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Abstract: This paperis an endeavour to address the problem of dittdibeiader selection in a formation
of autonomous agents where the agents do not communicattlgivia communication channels. The
algorithm that the agents use to select a leader relies oagéets observing each others’ behaviours.
It is shown that the proposed algorithm is terminated, omaye in finite number of step and results
in the selection of a leader for the formation. Moreoverslestablished that the algorithm has some
common elements with an algorithm widely used in data ndtsdre. Slotted Aloha. The application
of the algorithm to a formation controlled by a nonlinear wohlaw is studied and some numerical
examples are presented to show the general performance algghrithm.
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1. INTRODUCTION observable in the animal kingdom as well Couzin et al. (2005)
e.g. the alpha male in a pack of wolves determine where the

Throughout history studying the behaviour of animals has irpack should head for accomplishing foraging activitieg se
spired engineers and scientist to devise new techniques avéch (2000). The role and importance of leaders in the multi-
methodologies to accomplish tasks and solve problems theagent systems are well-known as well Wang and Slotine (2006)
were considered to be extremely challenging earlier. lemec and in many scenarios the presence of a leader seems to be
years, a field that was heavily influenced by the knowledg&ucial for achieving the desired objective, Tanner et2004).
obtained from observing natural creatures is the field ofrebn Since, success in accomplishing task depends on choosing a
and coordination of multi-agent systems. Due to the atenti leader, one may ask how this leader is being selected in-multi
that this field has attracted and the knowledge that followealgent systems. There are twdtdient ways readily available
this spike of attention, more and more engineering probkmes in the literature to answer this question. The first one is tha
being addressed by the methodologies developed in this fieltie roles of the agents in the system and their relation to the
and it has proved to be applicable in many areas. To name a fether agents can be explicitly assigned to each of themseeg.
of the application areas one can mention, sensor deploymeéuukieh et al. (2009). The second way is via a distributed
Martinez (2009), distributed averaging and consensus Rain e algorithm known asLOODMAX, Bullo et al. (2009). While this
(2007), motion coordination via flocking behaviours Jadhiab second way is distributed, however it assumes that the sagent
et al. (2003); Blondel et al. (2005); Cao et al. (2008); Tannecan easily communicate with each other and pass messages
et al. (2007), robotics formation motion control and coerdito other agents in the formation. However if one revert to
nation Desai et al. (2001), clock synchronization in wissle animal kingdom to seek for an answer to this question, he may
networks, see Sommer and Wattenhofer (2009). find that the roles in groups of animals are neither assigned

. . . . explicitly or any voting-like mechanism is involved to cls®o
To accomplish some of the abovementioned tasks it is relUIrg |q5qer. The way that animals accomplish leader seledion i

that one agent or a subset of them act as leaders of_ the gro{#&'observing each others’ behaviours, and usually thegest
By leader we mean an agent that has access to more informat, is acknowledged as the domina’nt member of the group
than the other ordinary agents. For example, an agentshouldaeader)’ King et al. (2009). This paper is an endeavour to

?S refef,ence clock, n clock synchronization (This "%a@“*m_ answer the aforementioned problem in a way similar to that of
knows” the global time of the network.) or an agent’s headin animals

should be considered as the reference heading when thesagent

are accomplishing flocking (this agent knows what the ddsireThe outline of this paper is as follows. In the next section
direction of motion for the formation is). Such behaviours a we introduce some assumptions and state the problem that
* This work was supported in part by the European Commissimuth the we address in this paper. In Section 3’.We prqpose a gen(_aral
VIKING project, the Swedish Research Council, the Swedistriglation for algorlthm to address the prOblem posed In S_eCtIO.n 2.1n @EC'[I_
Strategic Research, the Knut and Alice Wallenberg Fouadatind NICTA, 4 we address the problem of leader selection via observation
which is funded by the Australian Government as represehiedhe De- fOr @ special case of inter-agent interaction law. We shaav th
partment of Broadband, Communications and the Digital Bognand the

Australian Research Council through the ICT Centre of Hgoek program.




applicability of the solution in Section 5 via presentingr& Now consider the following system
simulation results. Concluding remarks come in the end. X(t) = R(X(Y)) + yL(t) (7)

2. PROBLEM FORMULATION wherey = diag(y1, - - - , ¥n), and((t) is obtained by stacking all
£i(t) respectively. Term a formation with a leadg¢formation
Consider a formation ofn interconnected nodes and letWe have the following definition for this formation. .
G(V.&,A) be the underlying graph of this formation, whereDe€finition 3 (y-formation) A y-formation is a formation
Y = {i}" is the vertex set with € V corresponding to node Where all the entries af is zero except for exactly one equal to
i &is thle edge set of the graph, astle R™™ is the weighted 1 diagonal entry. This definition is equal to the case whefg on
adjacency matrix with nonnegative entries. The undireetige  ON€ agents is able to take a leader action.

{i,j} e &is incident on vertices and j if nodesi and j  Now we propose the problem we address in this section.
share a a sensing link, in which case the corresponding enfsyoplem 1. Consider a formation of n agents under the in-
in the adjacency matrix#;; is positive and reflects the edgeterconnection law(2) and with measurements of the fo(6).
weight. The out-degree of nodés ded(i) = Xjcy Aij, Where oy can a leader be chosen without having neither explicitly
Ni = {j € Vi, j} € &} is the neighborhood set ofThe degree  55signment of the roles to the agents nor direct communoicati

matrix A (g) € R™" is a diagonal matrix defined as between the agents, or equivalently how can the formation
A = deg(i) ,i=]j transformed into a-formation?
110 L i#]
The weighted Laplacian @ is defined as(G) = A — A. 3. PROPOSED ALGORITHM

In this paper we consider that each ageistconsidered to be A concept that we want to take advantage of in addressing

a single integrator and is associated with a state variaftle Problem 1 is to propose an algorithm in which the agents which

at timet. We obtainx(t) by stackingx(t) foralli € {1,---,n}.  areable to bid for leadershimre bothgreedyandreasonable

Moreover for eachx(t) we have simultaneously. We formalize these concepts in what fadlow
Xi(t) = Ri(x(t) (1) Definition 4 (Able Agents to Bid for Leadership)An agent is

whereR () : R" - R is a function that relates the evolutionable to bid for leadership if; = 1. Otherwise it is not able and

of x(t) to the other agents in the formation. Usually thigVill notbid for leadership. _ ,

relationship is limited to those;(t) that j € N;. Hence, for Definition 5 (Greedy Agent) An agent is greedy in the context

all the agents’ states in the formation we can consider tif this paper, if it wants to bid for leadership itself. _
following general interconnection law Definition 6 (.Reasona{bltle Agent_)An agentis reasonable in the
X(t) = ROX() ) context qf th|§ paper, if (i) it re_allzes that if other age_btd fpr
Con ho , . leadership prior to itself, it will not bid for leadership agn,
whereR() : R" — R7 is the interconnection control law 5nq (jiy if this agent and some other ones bid for leadership

governing the formation. In most of the cadgfs) is directly  gimyltaneously, it will stop bidding for a bounded and rando
related to £, the Laplacian of the underlying graph of theperiod of time and possibly bid again.

formation. An example foR(.) can be seen in the well-known
consensus protocol: In order for the agents to act reasonably they need to be@ble t

(1) = —£X(1). (3) See if other agents are taking leadership actions. To tlisven
Definition 1 (Leader Action & Set of Admissible Leader Ac- assume that each agent estimates the states of the othés agen

tions) We say agent i is performinglaader actiorafter time in the formation using the local measurements (6). Moreover
; yag P 9 since each agent is assumed to be greedy, it wants to be the

T iff leader. Hence, the model that each of the a
oo B : , gents has for the
. X'_(t) = R(X(1) +uii(t) (4) formation is a model that indicates itself as the leadertfreo
where R(x(t)) is the i-th entry of R(t)), words, each ageiconsiders system to be
o i) t=7 X(t) = R(X(t it 8
60 ={ " oparmise ©) () = RIXO) + 41(9) ®)

) _ whereg;(t) = biyifi(t), by € R" is a vector with all zero entries
where f(t) € ¥ is a real scalar function||f;(t)ll < M, and¢i  except for a 1 at thieth entry. For this system, agertomputes
is a Boolean variable, which is equal to 1 if agent i can bid foryn estimate of the stateg(t):

leadership, and it is equal to O if it cannot. Moreover, we ¢al Sy _ B (o ) i

the set ofgdmissible Igader actions i . ?((t) - RZO.%) + 0. . ©)
Definition 2. We call f(t) theleader signaturef agent i. This estimator gives rise to an error dynamics

Assumption 1. There exists no paifi, j) with the same leader e(t) = Si(e (1), i (1), yi(1)) (10)
signature. where€ (t) = x(t) — K (t). If the state estimators are designed

Furthermore, we have the following assumption for what eadfl @ Way that the estimate values converge to the real values
agent measures. exponentially,€ (t) goes to zero exponentially as well. Now,

Assumption 2. Each agent i measures consider the case where there are two ageatd j, that are
taking leadership actions. In this case, the estimate sert)

. yi)) =G X(t)_ . 6 and el(t) do not go to zero anymore. The error dynamics at
where G is a full row rank fat matrix withNi| rows and each agent becomes

row has all zero entries except a 1 at the j-th entrjiif} € &.

Remark 1. The definition off depends on R and all G ; 4 4

and should be defined independently foffatent R.) and M) =Si(EWM, ¢, i) + E'(D) (11)
considering all diferent G. We present an example for thewhereE'(t) is a vector of zero entries except for at least one
conditions or later. nonzero entry at thg-th entry ( # i) whereE;(t) = f(t).



Hence, we havelE'(t)| < M. Of course the worst bound the beginning of which the agent starts carrying out a leader
happens whek!(t) has all nonzero entries except théh one, action, i.e.rj = 24T, in case it had not detected any other
and for this worst case, there is a titneafter which there exists leader action during the previous time slot. If at the befyign
ane; € R.o such thatlé (t)|| < &(n-1)M, see Khalil and Grizzle of the next time slot, any of the agents detect an average erro
(1996) for more detail. The agents can use the magnitude igftheir observers during the la$tseconds they stop bidding
error that they observe as an indication that there is at leder leadership from that time on. However if the error is sghs
one other agent in the formation bidding for leadership. Wat the end of a time slot in which the agent was carrying out the
borrow a term from fault detection literature and name thiksader action, this agent stops the leader action for a rando
error between the measured states and the estimated ttatesperiod of time ¢ is modified to reflect this idle time through
measurement residual of the observer and we defineitas ~ choosing a nevt), or “waits”, and if till this time it does not
ri) = (D) (12) detect any other leader action in the formation it startsigGts

o . , ) a leader again, otherwise it will stop any future leadersiiils
This idea is the corner stone of the algorithm that is proposgs pefore. This process continues until an agent remairreas t
here to answer Problem 1. However, before introducing “’t‘fnly agent capable of bidding for leadership. We say agint

algorithm we need to introduce some new definitions selected as a leader if iteader flag is equal to 1.
Definition 7 (Error Minimum Rise Time) Call the solution to
maxmin 6; Algorithm 1 Distributed Leader Selection at Agent
' YED P initialize:
1 i tie{l,---,N}JcZ/* A random integer number with
s.t. a f”r ®ldt> 6 (13) uniform distribution */
.0 Ti =1
Ei()=0 Leader:=0
IE'(®)I < M begin leader selection loop:
€0)=0 Ti = 25T
for some positivg, the error minimum rise time and denote it ift mod 2 =0 thenzﬂ
by 6*. if t < 2T and = [ Ir'®ll dt> ¢ then
@2r-1)T
Definition 8 (Error Maximum Settling Time) Call the solution enlgl ii‘_ 0
0 maxmin if 26T < t < 2@ + 1T and ¢ = 1 and
i ve(0) 1 25T )
o = [ IIrf®ldt>sthen
t L (i ondt <o (er 1T
st g | Ir@iidt< (14) fefl---.NczZ
i 0 T =T +f
E()=0 end if
€ ()l = &i(n - 1)M if t > 2(r; +1)T andy; = 1then
for some positivé, the error maximum settling time and denote Leader:=1
it by 6*. _ end if
Definition 9 (Rise-Settle Time) Call T = [maxX6*, 6*}] the end if
rise-settle time. if Leader = 1or y; = Othen

We describ&@* andg* in a more intuitive way in what follows. enrde?? m

The time it takes for all the agents in the system “sense” the
effect of a perturbation in their system model, and consequentl
see a dierence in the measured signal and the estimated sigfmark 2 (Favouring the Highly Connected Agentdntu-
is 9*. And the time that it takes for all the observer errors tatively it is better to have our leader connected to as many
become less than a_threshold in average with an “largealnitiagents as possible. Hence, one can introduce gficant
value for the error i9*. Since, we want the agents to observeéhat skews the random number generator towards producing
the behaviour of the system after the transient behaviaars ssmaller waiting times for the agents with high connectiviyr

i i - N
settled we assume that measurement is carried out OVGré)@ampleti can be chosen from the s@t --- .1+ 1),
maximum time period of . dedi)

repeat the loop

Now we are ready to propose Algorithm 1 to address Proble .
1, and each agenhas a copy of the algorithm. The basic idea?'1 Calculating an Upper Bound for T
in this algorithm is that each agent either carries out aio@act

or makes a decision at the beginning of certain time interva . o
or “time slots”. These length time slots are selected in a wa ccurs when the underlying graph of the formation is weakly

to allow for the agents observers to observe the states of t %nnected. Among all the connected graphs, a tree has the

system after a transient time. We choose the length of the tin\ﬂ\’eakeSt connectivity. Now if we construct a line graprand .
siots to be T. put agents 1 and at both ends of it. A motion generated in

1 takes the longest time to change the observer error average
At time t = 0, each agent chooses a random uniformly over time. The time that this average is larger tidacan be
distributed integer number between 1 aNde Z.o, f, this considered ag*. Now at the moment that it happens if the
number is the number of the time slot that it waits until abutput of the agent goes to zero, the time that takes for tiog er

IConsider a formation ofi agents, one expects that the laiige



average to go undeérgives us an estimate 6f. And so we can
estimatel as the ceiling of the maximum of these two values.

3.2 Comparison with Slotted ALOHA

In this section we compare this algorithm to an algorithm

used commonly in data networks, name&yotted ALOHA.

Slotted Aloha is used to provide a packet collision avoiganc
mechanism in data transmission, and it is simple to describe

The idea is that each station in the network sends a datatpacke

in the beginning of prescribed time frames, called timesslut

another station in the network. If the transmitted pack#iczs start>
with other data packets in the network, then the stationrthat

sent the packet waits for a randomly generated number of time

slots and retransmit again with this waiting time has eldpse

Ghez etal. (1988). Fig. 1. The Markov chain corresponding to the states that the
One can make an analogy between the algorithm introduced system goes through under Distributed Leader Selection
here and th6lotted ALOHA. If the leader action is considered Algorithm.

to be a data packet, taking this action is considered tragsmi . _ ) _
sion, and the concurrent leader action byfatent agents is Proposition 1 (Time to Absorption) Let t; be the expected
considered collision, the algorithm proposed here aim tkema "Umber of steps before the chain is absorbed, given that the
sure that one and only one packet is delivered without collghain starts in state i, and ldtbe the column vector whose ith
sion. However, there are some importanffefiences between €ntry isti. Then _ .

Slotted Aloha and the distributed leader selection algorithm t=(1-Q71 (18)
proposed here. The most importanffeience is that if the where | is the identity matrix and is a column vector of
“packet” is delivered by any of the agents, the rest woulg stoappropriate dimension with all entries of 1.

“transmission” indefinitely.

Algorithm 1 is terminated (on average) in the same steps
as the abovementioned Markov chain is absorbed. The entry
i is the average value for steps until termination when the
chain is initialized at staté Hence on average Algorithm 1

is terminated in finite steps, and as the number of steps goes t

We consider the state in Markov chain where only one age[¥inity the termination probability of the algorithm goest as
remains able to bid for leadership as the termination stées, . y P y g g

if the system enters this state, with probability 1 it wilhrains

in this state. Such state is called absorbing. We defitiferent For example the average number of steps for Algorithm 1 for a
states, and each stdte {1, --- , n} is associated with the state formation ofn = 10 agents, wititN = 10 to have a leader from
wherei agents can bid for leadership. The transition betweenthe initial 10 potential leaders is 25 steps.

statei to j is possible with probability; ; only if j <i. Hence, Remark 3. One might implement the algorithm letting only

3.3 Average Number of Steps Before the Termination of t
Algorithm

fori < j, pij = 0, for j <iwe have a subset of the agents bid for leadership, rather than all of
i o them. A possible scenario that this may be desirable is, to
pij = ( : ) p'(1-p), (15) replace a dysfunctional leader and letting only the neigiriso
J of the previous leader to bid for leadership. One can chobse t
wherep = 1/N, while fori = j we have number of the agents in this subset based on the entries of
i-1 /.
pi=1-> ( ; ) p'l-p) (16) 4. LEADER SELECTION IN FORMATIONS WITH
=1 NONLINEAR CONSENSUS LAW

Defining these probabilities and states enable us to putdhess
that the system transitions between as a Markov chain. Thi¥onsider a formation af single integrators under the following
chain is depicted in Fig. 1. consensus law which is based on the tracking consensus law

Define matrixP, with entriesp;j, as the state transition matrix proposed in Cao and Ren (2010)

of an absorbing Markov chain with state transition protigbil X(t) = —LX(t) — B sgn(LX(1)) (19)
of p; ;. Putting the transition matrix into canonical form we havevheres € R.o. To address Problem 1, we first need to construct
1-2p(1-p) O ...| 2p(1-p) an observer for this system.
: P, : For each ageritwe have the following system model
Pe=1(n) 21 _ g2 1 X(t) = —LX(V) ~Bsgn(LX) + ¢i(1)
2 ) 20
( 2) Pi(L-p) npt-p) (17) yi() = Cix(). (20)
L v | 1 whereg;(t) = by £i(t), and sgn{ operator is considered to be a
[ Q |wW vector version of ordinary scalar sgngperator. We can rewrite
“Opnal1 | the system as

From Grinstead and Snell (1997) we have the following result



X(t) = AX(t) + Gp (AX(1)) + ¢i(t) 57) Whereh = [-2,0,---,0]. Hence, it is clear that’ is a
yi(t) = Cix(t), (21) Laplacian matrix of a connected graph with- 1 vertices, and
_ _ _ L, is a principal submatrix of this Laplacian matrix induced
whereA = ~£, G =5 andp() = sgno). by n vertices. Thus because of LemmaZ2 is invertible. In
From Arcak and Kokotovic (2001); Fan and Arcak (2003) weaddition, since we know it should be positive semidefinites d
know that we can construct an observer for this system whete positive semidefiniteness of’, we can deduce that it is
p(.) should satisfy the following assumption. strictly positive. O
Assumption 3. The functionp(v) satisfies the monotonicity

propertyvv € R" iff Lemma 3 (LMI Feasibility). There exist P= P > 0, x; > 0,

Ki and L; of appropriate dimensions such th@4) holds.

.
% + (6—'0) > 0. (22) . _ _
ov  \ov Proof. This problems is equivalent to
The observer is given by ] BPi+(A+KC) =0 (29)
RO = AR + LICK® -4(1) (23)  We claim thaﬂ(_A + II: Ci)/lzi:a?d(g : Li(ii\) </1ch )/B satisfy
al . _,\' o\ _ i = i = . i = — + ) i
+Bp(AX () + Ki(GR() -y (F))) 4 _(t) _ these equations, wheies R_o. To check this claim, first notice
Moreover, we know that the error associated with this oleservthat A = £, henceP; = (£ - ACTC;)/. From Lemma 2
goes to zero if the following linear matrix inequality (LMt|as  we know that therP; is strictly positive. Furthermore for the
a solution forP; > 0, x; > 0, K, andL;. second inequality we have
(A+ LiCi)TPi + Pi(A+ LiCi) + Ki| ﬂPi + (A+ KiCi)T <0 _PiTPi + PiPiT — _Z(Pi)z <0. (30)
P + (A+ KiCi) 0 = . ) )
A (24) This shows that the LMl is feasible. O

For the error dynamics we have The next theorem establishes that the observer error desicri

é(t) = (A+ LiC)E( 25) by (25) goes to zero exponentially fast for system (21), if no
+ B(san(Axt)) — san(AR (1) + K (CiK (1) — Vi (t other agents take a leader action.
'8( 9n(AX(®) g. ( O+ K(GX® y.(?))) Theorem 1 (The Exponential Stability of the Nonlinear Ob-
Consequently for the residual of the observer at ag@ethave  server) The observer error, &) described by25)goes to zero

FH(t) = CiLir'(t) + CAE(1) exponentially fast for syste(@1).

ol ol
+BCi (san(AX(D) - sgn(AR (D) + K (CR () - (1)) Proof. We know from Fan and Arcak (2003) that if Assumption
(26) 3 s satisfied and LMI (24) is feasible then the error dynamics
Under (19) for the set of admissible leader actiérywe have:  (25) is exponentially stable. To check the former note that
Definition 10 (Set of Admissible Leader Actions for (19)The is non-decreasing and hence the Assumption is satisfied and

setF is defined as the set of all scalar functions such that foremma 3 shows that the latter holds as well. m]

any fi(t) € ¥, All C;, and for almost all t andi, j € {1,--- ,n}

there exists a positive number such that Now since we can construct observers at each agent with the
0< ||#ij(t)||2 <c (27) local information available to that agent to monitor theesief

where the network, we can detect if the observer output error does n
. y y o to zero as well, and in average being larger than a thréshol
uij (t) = GiAE (H)+5Ci (sgn(AX(®)) — sgn(AR (1) + Ki(CiX (t) - Yi(t))g € R.o. Thus, we can apply Algorithm 1 to select a leader
] . in the formation under control law (19). In the next sectiom w
Before showing that such observer exists for the system dgresent some simulation results showing the performanoé of

scribed by (21) we present the following two lemmas. Algorithm 1 for selecting a leader in the formations corl&d|
Lemma 1 (Rank of Laplacian Principal Submatricedj an by (19).

undirected graplg is connected, then any principal submatrix
of its Laplacian matrix., induced by a strict subset of nodes 5. SIMULATIONS
V cV,isinvertible.

) In this section we consider a leader selection scenariohr t
Proof. See Appendix A. O nonlinear consensus protocol introduced by (19).

Lemma 2. Consider£ € R™" to be a Laplacian matrix In the first scenario consider a formation mf= 10 agents
associated with a connected graph. Further define>0 to  with leader signaturé;(t) = 40i sin(2t), Lj = K; = —20C"C;
be a matrix of the same dimension gswhere all the entries (i € {1,---,n}), andN = 5. Moreover,T is considered to be
are 0 except for possibly its diagonal entries. Moreovessit i2 secand hence the time slot is gec The process of leader
assumed that at least a diagonal entry of X is equal to 1. Thesglection is depicted in Fig. 2.

foranya > 0, = L + AX is positive definite. . . .
y Li=L P In the second scenario we aim to present the motion of the

. . 3 agents when they run the leader selection algorithm. We con-
Proof. Without loss of generality assum@; = 1 and the rest sider again a formation af = 10 agents with leader signature

of entries ofX are zero.£, = A, — A, whereA = diag(deg(1 1+ fi(t) = 40i sin(2t), L = K; = —20C7C; (i € {1,---,n}), N = 5
- I - ’ I — 1 — il 1 ) ) ’ - ’
4,deg(2)- -, degf)). Now define andT = 2 sec The formation at time = 0 is depicted in Fig
A h } 3(a) and the motion of the agentsoordinates is presented in

£'=[hT Ll (@8)  Fig'3(h).
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(b) The motion of the agents throughout the leader selection
process.

Fig. 3. The motion of the agents throughout the leader select
process in the second scenario.

6. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this paper we proposed an algorithm for leader selection i
multi-agent formations. The algorithm requires only loreda-
surements and a knowledge of the structure of the underlying
graph of the formation at each agent. The algorithm relies on
existence of state observers at each agent that can esthmate
states of other agents in the formation, and on a suitablefset
admissible leader actions. We have shown that such observer
exist for a nonlinear interaction law. We further demortsiia
the applicability of the algorithm via simulation results.

ACKNOWLEDGEMENTS

The authors would specially thank Prof. Wei Ren for his valu-
able comments on the role of leaders in some distributed algo
rithms implement to coordinate the motion of a formation of
agents.

Fig. 2. The underlying graph of the formation. The numbers REEFERENCES

on the circles denote the agents labels, and the smaller . ] _
ones outside the circles are the time they will take theftrcak, M. and Kokotovic, P. (2001). Nonlinear observers:

corresponding leader action.

a circle criterion design and robustness analysi8uto-
matica 37(12), 1923 — 1930. doi:DOI: 10.10/BD005-
1098(01)00160-1.



Blondel, V.D., Hendrickx, J.M., Olshevsky, A., and Tsitgsk Automatic Contral51(7), 1156-1161.
J.N. (2005). Convergence in multiagent coordination, con-
sensus, and flocking. Wth IEEE Conference on Decision Appendix A. PROOF OF RANK OF LAPLACIAN
and Control, 2005 and 2005 European Control Conference. PRINCIPAL SUBMATRICES LEMMA
CDC-ECC’05 2996-3000. _
Bullo, F., Corts, J., and Martnez, S. (200B)stributed Control Let G = (V, &) be an undirected graph_ard € V (G) be a
of Robotic Networks, Series in Applied Mathematitsnce- subset of the vertex set. Considgr= G/V to be the induced
ton. subgraph of7 obtained by removing the set of verticesn
Cao, M., Morse, A.S., and Anderson, B.D.O. (2008). Reachingfter a suitable permutation of nodes, the Laplacian matrix
a consensus in a dynamically changing environment: Convef-(G) € RN*N can be written as
gence rates, measurement delays, and asynchronous events. Lo |
SIAM J. Control Optim.47(2), 601-623. L@ =7 ...
Cao, Y. and Ren, W. (2010). Distributed coordinated tragkin _ v
via a variable structure approach -part i: Consensus tgcki with £y, € RV £, € RV and we have that
Couzin, I.D., Krause, J., Franks, N.R., and Levin, S.A. &00 Ly = L(G) + Ay
Effective leadership and decision-making in animal grou

R¥hereAq - is a diagonal matrix with nonnegative elements, thus

Deosr;ith\(]e goéesl;lr?)w;eki‘lisém;ng’d)'E&r"";;‘?l\?' (2001) Mo@elinit is a positive semi-definite matrix. _Furthermor_e,_ singds
and control of formations of nonholonomic mobile robotsgv?t?]ns(ite_dﬁ_w,f\l,o and -]y > O if and only ifi € Ny
IEEE transactions on Robotics and Automatiti(6), 905— Vo eV
908. The first property is easy to prove_by a simple contradiction

Fan, X. and Arcak, M. (2003). Observer design for systemargument: supposg is connectedV # 0 and Aq. = 0.
with multivariable monotone nonlinearitiesSystems and Then this means thaf- = £(G’), which implies tha(i, j) ¢
Control Letters 50(4), 319. &E(G), Vi e VVje VvV ie.the graphg is not connected.

¥ arties ofsotted Aloha with mulipacket recepiion capial A5 01 the second property. it can be easiy verified by oisgrv
IEEE Transactions on Automatic Conty@3(7), 640—649. that the diagonal entries of+~ and L(G") are the same_for

Grinstead, C. and Snell, J. (1997). Introduction to Proliigbi all thg not?]e? ttr?at werz no(tjlgeigrf\fbors of tEe remqvedﬁet
chapter 11. Markov Chaindmerican Mathematical Society, kmeatmllrl]?h & -Oﬁg no gs trl1 no eu?hny N ta_nge smcde. ey
Pacific Grove, California ept all their neighbors. Furthermore, the entries cowadmng

Jadbabaie, A., Lin, J., and Morse, A.S. (2003). Coordimedio to nodes whose neighborhood wefeated are positive since

groups of mobile autonomous agents using nearest neighﬁla%fe nodes Ihave ﬁ smaller degree in the induced g7apht
rules. IEEE Transactions on Automatic Contydi3(6), 988— inthe original grapn.
1001. _ _ We now continue the proof by considering the two possible
Khalil, H.K. and Grizzle, J.W. (1996). Nonlinear systems scenariosg’ is connected ang’ is disconnected.
Prentice hall Englewood Giis, NJ. o o o
King, A.J., Johnson, D.D., and Vugt, M.V. (2009). The origin FOr @ connected’, it is well-known that£(g") is a positive

and evolution of leadershipCurrent Biology 19(19), R911 semi-definite matrix that contains a single zero eigenvaitte
—R916. doi:DOI: 10.103cub.2009.07.027. the associated eigenvectbrhaving all its entries set to one.

Martinez, S. (2009). Distributed interpolation schemeditdd ~ Since bothL (") andA+. are positive-semidefinite matrices,

estimation by mobile sensor networkéEEE Transactions £ iS singular if and only ifAq. is singular andZ (¢") and
on Control Systems Technology Aq+ share at least one eigenvector associated with the zero

Mech, L.D. (2000). Leadership in wolf, Canis lupus, packsSigenvalue. However it can be easily seen tat A1 # 0,
Canadian Field-NaturalistL 14(2), 259—263. due to the properties ok mentioned previously, resulting

Ren, W., Beard, R.W., and Atkins, E.M. (2007). Informatioff"at£y- is invertible in this case.
consensus in multivehicle cooperative conttBEE Control | the other situation, wherg’ is disconnected witm con-

Systems Magazin27(2), 71-82. . nected components, we can again perform a permutation on the
Sommer, P. and Wattenhofer, R. (2009). Gradient clock syRodes ofg’ and rewrite its Laplacian in a block diagonal form:
chronization in wireless sensor networks.Rroceedings of fe 0 - 0
the 2009 International Conference on Information Process- 6:1 L - 0
ing in Sensor Network87—48. L£G)= ©
Soukieh, R., Shames, |., and Fidan, B. (2009). Obstacle S .o
avoidance of robotic formations based on fluid mechanical 0 0 --- Lg,

modeling. InProc. European Control Conferenc8263— ity s being the Laplacian of theth connected component.
3268. Budapest, Hungary. Itis easy to see that the block diagonal structure comestinem

Tanner, H.G., Pappas, G.J., and Kumar, V. (2004). Lead§kct that the nodes from the sub&fre not connected with the
to-formation stability. IEEE Transactions on Robotics and ,4eg belonging t6;, i # j, thusC; andC; do not interact.

Automation 20(3), 443-455.
Tanner, H., Jadbabaie, A., and Pappas, G. (2007). FlockiAgplying the permutation tcCy- as well, we can rewrite it as:
in fixed and switching networks.|EEE Transactions on Le, 0 - 0 A, 0 --- O
Automatic Contral52(5), 863—868. 0 Lc, -~ O 0 Ag, -~ O
Wang, W. and Slotine, J.J.E. (2006). A theoretical study of Ly-=| . . ) L .
different leader roles in networkslEEE Transactions on

0 0 i) lo 0. a

n



Under this setting we have that
X" Ly x=X¢, (L, + Ac,) Xc, + -+
Xgn (‘Ecn + Acn) XCn‘
Note that, as beforelc, and Ac, are positive semi-definite
matrices, thu<q- is singular if and only ifA¢, is singular and
Lc, andAc, share the same eigenvector associated with the zero
eigenvalue for at least one connected component

At this point, it is easily seen that the previous propertés
Ac, still hold with the same arguments for each connected
component and therefore we conclude that each maffix =

Lc, + Ac is invertible, using the same arguments as when we
assumey’ to be connected, which proves théy- is invertible.



