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Abstract—State estimators in power systems are currently used
to, for example, detect faulty equipment and to route power flows.
It is believed that state estimators will also play an increasingly
important role in future smart power grids, as a tool to optimally
and more dynamically route power flows. Therefore security
of the estimator becomes an important issue. The estimators
are currently located in control centers, and large numbers
of measurements are sent over unencrypted communication
channels to the centers. We here study stealthy false-data attacks
against these estimators. We define a security measure tailored
to quantify how hard attacks are to perform, and describe
an efficient algorithm to compute it. Since there are so many
measurement devices in these systems, it is not reasonable to
assume that all devices can be made encrypted overnight in the
future. Therefore we propose two algorithms to place encrypted
devices in the system such as to maximize their utility in terms of
increased system security. We illustrate the effectiveness of our
algorithms on two IEEE benchmark power networks under two
attack and protection cost models.

I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition) sys-

tems are widely used to monitor and control the behav-

ior of large-scale power systems. SCADA systems transmit

measurement data, status information, and control signals to

and from Remote Terminal Units (RTUs), which are located

in substations in the grid, see for example [1], [2]. For

such large-scale systems, lost data and failing sensors are

common. The incoming data is therefore often fed to a so-

called state estimator, which provides Energy Management

Systems (EMS) and the human operator in the control center

with hopefully accurate information at all times.

The technology and the use of the SCADA systems have

evolved quite a lot since the 1970s when they were introduced.

The early systems were mainly used for logging data from

the power network. Today a modern system is supported by

EMS such as automatic generation control (AGC), optimal

power flow analysis, and contingency analysis (CA), see for

example [1]. With the advent of new sensors such as PMUs

(Phasor Measurement Units), so-called Wide-Area Monitoring

and Control Systems (WAMS/WAMC) will also be introduced.

This provides yet another layer of control in the modern power

network control systems. One motivation for this paper is

that SCADA/EMS systems are increasingly more connected
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to office LANs in the control center. Thus these critical infras-

tructure systems are potentially accessible from the Internet.

The SCADA communication network is also heterogeneous

and consists of fiber optics, satellite, and microwave connec-

tions. Data is often sent without encryption. Therefore many

potential cyber security threats exist for modern power control

systems, as has been pointed out in for example [3], [4].

Another motivation for this work is that future smart power

grids are believed to be more dependent on accurate state

estimators to fulfill their task of optimally and dynamically

routing power flows. Resilience and security of smart power

grids are addressed in for example [5].

In this paper, the focus is on stealthy false-data injection

attacks against state estimators. This type of attack was first

studied in [4], to the authors’ best knowledge. In [4], it

was shown that an attacker can manipulate the state estimate

while avoiding bad-data alarms in the control center. It was

also shown that rather simple false-data attacks often can be

constructed by an attacker with access to the power network

model. More recently in [6], [7], further aspects of these

attacks were studied. In [7], two security indices were defined

that quantify how difficult it is to perform a successful stealth

attack against particular measurements. In [6], it was shown

how one can completely protect a state estimator from these

attacks by encrypting a sufficient number of measurement

devices.

Here we extend the work in [6], [7]. First of all, we propose

an efficient method for computing one of the security indices

introduced in [7]. This index is relevant to the problem because

it quantifies the minimum number of measurements that need

to be corrupted to perform a stealth attack with a specific goal.

We also propose an extension where clusters of measurements

are available at the same cost for the attacker. This is a realistic

scenario if an attack is taking place from a substation, and

potentially all measurements originating from the substation

can be corrupted at once. Finally, we propose a protection

scheme for how to allocate encryption devices to strengthen

security. In [6], it is shown exactly how many measurements

need to be encrypted to ensure security. It is shown that the

number is equal to the number of state variables in the system.

In this paper, we use the introduced security index to quantify

the security when the number of encrypted measurements is

insufficient to provide complete security, but one would like

to maximize the usefulness of the encrypted devices one can



Fig. 1. A simple small 4-bus power network. Each bus has a voltage (Vi)
and phase angle (δi) associated to it. The dots indicate available power flow
measurements.

deploy. This is a quite realistic scenario, since the number

of state variables in current systems is typically large, while

measurement devices that allow for encryption seem to be rare,

and their installation incurs costs.

The organization of the paper is as follows. In Section II,

basic power systems modeling and state estimation are intro-

duced. In Section III, stealth attacks are defined, and efficient

methods for computing the introduced security index are

presented. In Section IV, protection schemes based on the

security index are described, and in Section V numerical

examples are considered.

II. POWER NETWORK MODELING AND STATE ESTIMATION

In this section, we review basic steady-state power network

modeling and state-estimation techniques. Much more com-

plete presentations are found in [1], [2], for example.

Here it is assumed that the power system has n+1 buses.

We will only consider models of the active power flows Pi j,

active power injections Pi, and bus phase angles δi, where

i, j = 1, . . . ,n+1. It is also of interest to study reactive power

flows and the voltage levels, but we leave this for future work.

Consider the simple 4-bus power network in Fig. 1. We assume

throughout that the power network has reached a steady state.

Since measurements are only sent at a low frequency in the

SCADA systems, transients cannot be seen in current state

estimators. Assuming that the resistance in the transmission

line connecting buses i and j is small compared to its reactance

Xi j, we have that the active power flow from bus i to bus j

is [1], Pi j =
ViV j

Xi j
sin(δi−δ j). At each bus i, active power can

also be injected through a generator. Denote this quantity with

Pi. A negative Pi indicates a power load. Assuming that there

are no losses, conservation of energy yields that for all buses

it holds that Pi = ∑k∈Ni
Pik, where Ni is the set of all buses

connected to bus i. The models we use below are based on

application of these equations.

The m active power flow measurements are denoted by

zi, and are equal to the actual power flow plus independent

random measurement noise ei, which we assume has a Gaus-

sian distribution of zero mean. Thus e =
(

e1 . . . em
)T

∈
N (0,R), where R :=EeeT is the diagonal measurement covari-

ance matrix. For the example in Fig. 1 using the measurements

z1 and z2, we obtain
(

z1

z2

)

=

(

P1

P12

)

+

(

e1

e2

)

=

(

V1V2
X12

sin(δ1 −δ2)+
V1V3
X13

sin(δ1 −δ3)
V1V2
X12

sin(δ1 −δ2)

)

+

(

e1

e2

)

.

In general, we denote such models by

z= P+ e= h(x)+ e ∈ R
m, (1)

where h(x) is the power-flow model derived using the above

power flow equations, and x ∈ R
n+1 is a vector of n+ 1

unknown bus phase angles.

The state-estimation problem we consider consists of es-

timating n phase angles δi given a set of m active power

flow measurements. One has to fix one (arbitrary) bus phase

angle as reference angle, for example δ1 := 0, and therefore

only n angles have to be estimated. The voltage level Vi of

each bus is assumed to be known, as well as the reactance

of each transmission line. Note that here we only analyze

the dependence on the phase angles δi, and everything else

is assumed fixed and known to the state estimator. This

decoupling assumption is common in the literature, see [1], but

can be relaxed to include reactive power-flow measurements

and bus voltage estimates by including more unknown states.

The Gauss-Newton method is often used [1] to estimate the

unknown bus phase angles from power flows measurements z,

x̂k+1 = x̂k+(H̄T
k R

−1H̄k)
−1H̄T

k R
−1(z−h(0, x̂k)), (2)

where x̂k ∈R
n is the estimate of the n unknown phase angles,

k denotes iteration number, and Hk is the Jacobian evaluated

at x̂k and reference angle equal to zero, Hk := ∂h
∂x
(0, x̂k) ∈

R
m×(n+1). With H̄k ∈ R

m×n we mean Hk with the column

corresponding to the reference angle being removed. We will

assume the phase differences δi−δ j in the power network are

all small. Then a linear approximation of (1) is accurate, and

we obtain

z= Hx+ e, (3)

where H ∈ R
m×(n+1) is a constant Jacobian matrix. The

estimation problem (2) can then be solved in one step,

x̂= (H̄TR−1H̄)−1H̄TR−1z, (4)

where again H̄ denotes the Jacobian with the column cor-

responding to the reference angle being removed. The phase-

angle estimate x̂ can be used to estimate the active power flows

by ẑ= H̄x̂= H̄(H̄TR−1H̄)−1H̄TR−1z. The Bad Data Detection

(BDD) system in the control center calculates the measurement

residual r,

r := z− ẑ= P+ e− H̄x̂= (I−K)z, (5)

where the phase angle estimate x̂ is given by (4). If the

residual r is larger than expected (measurement errors e will

typically make r 6= 0), then an alarm is triggered and bad

measurements zi are identified and removed [1], [8], [9]. A

necessary condition for a successful stealth attack is to avoid

such alarms.
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III. STEALTH ATTACKS

We consider a power system that consists of n+1 buses, and

there are m meters that provide power flow measurements z to

the state estimator via some, possibly shared, communication

channels. An attacker is able to change some, or all, of the

measurements from z into za := z+ a, either by physically

tampering with the individual meters or by getting access

to some communication channels. The attack vector a is the

corruption added to the real measurement z. The attacker’s goal

is to fool the EMS and the human operator that a particular

power flow measurement is zk,a := zk + ak and not zk, for

some k and fixed scalar ak. A necessary condition for a

stealth attack is that the BDD system is not triggered (or more

accurately, that the alarm risk is not increased). To just corrupt

the corresponding measurement zk into zk + ak will typically

trigger a bad-data alarm.

A key observation in [4] is that an attacker that manipulates

the measurements from z into za := z+ a, where a = Hc ∈
R (H) and c ∈ R

n+1 is an arbitrary vector, is undetectable

since the residual r is not affected. That certain errors are

undetectable by residual analysis has been known for a long

time in the power systems community, see for example [8],

[9]. It is easy to show that such a lies in the nullspace of

I − K in (5). Intuitively this is clear since za corresponds

to an actual physical state in the power network (minus the

measurement error e). The BDD system only triggers when

the measurements deviate too much from a possible physical

state, at least as long as the linear model is valid.

A. Attack and protection cost model

To capture the cost of the attacker and the system operator

we introduce a partition M = {M1, . . . ,M|M |} of the set of

measurements {1, . . . ,m}. The attacker can attack any number

of measurements in the same block M j of the partition at unit

cost. For the operator, all measurements belonging to the same

block M j can be protected at unit cost. We denote by S the

|M |×m matrix whose element S jk = 1 if k ∈M j, and S jk = 0

otherwise. The cost of an attack a for the attacker is then

‖S|a|‖0, the number of non-zero elements in the vector S|a|.
By |a| we mean the vector of the magnitudes of elements in a.

We denote the subset of the partition protected by the operator

by P ⊆ 2M .

This notation allows to consider various attack and protec-

tion cost models. We consider two cost models throughout the

paper.

Stealth meter attacks: This scenario corresponds to a

partition M = {{1}, . . . ,{m}}, i.e., every measurement is

a partition block. The attacker has to gain access to each

individual meter it needs to compromise in order to achieve its

attack goal. The cost of the attacker is the number of meters

that have to be compromised. Similarly, the protection cost

of the operator is the number of meters that are protected.

This scenario corresponds to physically tampering with the

individual meters.

Stealth RTU attacks: This scenario corresponds to a

partition of size |M |= n+1 in which the measurements in a

bus form a partition block, and there is an RTU associated

to every bus. An attacker that gains access to an RTU or

its communication channel can compromise any number of

measurements associated with the RTU. The cost of the

attacker is the number of compromised RTUs. Similarly, the

protection cost of the operator is the number of RTUs that

are protected. This scenario corresponds to attacks on the

communication channels that carry the measurement data from

individual RTUs, typically the load and branch power flows

into the corresponding bus.

B. Minimum cost stealth attacks

In general the attacker can use any undetectable attack

vector a,ak 6= 0 to attack measurement k. A rational attacker

would, however, be interested in finding an attack vector

a,ak 6= 0 with minimum cost, i.e., the number of partition

blocks to which the compromised meters belong should be

minimal, with the constraint that the attacker cannot compro-

mise any protected measurement k ∈ P . In order to find a

minimal stealth attack on measurement k the attacker has to

solve the problem

αk := min
c

‖S|Hc|‖0

such that 1 =∑
i

Hkici,

(Hc) j = 0 ∀ j ∈ P ,

(6)

where ‖.‖0 denotes the number of non-zero elements in a

vector, and Hki is the element (k, i) of H. In (6), we optimize

over all corruptions a = Hc ∈ R (H) that do not trigger

bad-data alarms and do not involve compromising protected

measurements. A solution c∗ to (6) can be re-scaled to obtain

a∗ = akHc∗ such that the measurement attack za = z+ a∗

achieves the attacker’s goal zk,a = zk + ak, and at the same

time corrupts as few blocks of measurements as possible.

In total, αk = ‖S|a∗|‖0 blocks of measurements have to be

corrupted to manipulate the measurement zk. Unfortunately,

the problem (6) is non-convex and is generally hard to solve

for large problems. In the following we first describe an upper

bound on αk, then we describe an algorithm that calculates

the optimal solution by exploiting the topology of the power

network graph.
1) Upper bound on the minimum cost: A simple upper

bound on αk can be obtained by looking at the k-th row of H.

Any column i of H with a non-zero entry in the k-th row can

be used to construct a false-data attack vector a that achieves

the attack goal, if H ji = 0 ∀ j ∈ P . Assume that Hki is non

zero. Then the attack vector

aik :=
ak

Hki

H·,i,

where H·,i denotes the i-th column of H, achieves the attack

goal. By selecting the sparsest vector among all S|aik|, we

obtain an upper bound α̂k on αk. Formally we have,

α̂k := min
i:Hki 6=0

‖S|H·,i|‖0. (7)

Since H is typically sparse for power networks, this bound is

very fast to compute, and exists whenever P = /0.
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TABLE I
THE ITERATIVE PATH AUGMENTATION ALGORITHM USED TO CALCULATE

THE ATTACKS WITH MINIMAL COST FOR MEASUREMENT k.

1 A(1) = {M j}, k ∈M j , A
∗ = /0

2 for i = 1 to |M |− |P |

3 for A ∈ A(i)

4 A′ = {l|l ∈ A, 6 ∃ j 6∈ A s.t. j ∼ l}
4 if rank(H{1,...,m}\A′ ) = n−1 and rank(H({1,...,m}\A′)∪{k}) = n then

4 A∗ = A∗ ∪A

5 end if
6 end for
7 if A∗ 6= /0 then return A∗

8 for A ∈ A(i)

9 for M j ⊆ A

10 for Mk ∈N (M j),Mk ∩P = /0,Mk ∩A= /0

11 A(i+1) = A(i+1)∪ (A∪Mk)
12 end for
13 end for
14 end for
15 end for

C. Finding the minimum cost attack

Finding αk is equivalent to finding a set of rows N ⊆
{1, . . . ,m} \ {k} that is maximal in terms of the number of

partition blocks M j it covers, and for which the following two

conditions hold

rank(HN) = n−1, (8)

rank(HN∪{k}) = n, (9)

where HN is the submatrix of H formed by the rows in

N. Given N the attack can be constructed by calculating

the nullspace of the submatrix HN , which is 1 dimensional

due to the rank-nullity theorem. Since ∀c ∈ null(HN) we

have (Hc)k = 0 ∀k ∈ N, and N is maximal, it follows that

αk = ‖S|Hc|‖0.

In general, finding the maximal set N is a combinatorial

optimization problem. For sparse power network graphs, how-

ever, it is possible to calculate the optimal solutions even

for systems with hundreds of state variables and measure-

ment points using the iterative path augmentation algorithm

described in the following.

The iteration starts with an attack that consists of the parti-

tion block to which measurement k belongs, A(1) = {M j},k ∈
M j. In iteration i the algorithm first considers all attacks of

cost i. For every attack A ∈ A i it creates the corresponding

attack A′ by only keeping the rows l of H for which there

is no row j not in attack A that is linearly dependent on

row l (l ∼ j). It then verifies if the set N = {1, . . . ,m} \A′

satisfies the rank conditions (8) and (9). If no such attack is

found, the algorithm augments every attack A ∈ A i of cost

i with one additional partition block Mk that is unprotected

(Mk ∩P = /0) and is neighboring to a partition block already

in the attack (Mk ∈ N (M j) for some M j ⊆ A). The pseudo-

code of the algorithm is shown in Table I.

IV. PROTECTION AGAINST STEALTH ATTACKS

In this section we consider that the operator has a budget

π in terms of the number of protected measurement parti-

tion blocks that it can spend. Thus, CM (P ) ≤ π, where P

denotes the set of chosen protected measurements, and CM (P )
denotes the cost of protecting P considering the partition

M , and can be calculated as the number of partition blocks

M j s.t. M j ∩P 6= /0. The goal of the operator is to achieve

the best possible protection of the state estimator against

stealth attacks given its budget. Instead of picking the set of

protected measurements at random, as done in [6], we propose

three deterministic algorithms to choose the set of protected

measurements. We evaluate the performance of the algorithms

in Section V.

A. Perfect protection

Ideally, the set of protected measurements P should be

such that no stealth attacks are possible, i.e., αk = ∞,∀k ∈
{1, . . . ,m}. We refer to such a protection as perfect protection.

1) Stealth meter attacks: In the case of meter attacks in

order to achieve perfect protection it is necessary and sufficient

for the operator to protect |P |= n measurements chosen such

that rank(HP ) = n [6]. The budget required to achieve perfect

protection is thus π= n.

2) Stealth RTU attacks: In the case of RTU attacks the

condition π = n is not necessary, since we now count the

number of protected blocks, which can contain more than one

measurement each. In particular the following result holds.

Definition 1: Let us call the RTU level power network

graph the graph where each vertex is an RTU in the power

system, and every edge is a transmission link between the

RTUs. A dominating set P of the RTU level power network

graph is a subset of vertices such that each vertex not in P is

adjacent to at least one member in P .

Proposition 1: Consider a perfect RTU protection P . Then

P is a dominating set of the RTU level power network graph.

Proof: Assume that P is not a dominating set. Then there

is an RTU k for which no neighboring RTU is in the protected

set, j 6∈ P ∀ j ∈N (k). A stealth attack can then be constructed

based on the column corresponding to the state variable in bus

k as done to obtain the upper bound on αk.

A dominating set of the RTU level power network graph is

not necessarily a perfect protection as we show it in the next

section. Nevertheless, we can use the proposition to define an

effective algorithm to find a perfect protection P .

Dominating Set Augmentation Algorithm (DSA):

Initialize the set of protected measurements P with a minimal

dominating set of the RTU level power network graph. Iterate

over k = 1, . . . ,m and set P = P ∪{k} if αk < ∞ for some k.

The algorithm terminates after one iteration and provides

a perfect protection P . For sparse power network graphs the

budget required to achieve perfect protection is π≪ n.

B. Non-perfect protection

In practice the operator’s budget π in terms of the number

of measurements that can be protected might be insufficient

for perfect protection. Then the operator would be interested

in protecting a set of measurements P that maximizes its

protection level according to some metric. We consider two

possible metrics in this paper: the maximal minimum attack

cost and the maximal average attack cost.
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Fig. 2. The minimum attack costs αk and their upper bounds
α̂k for the IEEE 14 bus network. The bound is almost always
tight. The shortest attacks involve the same measurements for
the meter attacks and the RTU attacks.
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Fig. 3. The minimum attack costs αk and their upper bounds α̂k for the IEEE 118
bus network. The bound is almost always tight. The shortest attacks involve the same
measurements for the meter attacks and the RTU attacks.

1) Maximal minimum attack cost: According to the first

criterion the goal of the operator is to maximize the minimum

attack cost among all measurements that are possible to attack

PMM = arg max
P :CM (P )≤π

min
k

αk. (10)

A simple greedy algorithm that aims to find an optimal set

of protected measurements P in the sense of (10) for given

budget π is the following.

Most Shortest Minimal Attacks Algorithm (MSM):

Initially set P = /0. Then in every iteration calculate αk,∀k ∈
1, . . . ,m and minkαk. Pick partition block M j that appears in

most minimal attacks A ∈ A∗ with least cost, i.e., CM (A) =
minkαk. Set P = P ∪M j. Continue until CM (P ) = π.

2) Maximal average minimum attack cost: According to

the second criterion the goal of the operator is to maximize

the average minimum attack cost of the measurements that are

possible to attack

PMA = arg max
P :CM (P )≤π

1

|{k : αk 6= ∞}| ∑
k:αk 6=∞

αk (11)

A simple greedy algorithm that aims to find an optimal set

of protected measurements P in the sense of (11) for given

budget π is the following.

Most Minimal Attacks Algorithm (MMA):

Initially set P = /0. Then in every iteration calculate αk,∀k ∈
1, . . . ,m. Pick a partition block M j that appears in most

minimal attacks A ∈ A∗. Set P = P ∪M j. Continue until

CM (P ) = π.

V. NUMERICAL RESULTS

In the following we present numerical results obtained using

the proposed algorithms for the IEEE 14-bus and the IEEE

118-bus benchmark power networks. These networks were

also analyzed in [4]. We added power flow measurements at

each bus, and at every end of every interconnecting trans-

mission line. For the IEEE 14 bus network there are m = 54

measurements, all assumed equally good (R = I), and the

matrix H has size 54×14. For the IEEE 118 bus network there

are m= 490 measurements, all assumed equally good (R= I),

and the matrix H has size 490×118. These considered systems

have more measurements than is normal in power systems, and

should therefore have large measurement redundancy. For the

computations, we used the Matlab package MatPower [10].

A. Minimum cost attack

We start the evaluation with considering the case of stealth

meter attacks. Figs. 2 and 3 show the upper bound α̂k of

the minimal attack length calculated using (7) and the exact

minimal attack length αk obtained using the iterative algorithm

presented in Section III-C for the IEEE 14-bus and the

IEEE 118-bus network, respectively. Except for a few meters,

the bound α̂k is tight. Furthermore, most measurements can

be attacked by modifying only 6 other measurements for

both networks. A closer look at the attack vectors reveals

that the meters that constitute the minimal attack belong to

⌊(αk− 1)/3⌋ RTUs, and hence the minimal RTU attacks are

the same as the minimal meter attacks. (αk−1 is not a multiple

of 3 for some measurements in the IEEE 118 bus network,

because there are parallel transmission lines between certain

buses.)

B. Protection against stealth attacks

In order to understand the importance of the individual

measurements in Fig. 4 we show the least minimum cost attack

and the average minimum cost attack as a function of P = {i}
for the case of meter attacks. The least minimum cost attack

increases only when the protected measurements are the ones

involved in the attack A= {7,8,18,38}. The average minimum

cost attack shows some variation depending on the protected

measurement. In general, however, protecting a single meter

does not provide significant improvement in terms of minimum

attack costs. The same conclusion can be drawn from Fig. 5,

which shows the the least minimum cost attack and the average

minimum cost attack as a function of P = {Mi} for the case

of RTU attacks on the IEEE 118-bus network.

Figure 6 shows the minimum attack cost and the average

attack cost as a function of the protection budget π obtained

using the MSM and the MMA algorithms. Using MMA the

average minimum attack cost increases with the protection

budget, but the least minimum attack cost is unchanged while

π≤ 8. Using MSM the minimum attack cost increases faster

than using MMA, but the average minimum attack cost is

lower. For a budget of π = n = 13 both MMA and MSM

find the set of meters that provides perfect protection. Hence,

incremental protection of the meters does not lead to extra

costs for the operator even if the ultimate goal is perfect

protection.

5



1 5 10 15 20 25 30 34

4

5

6

7

8

9

Protected measurement (i)

A
tt

ac
k
 c

o
st

 

 

Minimum

Average

Fig. 4. The minimum attack costs mink 6=iαk and the average minimum
attack costs ∑k 6=iαk/(m− 1) for the IEEE 14 bus network for the case of
meter attacks.

1 10 20 30 40 50 60 70 80 90 100 110 118
1.5

2

2.5

3

3.5

Protected RTU (i)

A
tt

ac
k
 c

o
st

 

 

Minimum

Average

Fig. 5. The minimum attack costs mink 6=iαk and the average minimum attack
costs ∑k 6=iαk/n for the IEEE 118 bus network for the case of RTU attacks.

0 2 4 6 8 10 12
0

10

20

30

40

Number of protected measurements (π)

A
tt

ac
k
 c

o
st

 

 
MMA−Min

MMA−Ave

MSM−Min

MSM−Ave

Fig. 6. The minimum attack cost minkαk and the average minimum attack
cost ∑k:αk<∞αk/|{k : αk < ∞}|) for the IEEE 14 bus network for the case of
meter attacks.

0 5 10 15 20 25 30 33 36
1.5

2

2.5

3

3.5

4

4.5

Number of protected RTUs (π)

A
tt

ac
k
 c

o
st

 

 
MMA−Min

MMA−Ave

 

 
MSM−Min

MSM−Ave

Fig. 7. The minimum attack cost minkαk and the average minimum attack
cost ∑k:αk<∞αk/|{k : αk <∞}|) for the IEEE 118 bus network for the case of
RTU attacks.

For the case of RTU attacks perfect protection for the

IEEE 14-bus network can be achieved by protecting 4 RTUs,

P = {2,6,7,9}. Both MMA and MSM find this set for a

budget of π = 4. This is a minimal dominating set of the

power network graph. P = {2,8,10,13}, which is also a

minimal dominating set of the power network graph, does

not provide perfect protection, as RTU 4 can be attacked

by tampering with 3 RTUs (4,7,9) and 8 measurements

(A= {4,7,9,22,23,29,42,43}).

For the IEEE 118-bus network the minimal dominating set

of the power network graph contains 32 RTUs, but it does

not provide perfect protection. We used the DSA algorithm

to find the RTUs (5,23,69,77) that need to be added to the

dominating set in order to achieve perfect protection. Figure

7 shows the results obtained using the MSM and MMA

algorithms. MSM and MMA achieve perfect protection by pro-

tecting 34 and 37 RTUs respectively. We note two important

differences compared to the case of measurement attacks (Fig.

6). First, the minimal attacks and the average attack length are

rather small even close to perfect protection. Second, MSM

outperforms MMA both in terms of minimal and average

attack cost. This suggests that under the RTU attack cost model

perfect protection is desirable if all measurements are equally

important.

VI. CONCLUSION

In this paper, we considered the problem of finding and

mitigating stealth attacks against the state estimator used in

power networks. We described a security index that helps

to locate power flows whose measurements are potentially

easy to manipulate. We proposed an algorithm that can be

used to find the least cost stealth attacks under a general

model of attack and protection cost. We proposed three greedy

algorithms to obtain perfect protection and partial protection

against stealth attacks given a limited budget for protection.

We used the proposed algorithms to evaluate the cost of

attacking measurements on the IEEE 14-bus and the IEEE

118-bus power systems and showed how the incremental

deployment of protected measurements can be best used to

increase system security under two specific attack cost models.
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