.

[2] D. A. Winter, ”The Biomechanics and Motor Control of Human Gait:
Normal, Elderly, and Pathological,” University of Waterloo Press,
1991.

[3] H. Zhao et al., First Steps Toward Translating Robotic Walking
To Prostheses: A Nonlinear Optimization Based Control Approach,
Autonomous Robots: Special Issue on Assistive and Rehabilitation
Robotics, 2016.

[4] A. Hereid and A. D. Ames, ”FROST*: Fast Robot Optimization and
Simulation Toolkit,” unpublished.

[5] H. Zhao et al., Human-inspired Multi-Contact Locomotion with AM-
BER2, in International Conference on Cyber-Physical Systems, Berlin,
2014.

[6] H. Zhao, ”From Bipedal Locomotion to Prosthetic Walking: a Hybrid
System and Nonlinear Control Approach,” Ph.D. dissertation, School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta,
GA, 2016, ch. 3.

[7] H. Zhao et al., ”3D Multi-Contact Gait Design for Prostheses: Hybrid
System Models, Virtual Constraints and Two-Step Direct Collocation,
in IEEE 55th Conference on Decision and Control (CDC2016), Las
Vegas, 2016, pp. 3668-3674.

[8] A. Hereid et al., ”3D Dynamic Walking with Underactuated Humanoid
Robots: A Direct Collocation Framework for Optimizing Hybrid
Zero Dynamics, in IEEE International Conference on Robotics and
Automation (ICRA2016), Stockholm, 2016, pp. 1447-1454.

[9] A. D. Ames, ”Human-Inspired Control of Bipedal Walking Robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115-
1130, May 2014.

