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1. INTRODUCTION

Throughout history studying the behaviour of animals has in-
spired engineers and scientist to devise new techniques and
methodologies to accomplish tasks and solve problems that
were considered to be extremely challenging earlier. In recent
years, a field that was heavily influenced by the knowledge
obtained from observing natural creatures is the field of control
and coordination of multi-agent systems. Due to the attention
that this field has attracted and the knowledge that followed
this spike of attention, more and more engineering problemsare
being addressed by the methodologies developed in this field,
and it has proved to be applicable in many areas. To name a few
of the application areas one can mention, sensor deployment
Martınez (2009), distributed averaging and consensus Ren et al.
(2007), motion coordination via flocking behaviours Jadbabaie
et al. (2003); Blondel et al. (2005); Cao et al. (2008); Tanner
et al. (2007), robotics formation motion control and coordi-
nation Desai et al. (2001), clock synchronization in wireless
networks, see Sommer and Wattenhofer (2009).

To accomplish some of the abovementioned tasks it is required
that one agent or a subset of them act as leaders of the group.
By leader we mean an agent that has access to more information
than the other ordinary agents. For example, an agent shouldact
as reference clock, in clock synchronization (This leader agent
“knows” the global time of the network.) or an agent’s heading
should be considered as the reference heading when the agents
are accomplishing flocking (this agent knows what the desired
direction of motion for the formation is). Such behaviours are
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VIKING project, the Swedish Research Council, the Swedish Foundation for
Strategic Research, the Knut and Alice Wallenberg Foundation, and NICTA,
which is funded by the Australian Government as representedby the De-
partment of Broadband, Communications and the Digital Economy and the
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observable in the animal kingdom as well Couzin et al. (2005),
e.g. the alpha male in a pack of wolves determine where the
pack should head for accomplishing foraging activities, see
Mech (2000). The role and importance of leaders in the multi-
agent systems are well-known as well Wang and Slotine (2006),
and in many scenarios the presence of a leader seems to be
crucial for achieving the desired objective, Tanner et al. (2004).
Since, success in accomplishing task depends on choosing a
leader, one may ask how this leader is being selected in multi-
agent systems. There are two different ways readily available
in the literature to answer this question. The first one is that
the roles of the agents in the system and their relation to the
other agents can be explicitly assigned to each of them, e.g.see
Soukieh et al. (2009). The second way is via a distributed
algorithm known asFLOODMAX, Bullo et al. (2009). While this
second way is distributed, however it assumes that the agents
can easily communicate with each other and pass messages
to other agents in the formation. However if one revert to
animal kingdom to seek for an answer to this question, he may
find that the roles in groups of animals are neither assigned
explicitly or any voting-like mechanism is involved to choose
a leader. The way that animals accomplish leader selection is
via observing each others’ behaviours, and usually the strongest
one is acknowledged as the dominant member of the group
(leader), King et al. (2009). This paper is an endeavour to
answer the aforementioned problem in a way similar to that of
animals.

The outline of this paper is as follows. In the next section
we introduce some assumptions and state the problem that
we address in this paper. In Section 3, we propose a general
algorithm to address the problem posed in Section 2. In Section
4 we address the problem of leader selection via observation
for a special case of inter-agent interaction law. We show the



applicability of the solution in Section 5 via presenting some
simulation results. Concluding remarks come in the end.

2. PROBLEM FORMULATION

Consider a formation ofn interconnected nodes and let
G(V,E,A) be the underlying graph of this formation, where
V = {i}n1 is the vertex set withi ∈ V corresponding to node
i, E is the edge set of the graph, andA ∈ Rn×n is the weighted
adjacency matrix with nonnegative entries. The undirectededge
{i, j} ∈ E is incident on verticesi and j if nodes i and j
share a a sensing link, in which case the corresponding entry
in the adjacency matrixAi j is positive and reflects the edge
weight. The out-degree of nodei is deg(i) =

∑

j∈Ni
Ai j , where

Ni = { j ∈ V : {i, j} ∈ E} is the neighborhoodset ofi. The degree
matrix∆ (G) ∈ Rn×n is a diagonal matrix defined as

∆i j =

{

deg(i) , i = j
0 , i , j

The weighted Laplacian ofG is defined asL(G) = ∆ − A.

In this paper we consider that each agenti is considered to be
a single integrator and is associated with a state variablexi(t)
at timet. We obtainx(t) by stackingxi(t) for all i ∈ {1, · · · , n}.
Moreover for eachxi(t) we have

ẋi(t) = Ri(x(t)) (1)
whereRi(.) : Rn → R is a function that relates the evolution
of xi(t) to the other agents in the formation. Usually this
relationship is limited to thosex j(t) that j ∈ Ni . Hence, for
all the agents’ states in the formation we can consider the
following general interconnection law

ẋ(t) = R(x(t)) (2)
where R(.) : Rn → R

n, is the interconnection control law
governing the formation. In most of the casesR(.) is directly
related toL, the Laplacian of the underlying graph of the
formation. An example forR(.) can be seen in the well-known
consensus protocol:

ẋ(t) = −Lx(t). (3)
Definition 1 (Leader Action & Set of Admissible Leader Ac-
tions). We say agent i is performing aleader actionafter time
τ̄i iff

ẋi(t) = Ri(x(t)) + ψiℓi(t) (4)
where Ri(x(t)) is the i-th entry of R(x(t)),

ℓi(t) =

{

fi(t) t ≥ τ̄i
0 otherwise, (5)

where fi(t) ∈ F is a real scalar function,‖ f j(t)‖ < M, andψi
is a Boolean variable, which is equal to 1 if agent i can bid for
leadership, and it is equal to 0 if it cannot. Moreover, we call F
the set ofadmissible leader actions.
Definition 2. We call fi(t) the leader signatureof agent i.
Assumption 1. There exists no pair(i, j) with the same leader
signature.

Furthermore, we have the following assumption for what each
agent measures.
Assumption 2. Each agent i measures

yi(t) = Ci x(t) (6)
where Ci is a full row rank fat matrix with|Ni | rows and each
row has all zero entries except a 1 at the j-th entry if{i, j} ∈ E.
Remark 1. The definition ofF depends on R(.) and all Ci

and should be defined independently for different R(.) and
considering all different Ci . We present an example for the
conditions onF later.

Now consider the following system
ẋ(t) = R(x(t)) + ψℓ(t) (7)

whereψ = diag(ψ1, · · · , ψn), andℓ(t) is obtained by stacking all
ℓi(t) respectively. Term a formation with a leader,ψ-formation.
We have the following definition for this formation.
Definition 3 (ψ-formation). A ψ-formation is a formation
where all the entries ofψ is zero except for exactly one equal to
1 diagonal entry. This definition is equal to the case where only
one agents is able to take a leader action.

Now we propose the problem we address in this section.
Problem 1. Consider a formation of n agents under the in-
terconnection law(2) and with measurements of the form(6).
How can a leader be chosen without having neither explicitly
assignment of the roles to the agents nor direct communication
between the agents, or equivalently how can the formation
transformed into aψ-formation?

3. PROPOSED ALGORITHM

A concept that we want to take advantage of in addressing
Problem 1 is to propose an algorithm in which the agents which
areable to bid for leadershipare bothgreedyandreasonable
simultaneously. We formalize these concepts in what follows.
Definition 4 (Able Agents to Bid for Leadership). An agent is
able to bid for leadership ifψi = 1. Otherwise it is not able and
will not bid for leadership.
Definition 5 (Greedy Agent). An agent is greedy in the context
of this paper, if it wants to bid for leadership itself.
Definition 6 (Reasonable Agent). An agent is reasonable in the
context of this paper, if (i) it realizes that if other agentsbid for
leadership prior to itself, it will not bid for leadership again,
and (ii) if this agent and some other ones bid for leadership
simultaneously, it will stop bidding for a bounded and random
period of time and possibly bid again.

In order for the agents to act reasonably they need to be able to
see if other agents are taking leadership actions. To this end we
assume that each agent estimates the states of the other agents
in the formation using the local measurements (6). Moreover,
since each agent is assumed to be greedy, it wants to be the
leader. Hence, the model that each of the agents has for the
formation is a model that indicates itself as the leader, in other
words, each agenti considers system to be

ẋ(t) = R(x(t)) + φi(t) (8)
whereφi(t) = biψiℓi(t), bi ∈ R

n is a vector with all zero entries
except for a 1 at thei-th entry. For this system, agenti computes
an estimate of the states, ˆxi(t):

˙̂xi(t) = R̂i(x̂i(t), yi(t)) + φi(t). (9)
This estimator gives rise to an error dynamics

ėi(t) = Si(ei(t), φi(t), yi(t)) (10)
whereei(t) = x(t) − x̂i(t). If the state estimators are designed
in a way that the estimate values converge to the real values
exponentially,ei(t) goes to zero exponentially as well. Now,
consider the case where there are two agentsi and j, that are
taking leadership actions. In this case, the estimate errors ei(t)
and ej(t) do not go to zero anymore. The error dynamics at
agenti becomes

ėi(t) = Si(e
i(t), φi(t), yi(t)) + Ei(t) (11)

whereEi(t) is a vector of zero entries except for at least one
nonzero entry at thej-th entry (j , i) whereEi

j(t) = f j(t).



Hence, we have‖Ei(t)‖ ≤ M. Of course the worst bound
happens whenEi(t) has all nonzero entries except thei-th one,
and for this worst case, there is a timeti , after which there exists
anεi ∈ R>0 such that‖ei(t)‖ ≤ εi(n−1)M, see Khalil and Grizzle
(1996) for more detail. The agents can use the magnitude of
error that they observe as an indication that there is at least
one other agent in the formation bidding for leadership. We
borrow a term from fault detection literature and name this
error between the measured states and the estimated states,the
measurement residual of the observer and we define it as

r i(t) = Cie
i(t) (12)

This idea is the corner stone of the algorithm that is proposed
here to answer Problem 1. However, before introducing the
algorithm we need to introduce some new definitions
Definition 7 (Error Minimum Rise Time). Call the solution to

max
i

min
∀Ei (t)

θi

s.t.
1
θi

θi
∫

0

‖r i(t)‖dt > δ

Ei
i (t) = 0
‖Ei(t)‖ ≤ M
ei(0) = 0

(13)

for some positiveδ, the error minimum rise time and denote it
byθ⋆.

.
Definition 8 (Error Maximum Settling Time). Call the solution
to

max
i

min
∀ei (0)

θi

s.t.
1
θi

θi
∫

0

‖r i(t)‖dt < δ

Ei(t) = 0
‖ei(0)‖ = εi(n− 1)M

(14)

for some positiveδ, the error maximum settling time and denote
it by θ̄⋆.
Definition 9 (Rise-Settle Time). Call T = ⌈max{θ̄⋆, θ⋆}⌉ the
rise-settle time.

We describeθ⋆ andθ̄⋆ in a more intuitive way in what follows.
The time it takes for all the agents in the system “sense” the
effect of a perturbation in their system model, and consequently
see a difference in the measured signal and the estimated signal
is θ⋆. And the time that it takes for all the observer errors to
become less than a threshold in average with an “large” initial
value for the error is̄θ⋆. Since, we want the agents to observe
the behaviour of the system after the transient behaviours are
settled we assume that measurement is carried out over a
maximum time period ofT.

Now we are ready to propose Algorithm 1 to address Problem
1, and each agenti has a copy of the algorithm. The basic idea
in this algorithm is that each agent either carries out an action
or makes a decision at the beginning of certain time intervals,
or “time slots”. These length time slots are selected in a way
to allow for the agents observers to observe the states of the
system after a transient time. We choose the length of the time
slots to be 2T.

At time t = 0, each agenti chooses a random uniformly
distributed integer number between 1 andN ∈ Z≥0, t̃i , this
number is the number of the time slot that it waits until at

the beginning of which the agent starts carrying out a leader
action, i.e. ¯τi = 2t̃iT, in case it had not detected any other
leader action during the previous time slot. If at the beginning
of the next time slot, any of the agents detect an average error
in their observers during the lastT seconds they stop bidding
for leadership from that time on. However if the error is sensed
at the end of a time slot in which the agent was carrying out the
leader action, this agent stops the leader action for a random
period of time (¯τi is modified to reflect this idle time through
choosing a new̃ti), or “waits”, and if till this time it does not
detect any other leader action in the formation it starts acting as
a leader again, otherwise it will stop any future leadershipbids
as before. This process continues until an agent remains as the
only agent capable of bidding for leadership. We say agenti is
selected as a leader if itsLeaderi flag is equal to 1.

Algorithm 1 Distributed Leader Selection at Agenti
initialize:
t̃i ∈ {1, · · · ,N} ⊂ Z /* A random integer number with
uniform distribution */

τi ≔ t̃
Leaderi ≔ 0
begin leader selection loop:
τ̄i ≔ 2τiT
if t mod 2T = 0 then

if t ≤ 2τiT and
1
T

2τiT
∫

(2τi−1)T

‖r i(t)‖ dt > δ then

ψi ≔ 0
end if
if 2τiT < t ≤ 2(τi + 1)T and ψi = 1 and
1
T

2τiT
∫

(2τi−1)T

‖r i(t)‖ dt > δ then

t̃i ∈ {1, · · · ,N} ⊂ Z
τi ≔ τi + t̃

end if
if t ≥ 2(τi + 1)T andψi = 1 then

Leaderi ≔ 1
end if

end if
if Leaderi = 1 or ψi = 0 then

return
end if
repeat the loop

Remark 2 (Favouring the Highly Connected Agents). Intu-
itively it is better to have our leader connected to as many
agents as possible. Hence, one can introduce a coefficient
that skews the random number generator towards producing
smaller waiting times for the agents with high connectivity. For

example,̃ti can be chosen from the set{1, · · · , 1+ ⌈
N

deg(i)
⌉}.

3.1 Calculating an Upper Bound for T

Consider a formation ofn agents, one expects that the largeT
occurs when the underlying graph of the formation is weakly
connected. Among all the connected graphs, a tree has the
weakest connectivity. Now if we construct a line graphT and
put agents 1 andn at both ends of it. A motion generated in
1 takes the longest time to change the observer error average
over time. The time that this average is larger thanδ can be
considered asθ⋆. Now at the moment that it happens if the
output of the agent goes to zero, the time that takes for the error



average to go underδ gives us an estimate of̄θ⋆. And so we can
estimateT as the ceiling of the maximum of these two values.

3.2 Comparison with Slotted ALOHA

In this section we compare this algorithm to an algorithm
used commonly in data networks, namelySlotted ALOHA.
Slotted Aloha is used to provide a packet collision avoidance
mechanism in data transmission, and it is simple to describe.
The idea is that each station in the network sends a data packet
in the beginning of prescribed time frames, called time slots, to
another station in the network. If the transmitted packet collides
with other data packets in the network, then the station thathas
sent the packet waits for a randomly generated number of time
slots and retransmit again with this waiting time has elapsed
Ghez et al. (1988).

One can make an analogy between the algorithm introduced
here and theSlotted ALOHA. If the leader action is considered
to be a data packet, taking this action is considered transmis-
sion, and the concurrent leader action by different agents is
considered collision, the algorithm proposed here aim to make
sure that one and only one packet is delivered without colli-
sion. However, there are some important differences between
Slotted Aloha and the distributed leader selection algorithm
proposed here. The most important difference is that if the
“packet” is delivered by any of the agents, the rest would stop
“transmission” indefinitely.

3.3 Average Number of Steps Before the Termination of the
Algorithm

We consider the state in Markov chain where only one agent
remains able to bid for leadership as the termination state.Thus,
if the system enters this state, with probability 1 it will remains
in this state. Such state is called absorbing. We definendifferent
states, and each statei ∈ {1, · · · , n} is associated with the state
wherei agents can bid for leadership. The transition between a
statei to j is possible with probabilitypi, j only if j < i. Hence,
for i < j, pi j = 0, for j < i we have

pi, j =

(

i
j

)

p j(1− p)i− j , (15)

wherep = 1/N, while for i = j we have

pi,i = 1−
i−1
∑

j=1

(

i
j

)

p j(1− p)i− j . (16)

Defining these probabilities and states enable us to put the states
that the system transitions between as a Markov chain. This
chain is depicted in Fig. 1.

Define matrixP, with entriespi j , as the state transition matrix
of an absorbing Markov chain with state transition probability
of pi, j. Putting the transition matrix into canonical form we have

Pc =













































1− 2p(1− p) 0 . . . 2p(1− p)
...

...
. . .

...
(

n
2

)

p2(1− p)n−2 . . . . . . np(1− p)n−1

0 . . . . . . 1













































=

[

Q W
01×n−1 1

]

.

(17)

From Grinstead and Snell (1997) we have the following result.

Nstart N − 1 2

1

pn,n−1

pn,1

pn,2

pn,n
pn−1,n−1

pn−1,2

Intermediate States

p2,1

p2,2

1

pn−1,1

Fig. 1. The Markov chain corresponding to the states that the
system goes through under Distributed Leader Selection
Algorithm.

Proposition 1 (Time to Absorption). Let t̄i be the expected
number of steps before the chain is absorbed, given that the
chain starts in state i, and let̄t be the column vector whose ith
entry ist̄i . Then

t̄ = (I − Q)−11, (18)
where I is the identity matrix and1 is a column vector of
appropriate dimension with all entries of 1.

Algorithm 1 is terminated (on average) in the same steps
as the abovementioned Markov chain is absorbed. The entry
t̄i is the average value for steps until termination when the
chain is initialized at statei. Hence on average Algorithm 1
is terminated in finite steps, and as the number of steps goes to
infinity the termination probability of the algorithm goes to 1 as
well.

For example the average number of steps for Algorithm 1 for a
formation ofn = 10 agents, withN = 10 to have a leader from
the initial 10 potential leaders is 25 steps.
Remark 3. One might implement the algorithm letting only
a subset of the agents bid for leadership, rather than all of
them. A possible scenario that this may be desirable is, to
replace a dysfunctional leader and letting only the neighbours
of the previous leader to bid for leadership. One can choose the
number of the agents in this subset based on the entries oft̄.

4. LEADER SELECTION IN FORMATIONS WITH
NONLINEAR CONSENSUS LAW

Consider a formation ofn single integrators under the following
consensus law which is based on the tracking consensus law
proposed in Cao and Ren (2010)

ẋ(t) = −Lx(t) − β sgn(Lx(t)) (19)

whereβ ∈ R>0. To address Problem 1, we first need to construct
an observer for this system.

For each agenti we have the following system model

ẋ(t) = −Lx(t) − β sgn(Lx) + φi(t)
yi(t) = Ci x(t).

(20)

whereφi(t) = biψiℓi(t), and sgn(.) operator is considered to be a
vector version of ordinary scalar sgn(.) operator. We can rewrite
the system as



ẋ(t) = Ax(t) +Gρ (Ax(t)) + φi(t)
yi(t) = Ci x(t),

(21)

whereA = −L, G = β, andρ(.) = sgn(.).

From Arcak and Kokotovic (2001); Fan and Arcak (2003) we
know that we can construct an observer for this system where
ρ(.) should satisfy the following assumption.
Assumption 3. The functionρ(v) satisfies the monotonicity
property∀v ∈ Rn iff

∂ρ

∂v
+

(

∂ρ

∂v

)⊤

≥ 0. (22)

The observer is given by

x̂i(t) = Ax̂i(t) + Li(Ci x̂
i(t) − yi(t))

+ βρ(Ax̂i(t) + Ki(Ci x̂
i(t) − yi(t))) + φi(t)

(23)

Moreover, we know that the error associated with this observer
goes to zero if the following linear matrix inequality (LMI)has
a solution forPi > 0, κi > 0, Ki , andLi .
[

(A+ LiCi)⊤Pi + Pi(A+ LiCi) + κi I βPi + (A+ KiCi)⊤

βPi + (A+ KiCi) 0

]

≤ 0

(24)
For the error dynamics we have

ėi(t) = (A+ LiCi)e
i(t)

+ β
(

sgn(Ax(t)) − sgn
(

Ax̂i(t) + Ki(Ci x̂
i(t) − yi(t))

)) (25)

Consequently for the residual of the observer at agenti we have

ṙ i(t) = CiLir
i(t) +Ci Aei(t)

+ βCi

(

sgn(Ax(t)) − sgn
(

Ax̂i(t) + Ki(Ci x̂
i(t) − yi(t))

))

(26)

Under (19) for the set of admissible leader action,F we have:
Definition 10 (Set of Admissible Leader Actions for (19)). The
setF is defined as the set of all scalar functions such that for
any fj(t) ∈ F , All Ci , and for almost all t and∀i, j ∈ {1, · · · , n}
there exists a positive number c1 such that

0 < ‖µi j (t)‖2 ≤ c1 (27)

where

µi j (t) = CiAei(t)+βCi

(

sgn(Ax(t)) − sgn
(

Ax̂i(t) + Ki(Ci x̂
i(t) − yi(t)

))

Before showing that such observer exists for the system de-
scribed by (21) we present the following two lemmas.
Lemma 1 (Rank of Laplacian Principal Submatrices). If an
undirected graphG is connected, then any principal submatrix
of its Laplacian matrixL, induced by a strict subset of nodes
V̄ ⊂ V , is invertible.

Proof. See Appendix A. �

Lemma 2. ConsiderL ∈ Rn×n to be a Laplacian matrix
associated with a connected graph. Further define X≥ 0 to
be a matrix of the same dimension asL where all the entries
are 0 except for possibly its diagonal entries. Moreover it is
assumed that at least a diagonal entry of X is equal to 1. Then
for anyλ > 0,Lλ = L + λX is positive definite.

Proof. Without loss of generality assumeX11 = 1 and the rest
of entries ofX are zero.Lλ = ∆λ−A, where∆ = diag(deg(1)+
λ, deg(2), · · · , deg(n)). Now define

L′ =

[

λ h
h⊤ Lλ

]

. (28)

where h = [−λ, 0, · · · , 0]. Hence, it is clear thatL′ is a
Laplacian matrix of a connected graph withn+ 1 vertices, and
Lλ is a principal submatrix of this Laplacian matrix induced
by n vertices. Thus because of Lemma 2Lλ is invertible. In
addition, since we know it should be positive semidefinite, due
to positive semidefiniteness ofL′, we can deduce that it is
strictly positive. �

Lemma 3 (LMI Feasibility). There exist Pi = P⊤i > 0, κi > 0,
Ki and Li of appropriate dimensions such that(24)holds.

Proof. This problems is equivalent to
βPi + (A+ KiCi) = 0

(A+ LiCi)⊤Pi + Pi(Ai + LiCi) < 0
(29)

We claim thatLi = Ki = λC⊤i andPi = −(A+ λC⊤i Ci)/β satisfy
these equations, whereλ ∈ R<0. To check this claim, first notice
that A = −L, hencePi = (L − λC⊤i Ci)/β. From Lemma 2
we know that thenPi is strictly positive. Furthermore for the
second inequality we have

−P⊤i Pi + PiP
⊤
i = −2(Pi)

2 < 0. (30)

This shows that the LMI is feasible. �

The next theorem establishes that the observer error described
by (25) goes to zero exponentially fast for system (21), if no
other agents take a leader action.
Theorem 1 (The Exponential Stability of the Nonlinear Ob-
server). The observer error, ei(t) described by(25)goes to zero
exponentially fast for system(21).

Proof. We know from Fan and Arcak (2003) that if Assumption
3 is satisfied and LMI (24) is feasible then the error dynamics
(25) is exponentially stable. To check the former note that sgn(.)
is non-decreasing and hence the Assumption is satisfied and
Lemma 3 shows that the latter holds as well. �

Now since we can construct observers at each agent with the
local information available to that agent to monitor the states of
the network, we can detect if the observer output error does not
go to zero as well, and in average being larger than a threshold
δ ∈ R>0. Thus, we can apply Algorithm 1 to select a leader
in the formation under control law (19). In the next section we
present some simulation results showing the performance ofof
Algorithm 1 for selecting a leader in the formations controlled
by (19).

5. SIMULATIONS

In this section we consider a leader selection scenario for the
nonlinear consensus protocol introduced by (19).

In the first scenario consider a formation ofn = 10 agents
with leader signaturefi(t) = 40i sin(2it), Li = Ki = −20C⊤i Ci

(i ∈ {1, · · · , n}), andN = 5. Moreover,T is considered to be
2 secand hence the time slot is 4sec. The process of leader
selection is depicted in Fig. 2.

In the second scenario we aim to present the motion of the
agents when they run the leader selection algorithm. We con-
sider again a formation ofn = 10 agents with leader signature
fi(t) = 40i sin(2it), Li = Ki = −20C⊤i Ci (i ∈ {1, · · · , n}), N = 5,
andT = 2 sec. The formation at timet = 0 is depicted in Fig
3(a) and the motion of the agentsx coordinates is presented in
Fig 3(b).



(a) Agents at timet = 0

(b) Agents at timet = 4

(c) Agents at timet = 8

(d) Agents at timet = 12

(e) Agents at timet = 16

Fig. 2. The underlying graph of the formation. The numbers
on the circles denote the agents labels, and the smaller
ones outside the circles are the time they will take their
corresponding leader action.
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(b) The motion of the agents throughout the leader selection
process.

Fig. 3. The motion of the agents throughout the leader selection
process in the second scenario.

6. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this paper we proposed an algorithm for leader selection in
multi-agent formations. The algorithm requires only localmea-
surements and a knowledge of the structure of the underlying
graph of the formation at each agent. The algorithm relies on
existence of state observers at each agent that can estimatethe
states of other agents in the formation, and on a suitable setof
admissible leader actions. We have shown that such observers
exist for a nonlinear interaction law. We further demonstrated
the applicability of the algorithm via simulation results.
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Appendix A. PROOF OF RANK OF LAPLACIAN
PRINCIPAL SUBMATRICES LEMMA

Let G = (V,E) be an undirected graph and̄V ∈ V (G) be a
subset of the vertex set. ConsiderG′ = G/V̄ to be the induced
subgraph ofG obtained by removing the set of vertices in̄V.
After a suitable permutation of nodes, the Laplacian matrix
L (G) ∈ RN×N can be written as

L (G) =

[

LV̄ l
l⊤ LV∗

]

with LV̄ ∈ R
|V̄|×|V̄|, LV∗ ∈ R|V

∗ |×|V∗| and we have that
LV∗ = L

(

G′
)

+ ∆V∗

where∆V∗ is a diagonal matrix with nonnegative elements, thus
it is a positive semi-definite matrix. Furthermore, sinceG is
connected,∆V∗ , 0 and [∆V∗ ] ii > 0 if and only if i ∈ NV̄
with NV̄ =

⋃

j∈V̄ N j .

The first property is easy to prove by a simple contradiction
argument: supposeG is connected,V̄ , ∅ and ∆V∗ = 0.
Then this means thatLV∗ = L (G′), which implies that(i, j) <
E (G) , ∀i ∈ V̄ ∀ j ∈ V∗, i.e. the graphG is not connected.

As for the second property, it can be easily verified by observing
that the diagonal entries ofLV∗ andL (G′) are the same for
all the nodes that were not neighbors of the removed setV̄,
meaning that those nodes did not suffer any change since they
kept all their neighbors. Furthermore, the entries corresponding
to nodes whose neighborhood was affected are positive since
those nodes have a smaller degree in the induced graphG that
in the original graph.

We now continue the proof by considering the two possible
scenarios,G′ is connected andG′ is disconnected.

For a connectedG′, it is well-known thatL (G′) is a positive
semi-definite matrix that contains a single zero eigenvaluewith
the associated eigenvector1 having all its entries set to one.
Since bothL (G′) and∆V∗ are positive-semidefinite matrices,
LV∗ is singular if and only if∆V∗ is singular andL (G′) and
∆V∗ share at least one eigenvector associated with the zero
eigenvalue. However it can be easily seen thatc21⊤∆V∗1 , 0,
due to the properties of∆V∗ mentioned previously, resulting
thatLV∗ is invertible in this case.

In the other situation, whereG′ is disconnected withn con-
nected components, we can again perform a permutation on the
nodes ofG′ and rewrite its Laplacian in a block diagonal form:

L
(

G′
)

=

































LC1 0 · · · 0
0 LC2 · · · 0
...

...
. . .

...
0 0 · · · LCn

































with LCk being the Laplacian of thek-th connected component.
It is easy to see that the block diagonal structure comes fromthe
fact that the nodes from the subsetCi are not connected with the
nodes belonging toC j , i , j, thusCi andC j do not interact.

Applying the permutation toLV∗ as well, we can rewrite it as:

LV∗ =

































LC1 0 · · · 0
0 LC2 · · · 0
...

...
. . .

...
0 0 · · · LCn

































−

































∆C1 0 · · · 0
0 ∆C2 · · · 0
...

...
. . .

...
0 0 · · · ∆Cn



































Under this setting we have that

x⊤LV∗x =x⊤C1

(

LC1 + ∆C1

)

xC1 + · · ·+

x⊤Cn

(

LCn + ∆Cn

)

xCn .

Note that, as before,LCi and ∆Ci are positive semi-definite
matrices, thusLV∗ is singular if and only if∆Ci is singular and
LCi and∆Ci share the same eigenvector associated with the zero
eigenvalue for at least one connected componenti.

At this point, it is easily seen that the previous propertiesof
∆Ci still hold with the same arguments for each connected
componenti and therefore we conclude that each matrixLV∗i =
LCi + ∆Ci is invertible, using the same arguments as when we
assumeG′ to be connected, which proves thatLV∗ is invertible.


