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Abstract. In this paper, we consider the problem of how and when to lump subsystems together in
large linear interconnected systems with external inputs and outputs. The motivation for this work is
that we often want to reduce the model order of large interconnected systems, but before we do that
we should identify what interconnection structures that are worth preserving in the reduction. For this
purpose a constrainedHankel-norm is introduced in this paper, and a so-called lumping index is derived
from it. A subsystem that is not a very independent subsystem in the interconnected system has a large
lumping index, and we argue in the paper that it then is a good candidate for lumping. As an example,
a large mechanical spring-mass system is considered.

1 Introduction
In this paper, a quantitative criterion for lumping of linear interconnected systems is introduced. Let us �rst
illustrate the problem with an example. Consider an interconnection of linear systems, such as the one depicted
in Figure 1. This system consists of six subsystems, G1, . . . ,G6, and it is being excited by the external signals
w1,w2,w3, and the signals z1,z2,z3 are measurements on the system. We want to come up with a rationale for
when to lump some of these subsystems together, in order to simplify its representation. Lumps are indicated with
bar notation in the �gure. There are good reasons for lumping subsystems together, if possible. The interconnection
structure generally becomes less complicated for a lumped system, and it can be easier to understand and analyze
the overall system behavior. Also, if we want to apply structure-preserving model reduction on the interconnected
system, see for example [7, 3, 4], then the fewer structure constraints there are, the more the model order can be
reduced.

Lumping is also frequently used formodel reduction in chemical reaction systems, see for example [2]. The method
we suggest for lumping in this paper is tailored to use together with the model reduction methods in [7, 4]. The
method is based on a constrained version of the Hankel-norm. The Hankel-norm is an often used norm in model
reduction, see [9]. It has also been used for other purposes, see for example [8], where it is used for input-output
pairing in controller design.

A motivation for this paper is that many models that are of interest to the control community have a network
structure, see [1]. Examples include models of the power grid, biological systems, formations of vehicles, but also
control systems where controllers, actuators, and sensors are distributed over a computer network. In all of these
examples there can be many subsystems that are interconnected in one way or another, and the order of the entire
system can be very large. It is often desirable to obtain a model with simpler structure, to simplify analysis of the
system and controller synthesis.

The structure of the paper is as follows. In Section 2, the model framework is introduced. A known method for
structured model reduction is described, and lumping within the used model framework is presented. In Section 3,
a constrained Hankel-norm is introduced and a so-called "lumping index" is introduced. Finally, in Section 4 the
use of the norm and the index is illustrated on two numerical examples.

Notation. Most notation in the paper is standard notation from the robust control literature, see [9], for example.

For realizations of rational transfer functionmatrices G(s)we use the notation G(s) =C(sI−A)−1B+D=:
[

A | B
C | D

]
,

or alternativelyG(s) =C(sI−A)−1B+D=: [A,B,C,D]. The set RH� is the set of real and rational transfer function
matrices in the Hardy space H�, see [9]. Let ‖G‖� denote the H�-norm of G(s):

‖G‖� := sup
s∈C+

‖G(s)‖,

where ‖G(s)‖ is the induced Euclidean norm of G(s) (the largest singular value), and C+ is the open right complex
half plane. By ‖u‖2,[a,b] we mean the L2-norm of u over the interval [a,b]. With P > 0 (P < 0) we mean that P

is a positive (negative) de�nite matrix, with |x|P the weighted Euclidean norm
√

xTPx, and with diag{P1,P2} the

block-diagonal matrix

[
P1 0
0 P2

]
.
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Ḡ4

Figure 1: An example of an interconnected linear system with subsystems Gi, i = 1, . . . ,6. We want to know when to
lump subsystems together based on how the system is interconnected, excited, and measured. Lumps are indicated with
bar notation, such as Ḡ3, Ḡ4. Lumps can contain only one subsystem, such as Ḡ1, Ḡ2 .

wz

u y

[
E(s) F(s)
H(s) K(s)

]

⎡⎢⎣G1(s) 0
. . .

0 Gq(s)

⎤⎥⎦
Figure 2: A general linear interconnected system modelled by a linear fractional transformation Fl(N,G).

2 Model framework, model reduction, and lumping
The same model framework as in [4, 5] is used here, and we repeat some de�nitions and results without proof. We
model interconnected linear systems in the frequency domain using the linear fractional transformFl(N,G),where
the interconnection topology and dynamics is modelled by N, and the subsystem dynamics in G, see Figure 2 and
the following equations:

Fl(N,G)(s) = E(s)+F(s)(I−G(s)K(s))−1G(s)H(s) (1)

=

⎡⎣ AN +BN,2IGKDGCN,2 BN,2IGKCG BN,1 +BN,2IGKDGDH
BGIKGCN,2 AG +BGIKGDKCG BGIKGDH

CN,1 +DFDGIKGCN,2 DF IGKCG DE +DFDGIKGDH

⎤⎦ =:

[
A B
C D

]
, (2)

IGK := (I−DGDK)−1, IKG := (I−DKDG)−1.

The realization (2) is called a structured realization ofFl(N,G). The q subsystems are stored in the block-diagonal
transfer function matrix

G(s) = diag{G1(s), . . . ,Gq(s)} =:

[
AG BG

CG DG

]
(3)

where
AG = diag{A1, . . . ,Aq}, BG = diag{B1, . . . ,Bq},
CG = diag{C1, . . . ,Cq}, DG = diag{D1, . . . ,Dq},

and

Ak ∈ Rnk×nk , Bk ∈ Rnk×mk ,
Ck ∈ Rpk×nk , Dk ∈ Rpk×mk , k = 1, . . . ,q.
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The interconnection topology and dynamics is modelled by

N(s) =

[
E(s) F(s)
H(s) K(s)

]
=:

⎡⎣ AN BN,1 BN,2

CN,1 DE DF
CN,2 DH DK

⎤⎦ ,

where

AN ∈ RnN×nN , BN,1 ∈ RnN×mN ,

CN,1 ∈ RpN×nN , DE ∈ RpN×mN .

The element K of N models how the subsystems G1, . . . ,Gq are connected to each other, and E,F,H model the
external excitation and measurements of the interconnected system. Throughout the paper it is assumed that
Fl(N,G) is a well-posed and stable feedback interconnection, i.e., ‖Fl(N,G)‖� < �. In [5], it is shown how a
mechanical systems �ts to this framework.

To quantify how controllable the interconnected system is from the input w, and how observable it is from the
output z, controllability and observability Gramians are often computed [9]. The controllability Gramian P and
the observability Gramian Q satisfy the Lyapunov equations

AP+PAT +BBT = 0, P> 0,

AT Q+QA+CTC = 0, Q > 0,
(4)

for an asymptotically stable system Fl(N,G), where [A,B,C,D] is a minimal structured realization as de�ned in
(2). Let us impose the following structure on the Gramians,

Q =

[
QN QNG

QT
NG QG

]
, QG =

⎡⎢⎣ Q1 . . . Q1q
...

. . .
...

QT
1q . . . Qq

⎤⎥⎦ ,

P=

[
PN PNG

PT
NG PG

]
, PG =

⎡⎢⎣ P1 . . . P1q
...

. . .
...

PT
1q . . . Pq

⎤⎥⎦ ,

(5)

such that Pk,Qk ∈ Rnk×nk , conformably to the structured realization (2).

2.1 Balanced truncation of interconnected linear systems

In [6, 7, 4, 5], balanced truncation of interconnected linear systems are studied. The model reduction problem is
to �nd a new set of subsystems Ĝ with the same block-diagonal structure as G in (3), but of smaller McMillan
degree, and such that ‖Fl(N,G)−Fl(N, Ĝ)‖� is small. In the above papers, extensions to balanced truncation are
proposed to solve this problem, and a summary is given next.

We say the structured realization of Fl(N,G) and the corresponding Gramians are subsystem balanced if the
internal coordinates are such that the block-diagonal elements of the Gramians take the form

Qk = Pk = �k = diag{�k,1 . . . ,�k,nk},
�k,1 ≥ . . . ≥ �k,nk > 0, k = 1 . . .q.

(6)

We call �k,i structured Hankel singular values of the interconnected system. They are invariant under structured
block-diagonal coordinate transformations, see Proposition 1, and can be computed as

�k,i =
√

�i(PkQk), (7)

where Pk,Qk come from any structured realization. The following results are motivated and shown in [6, 7, 4, 5].
Proposition 1. If there exist Gramians P and Q (5) for a structured realization of the interconnected system
Fl(N,G), then there exist a block-diagonal ("structured") coordinate transformation x̄ = Tx,

T = diag{TN ,T1, . . . ,Tq},
TN ∈ RnN×nN , Tk ∈ Rnk×nk , k = 1, . . . ,q that makes the realization and the Gramians subsystem balanced (6):

TT
k PkTk = T−T

k QkT
−1
k = �k.
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The model reduction procedure that will be used in Section 4 is as follows.
Procedure 1. Assume the interconnected system Fl(N,G) is subsystem balanced (6). Let the realizations of the
subsystems Gk and Ĝk, k = 1 . . .q, be given by

Gk(s) =

⎡⎣ Ak,11 Ak,12 Bk,1
Ak,21 Ak,22 Bk,2
Ck,1 Ck,2 Dk

⎤⎦ , Ĝk(s) =

[
Ak,11 Bk,1
Ck,1 Dk

]
,

where Ak,11 ∈ Rrk×rk , Bk,1 ∈ Rrk×mk , and Ck,1 ∈ Rpk×rk , and the reduced-order system be Ĝ = diag{Ĝ1, . . . , Ĝq}.
Small structured Hankel singular values indicate that there are states in the corresponding subsystems that are
not so important for preserving the input-output map w �→ z. There are a priori error bounds based on truncated
structured Hankel singular values under certain circumstances and interconnection topologies, see [4, 5].

The larger blocks Tk that we allow for in the structured coordinate transformations, the better approximations we
can expect to obtain using the above procedure. This is exactly what lumping achieves: When two subsystems are
lumped into one, two small blocks in the structured coordinate transformation T are replaced by one large block.

2.2 Subsystem lumping

By lumping we mean that subsystems are grouped together. In Figure 1, the subsystems G3,G4 are lumped together
into Ḡ3, for example. Lumping is an operation that does not reduce the state dimension of the model; it simply
changes the partitioning of the state space, and leaves the input-output map w �→ z invariant. Lumping is a natural
step to perform before model reduction as described in Section 2.1.

In the above model framework, lumping is described as follows. If the original systemFl(N,G) has subsystems

G(s) = diag{G1(s), . . . ,Gq(s)},
then admissible lumping gives rise to new systems Fl(N̄, Ḡ), where

Ḡ(s) = diag{Ḡ1(s), . . . ,Ḡq̄(s)},
such that q̄≤ q, and

Fl(N̄, Ḡ) = Fl(N,G). (8)

The new interconnection structure N̄ is induced by the the choice of Ḡ, and (8). The system Fl(N̄, Ḡ) is called a
lumped system.

Lumping is most easily understood by means of examples.
Example 1. The most extreme form of lumping is to drop all internal interconnection structure and to put Ḡ =

Fl(N,G). The lumped system is then a complete black-box model, and N̄ =

[
0 I
I 0

]
.

Example 2. Consider the system in Figure 1 and assume all signals are scalar, that transfer functions are single-
input–single-output, and that inputs are added together and all outputs of a subsystem are identical. Before
lumping we have

G(s) = diag{G1(s), . . . ,G6(s)}, E(s) = 0,

F(s) =

⎡⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎦ , H(s) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , K(s) =

⎡⎢⎢⎢⎢⎢⎣
0 1 1 0 0 1
1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ .

After lumping, as indicated in Figure 1, the same input-output dynamics is realized with

Ḡ(s) = diag{Ḡ1(s), . . . , Ḡ4(s)}, Ē(s) = 0,

F̄(s) =

⎡⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤⎦ , H̄(s) =

⎡⎢⎣1 0 0
0 1 0
0 0 1
0 0 0

⎤⎥⎦ , K̄(s) =

⎡⎢⎣0 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎦ .

where N̄ =

[
Ē F̄
H̄ K̄

]
. For the lumped system, the states of the subsystems G3,G4 and G5,G6 are allowed to be

mixed in the structured coordinate transformations.
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How many subsystems to lump together is a trade off. If many subsystems are lumped together, there is a larger
potential for model reduction (reducing number of states), but important structural information of the model might
be lost. On the other hand, if no lumping is performed, one might use a model with too detailed interconnection
structure that is not motivated by the chosen input-output map w �→ z.

Next, we introduce an easily computable index that should be a help to choose when and what subsystems Gk to
lump.

3 A constrained Hankel-norm and a lumping index
The Hankel-norm of a linear system G : w �→ z with a transfer function matrix G(s) ∈ RH� is de�ned as the
maximum ampli�cation of energy from past inputs to future outputs, see [9]. By de�nition, the Hankel-norm is
given by

‖G‖H := sup
w∈L2(−�,0]	=0

‖Gw‖2,[0,�)

‖w‖2,(−�,0]
, (9)

where Gw is the time-domain output of the linear system G when the input w is applied. If [A,B,C,D] is aminimal
realization of G(s), the Hankel-norm can be computed as [9]

‖G‖H =

√
max

x

xT Qx
xTP−1x

=
√

�max(PQ),

where P,Q satisfy the Lyapunov controllability and observability equations (4), and �max is the largest eigenvalue.
The Hankel-norm is often used in model reduction and is invariant under coordinate transformations. The Hankel-
norm is large if G has states that are easy to control from w and are very visible in the output z. This intuition will
be used next to quantify whether a subsystem Gk should be lumped or not.

Let us now consider a structured realization ofFl(N,G), and let us compute the amount of output energy the states
in the subsystem Gk result in. Assume that all other states are zero at t = 0, and that the input w = 0 for t ≥ 0.
Then it holds that

‖z‖2
2,[0,�) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

xk,0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

xk,0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= xT

k,0Qkxk,0, (10)

where xk,0 is the initial state of Gk, see [7]. Here Qk is the k-th block of the observability Gramian (5).

Let us next consider the problem of controlling the interconnected system from rest at t = −� to an arbitrary state
of subsystem Gk, i.e., xk(0) = xk,0 such that all other states are zero, i.e., x−k(0) = 0. The energy of the minimum
such control w∗ is, see [7],

‖w∗‖2
2,(−�,0] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

xk,0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

P−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

xk,0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=: xT

k,0(P
−1)kxk,0, (11)

where (P−1)k is the diagonal block of P−1 corresponding to the states of Gk.

We can now de�ne a constrained Hankel-norm by

‖Fl(N,G)‖H,k := sup
w∈L2(−�,0]	=0;x−k(0)=0

‖Fl(N,G)w‖2,[0,�)

‖w‖2,(−�,0]
.

Hence, the interconnected system is at rest at t = −�, and is then maximally excited during (−�,0] using w such
that all the states x−k (all states except xk) are zero at t = 0. Then the interconnected system is released from this
state with zero input, and we measure the energy in the output. If the subsystem Gk is highly controllable and
observable independently of all other subsystems in the interconnected system, then the number ‖Fl(N,G)‖H,k is
large. The constrained Hankel-norm can be computed as shown in the next proposition.
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Proposition 2. Given a minimal structured realization [A,B,C,D] of Fl(N,G), we can compute the constrained
Hankel-norm as

‖Fl(N,G)‖H,k =
√

�max([(P−1)k]−1Qk),

where (P−1)k,Qk are de�ned in (10)–(11). Furthermore, the norm is invariant under structured coordinate trans-
formations, as de�ned in Proposition 1.

Proof. Use the identities (10) and (11), and we get

‖Fl(N,G)‖2
H,k =max

xk,0

xT
k,0Qkxk,0

xT
k,0(P

−1)kxk,0
.

Since the realization is minimal, (P−1)k is positive de�nite, and thus invertible, and the result follows since this is
a generalized Rayleigh quotient.

Remark 1. For the above formula for ‖Fl(N,G)‖H,k to work, the system must be controllable (P−1 exists), which
is true for minimal realizations. How to best compute the constrained norm for a non-minimal realization is still
an open issue.

The constraint in the above Hankel-norm can be relaxed, and we can let more subsystems participate in the energy
transfer from the past into the future. It is clear that the more systems that are allowed to participate, the larger the
Hankel-norm becomes, as stated in the following proposition.
Proposition 3. For an interconnected linear system Fl(N,G), it holds that

‖Fl(N,G)‖H,1 ≤ ‖Fl(N,G)‖H,[1,2] ≤ . . . ≤ ‖Fl(N,G)‖H,[1,2,...,q] ≤ ‖Fl(N,G)‖H,[N,1,2,...,q] = ‖Fl(N,G)‖H ,

where ‖Fl(N,G)‖H,[1,...,k] means that the states of G1, . . . ,Gk at t = 0 are free variables. Similar inequalities hold
for ‖Fl(N,G)‖H,2, . . . ,‖Fl(N,G)‖H,q.

We are now ready to de�ne the lumping index mentioned in the introduction.
De�nition 1. The lumping index �k of subsystem Gk in the interconnected system Fl(N,G) is de�ned by

�k :=
1

‖Fl(N,G)‖H,k
=

1√
�max([(P−1)k]−1Qk)

,

where the last equality holds for a minimal realization of Fl(N,G).

One interpretation of the lumping index �k is that it indicates how independent the subsystem Gk is with respect to
the inputs and outputs w,z, and the interconnected system. A subsystem with a large �k is not a very visible and
controllable subsystem by itself. Note that the index depends heavily on the surrounding and the chosen inputs
and outputs. Hence, a subsystem can have a small lumping index in one interconnected system, and large index in
another interconnected system.

If subsystems are lumped together as de�ned in Section 2.2, it follows from Proposition 3 that the lumping index
of the lump is smaller than the lumping indices of the subsystems in the lump. That is, if Gk belongs to the lump
Ḡk′ , then

�̄k′ ≤ �k.

We propose that one computes the lumping indices for all subsystems, �1, . . . ,�q, and compare them to each other.
The lumping index is a relative measure and has no real absolute meaning. If there is a large difference in the
magnitudes of the lumping indices in an interconnected system, thenwe propose that subsystemswith large indices
are lumped together. After a successful lumping, the lumping indices, �̄1, . . . , �̄q̄, should be roughly of the same
magnitude. The rationale for this procedure is that the new subsystems Ḡ1, . . . , Ḡq̄, are roughly equally controllable
and observable subsystems, and thus of similar importance in the interconnected system.

This procedure does not tell how subsystems should be lumped together, only that a subsystem with a large index
is a candidate for lumping. We suggest that neighboring subsystems with large indices are either lumped together,
or that all subsystems with a large index are lumped into one large "rest-of-the-world" or "environment" lump.

In the following section, we illustrate how the lumping index can be used in two numerical examples.
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� ‖Fl(N,G)‖H ‖Fl(N,G)‖H,1 ‖Fl(N,G)‖H,2

0.01 6.45 ·10−2 1.40 ·10−3 1.74 ·10−7
0.1 6.95 ·10−2 1.38 ·10−3 1.74 ·10−5

1 1.06 ·10−1 1.16 ·10−3 1.29 ·10−3

Table 1: The constrained and unconstrained Hankel-norms for Example 3.

...G1 G2 G50

w1 w2

z

Figure 3: The interconnected spring-mass system in Example 4.

4 Numerical Examples
In the �rst example, we compute the constrained Hankel-norm for a simple example, to get some intuition.
Example 3. Consider the subsystems

G1(s) =
s+1

(s+2)(s+10)
, G2(s) =

s+1
s+2+ �

,

that are connected in parallel, such that Fl(N,G) = G1 + G2. We compute the constrained Hankel-norms for
various � , see Table 1. As � → 0 there is a pole in the subsystem G2 that is getting closer and closer to the pole
in s= −2 in G1. This means that the subsystem G2 is getting harder to control and to observe independently. The
constrained Hankel-norm of subsystem G1 is much less sensitive to the changes in � because it also has a pole in
s= −10, and thus G1 contains dynamics that is unique for this interconnected system.

Note that just because ‖Fl(N,G)‖H,2 is small does not mean that G2 is unimportant in the interconnected system
Fl(N,G). It just means that G1 is not a very independent subsystem in this particular interconnection structure.

In the next numerical example, we lump and reduce a model of a spring-mass system.
Example 4. In Figure 3, an interconnection of 50 rigid masses is illustrated. The masses are interconnected with
linear springs of uniform stiffness. There is also uniform viscous friction at each mass in the system to make
the system asymptotically stable. Each subsystem Gk has two states, position xk and velocity vk, and thus the
interconnected system has order 100. There are two forces w1,w2 acting as inputs. The �rst force acts at G1 and
the second at mass G25. The output z is the position of the mass G50.

In Figure 4, the lumping indices �k for the 50 subsystems Gk are shown. It is seen that there is a large variance
in magnitude throughout the interconnected system. The indices �1,�25,�50 are especially small since there are
inputs or an output at those respective subsystems (these subsystems are especially controllable or observable). In
between these subsystems, the indices are larger. In order to make the lumping indices more uniform, we create
�ve lumps: Ḡ1, . . . ,Ḡ5, where Ḡ1 = G1, Ḡ3 = G25, and Ḡ5 = G50. The lumps Ḡ2 and Ḡ4 contain the masses that
lie in between. After lumping, the indices are more or less of equal order, as seen in Figure 4. Hence, in the lumped
system Fl(N̄, Ḡ), all subsystems Ḡk are roughly equally independent.

After lumping, it is natural to try to reduce the order of the dynamical system. The structured Hankel singular
values for Ḡ2 and Ḡ4, see Section 2.1, are shown in Figure 5. After inspection of the singular values, it is deter-
mined that 8 and 10 states can be removed, respectively. These are removed using Procedure 1. The approximation
error becomes ‖Fl(N,G)−Fl(N̄, ˆ̄G)‖� = 0.0137, where ‖Fl(N,G)‖� = 0.1258, and the approximation is good
enough for most purposes.

In conclusion: We have reduced a chain of 100 rigid masses into a chain of �ve lumped masses, where two of the
lumped masses can be thought of as non-rigid masses. We argue that this lumped and reduced model is a simpler
and more natural model of how the underlying physical system works, given the speci�ed forces w1,w2 and the
measurement z.

5 Conclusions
In this paper, we have studied the problem of lumping of interconnected linear systems. A model framework
was �rst presented along with a model reduction procedure. In order to decide when and what subsystems to
lump, a constrained Hankel-norm was introduced, and a lumping index was derived from it. The index was later
successfully tested on two simple examples. Even though the lumping index seems promising, its properties and
usefulness must be further studied and evaluated. For example, how the index can be robustly computed for large
nearly uncontrollable/unobservable systems remains an open issue.
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Figure 4: Lumping indices for the spring-mass system in Example 4, before (top) and after (bottom) lumping. After
lumping, all the indices are roughly of the same order.
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Figure 5: The structured Hankel singular values for the lumped subsystems Ḡ2 and Ḡ4 in Example 4.
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