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Abstract: In this paper, we derive physical limitations on measurements of linear systems. We
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1. INTRODUCTION

With the tremendous development of communication tech-
nologies in the recent decades, there has been a great
amount of research developing a control theory that is
consistent with the communication constraints occurring
when plant and controller interact through lines of com-
munication. As a sample of the communication constraints
that have received the most attention, we cite finite-
capacity digital channels (e.g., Nair et al. (2004); Mar-
tins et al. (2007)), delays (e.g., Sahai and Mitter (2006))
or packet drops (e.g., Sinopoli et al. (2003)). Although
this is certainly a very incomplete review of the field,
it is fair to say that in our knowledge, all communica-
tion constraints considered so far arise from technological
limitations, which would disappear in the limit of large
bandwidth, small delays, high quality of service, etc. In
this paper we take a different direction. We look at an
estimation problem where the limitation comes from fun-
damental laws of statistical physics, and only vanish when
the temperature of the transmission medium goes to zero.
As a consequence, both the results and the proofs are
incomparable to previous results of the field of commu-
nication constraints in control.

Specifically, we introduce a new kind of limitation due to
communication. We show that analog transmission media,
such as coaxial cables or even simple elastic mechanical
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beams, also introduce limitations on the efficiency of con-
trol and estimation. Namely, we show that estimating the
state of a system through a transmission media cannot be
done without perturbing the measured system. We quan-
tify the trade-off between the measurement accuracy and
the corresponding perturbation on the measured plant.
Since the limitations are derived using a basic physical
assumption, conservation of energy, we call these limita-
tions physical limitations. In quantum mechanics, it is well
known that a measurement causes a disturbance to the
the measured system. There is an observer effect. It is also
known that there are observer effects in classical physics:
To measure for example the pressure or the temperature of
a system, we need to connect the system to a meter which
slightly changes the dynamics of the measured system. But
to derive fundamental limitations on this (classical) effect
does not seem to have been a much studied problem. In
Barnes and Silverman (1934); McCombie (1953), steps in
this direction are taken. But at that time, optimal filtering
theory was not as well developed as it is now. In this paper,
we combine modeling that respects basic physical laws
(conservation of energy) with filtering theory to bound a
classical observer effect.

Let us detail the nature of the bounds we obtain. A
measuring device is connected to the physical system to
be measured through a transmission line or any kind of
transmission medium. The device records the outputs of
the system for a short time and reconstructs the state from
this data. We assume that the system and the medium
operate sufficiently close to an equilibrium point so that
a linear model describes them accurately; the models we
use are therefore linear port-Hamiltonian systems, see e.g.
Cervera et al. (2007), obeying equipartition of energy
and fluctuation-dissipation. The transmission medium is
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microscopically modelled by a large number of degrees
of freedom which could be, for instance, the movement
of the atoms in a steel bar acting as mechanical trans-
mission, or the capacitors and inductors intervening in a
usual transmission line, as modelled by the telegrapher’s
equation. The temperature of the transmission medium
imposes a thermal noise to all the degrees of freedom of
the medium, which has the effect of disturbing both the
measurement device and the measured system. We show
that in the absence of information on the initial state of the
measured system, the product of measurement accuracy
and disturbance on the measured system is in the best
case equal to a quantity that is proportional to 2kBTM

−1,
where kB is Boltzmann’s constant, T is the temperature of
the medium and M is the inertia of the measured system
(typically a mass for a mechanical system). This quantity
is independent of the details of the measuring device, the
impedance of the transmission medium or the (short) time
of measurement. This result is derived in Section 3. An
earlier, much less general, version of this result was derived
in Sandberg et al. (2011). In particular, here thermal noise
is inherent to the transmission medium and is not a result
of dissipation in the measurement device. Hence the effect
described here applies to all possible measurement devices,
and not only to the types discussed in Sandberg et al.
(2011). Furthermore, we here also mention how the results
generalize to the case when the measured system is not
close to equilibrium.

The second main result in this paper takes place when the
measured system is known to be a dissipative system at a
temperature T ′, whose state is confined in a well of energy.
In this case, which is typical in many physical situations,
the measuring device has a non-zero precision estimate of
the initial state to be measured even before starting the
measurement, and may exploit this information in order to
derive a more favorable trade-off than precedently. Even
so, we prove that the ratio between the perturbation of the
measured system and the improvement of precision on the
estimate is at least 2T/T ′. Thus a large improvement of
the variance of the error can only be achieved at the cost of
a large perturbation of the system, for given temperatures.
This is developed in Section 4.

The effects we describe typically have negligible conse-
quences for large objects, but may be very important for
nanoscale machines or biomolecules. We show a numerical
example of the measurement of the speed of a blood cell
attached to a wall through a macromolecule in Example 3.

2. PROBLEM FORMULATION AND MODELING

We consider systems that can be split up into three
different subsystems, see Fig. 1.

A physical system S which has a property y(t) we would
like to measure. We assume the property y(t) is a
physical quantity that has a conjugate quantity u(t)
such that the pair u(t) and y(t) forms a port, see for
example Anderson and Vongpanitlerd (2006); Cervera
et al. (2007), and the product y(t)Tu(t) is the external
work rate on S.
A measurement device M which produces an estimate
ŷm(t) of the physical quantity y(t). An optimal measure-

S

I

M

um(t)

ym(t)

v

l

Fig. 1. The measured system S, the lossless intercon-
nection medium I, and a measurement device M.
Changes in y(t) and u(t) travel with velocity v
through the medium. We only consider times t such
that t < l/v, such that we do not have to take
reflections and initial states in M into account.

ment device is denoted M∗, and its estimate is denoted
ŷ∗m(t).
A measurement medium I which interconnects S andM.
We model the medium using a lossless one-dimensional
wave equation, with characteristic impedance Z > 0.
Perturbations in u(t) and y(t) at the interface to S
travel with a velocity v towards M. In the absence
of reflections and thermal noise, it holds that u(t) =
−Zy(t).

Remark 1. We assume y(t) can be chosen as an output and
u(t) as an input of S. It is clear that this constitutes an
restriction and that a behavioral modeling setting, see for
example Polderman and Willems (1997), is more general.
However, to simplify the presentation we choose this input-
output setting. The model of the medium I is accurate for
small perturbations and short time scales where dissipative
effects can be neglected, see Remark 3.

Example 1. As an example, y(t) can be the electrical
potential difference between two terminals of S, and u(t)
the current flowing into and out of the system. In a
mechanical example, y(t) can be the velocity of a surface
of S, and u(t) the corresponding force on the surface. In
the electrical case, I becomes a lossless transmission cable
with characteristic impedance Z. In the mechanical case,
it becomes a lossless elastic beam with acoustic impedance
Z.

Problem formulation: We want to bound the accuracy
of the estimate ŷm(t) for measurements of short duration
t < l/v, where l is the distance between S andM. For such
t, the initial state and reflections fromM have no influence
on S. We also want to quantify a limit on the necessary
simultaneous perturbation of the physical quantity y(t).

3. DETERMINISTIC PHYSICAL SYSTEM S

First, we consider deterministic systems S that can be
modeled as linear time-invariant systems,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t), y0 := Cx0,
(1)

for t ≥ 0, x(t) ∈ R
n, and y(t), u(t) ∈ R

p. We assume S has
fixed but unknown (to the measurement device M) initial
state x0 ∈ R

n. Let us also define the inverse inertia of S
as M−1 := CB. The solution to (1) for small t and with
no input (u(t) = 0) is

y(t) = CeAtx0 = y0 + CAx0t+O(t2). (2)
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This represents the unperturbed behavior of S; its behav-
ior had we not tried to measure it using IM.

Remark 2. If the true system S is nonlinear, as is fre-
quently the case, a linear approximation in the form (1) is
accurate close to an equilibrium point, as is well known.
Even if x0 is far away from an equilibrium point, one
can still linearize the nonlinear system S around a nom-
inal trajectory close to x0 and obtain a locally accurate
linear time-varying approximation {A(t), B(t), C(t)}. If
this time-varying realization is smooth and bounded, the
results in this section still apply with minor modification
using the constant matrices {A(0), B(0), C(0)}. This is
because we only consider short measurement times t. In
conclusion, the linearity assumption on S in (1) is not as
serious as it may seem at first.

To estimate the output y(t), we connect S to a measure-
ment device M∗ using the interconnection medium I, see
Fig. 1. The measurement device M∗ is assumed to have
a model of S and I, and implements a Kalman filter that
gives an optimal estimate of the output. Any other possible
measurement device M that has less information will
obtain a worse estimate than M∗. Hence we can use the
idealized measurement device M∗ to quantify the bound
on measurement accuracy.

The inherent thermal noise characteristics of I can then be
determined using the well-known fluctuation-dissipation
theorem, as discussed in Nyquist (1928); Callen and Wel-
ton (1951). The terminals of I then satisfy the following
relation.

Proposition 1. Suppose a lossless transmission medium of
characteristic impedance Z = ZT > 0, Z ∈ R

p×p, with
respect to the port (uZ , yZ), is in thermal equilibrium with
temperature TZ [Kelvin]. Then it holds

yZ(t) = ZuZ(t) +
√

2kBTZZwZ(t),

where w(t) is unit-intensity white noise (EwZ(t)wZ(τ)
T =

δ(t−τ)Ip, kB is Boltzmann’s constant, and the unit of the
work rate uZ(t)

T yZ(t) is Joule/sec.

Remark 3. We choose to work with lossless transmis-
sion media, which are characterized by real, frequency-
independent characteristic impedances. For instance, a
lossless transmission line described by the telegrapher’s

equation has an impedance
√

L
C , where L is the induc-

tance per unit length and C is the capacitance per unit
length. This assumption is not restrictive, at least in first
approximation, because we are interested in small mea-
surement times, for which dissipation is negligible. The
impedance for a general transmission line according to the

telegrapher’s equation is
√

R+iωL
G+iωC , where the resistance

per unit length R and the conductance per unit length G

express the lossyness of the line, tends to the lossless
√

L
C

for very high frequencies—the only one that matter for a
short measurement time. The symmetry of the impedance
matrix Z is simply the expression of Onsager’s reciprocity
relations, see for example Willems (1972).

Next, we use the physical assumption that energy is
conserved and that the interconnection of S and I is
modelled as u(t) = −yZ(t), uZ(t) = y(t). We obtain the
model SI,

ẋm(t) = (A−BZC)xm(t)−B
√

2kBTZZwZ(t),

ym(t) = Cxm(t), xm(0) = x0,

um(t) = −Zym(t)−
√

2kBTZZwZ(t),

(3)

which is valid as long as no wave from M∗ reaches S,
i.e., time t < l/v. The subscript m in xm(t) etc. is
used to distinguish the measured system from the original
unperturbed solution x(t), see (1)–(2). If we Taylor-expand
the solution to (3), we obtain

ym(t) = Ce(A−BZC)tx0

−
∫ t

0

Ce(A−BZC)(t−τ)B
√

2kBTZZwZ(τ)dτ

= y0 + C(A−BZC)x0t

− CB
√

2kBTZZ

∫ t

0

wZ(τ)dτ +O(t
√
t),

as t → 0. The conjugate signal um(t) is transmitted
though the medium I as a wave, and is received by
the measurement device M∗ implementing the Kalman
filter at a time instant l/v later. Since M∗ has a perfect
model of the system and the medium (apart from its
noise realization wZ(t)), the optimal Kalman filter for the
estimation of ym(t) becomes

˙̂xm(t) = (A−BZC)x̂m(t) +K(t)(um(t)− ûm(t)),

ûm(t) = −ZCx̂m(t),

ŷ∗m(t) = Cx̂m(t),

where K(t) is the time-varying Kalman gain.

The accuracy of the Kalman filter is given by the covari-
ance matrix P (t) ∈ R

n×n that satisfies the differential
Riccati equation, see for example Åström (2006),

Ṗ = (A−BZC)P + P (A−BZC)T

−(PCTZ−2kBTZBZ)(2kBTZZ)−1(PCTZ−2kBTZBZ)T

+ 2kBTZBZBT . (4)

We assume that E[ŷ∗m(0) − y0]
2 = ∞, which means M∗

has no initial knowledge of y0 and compute the first term
in a power-series expansion of the solution P (t) of (4),

P (t) = P−1t
−1 + P0 + P1t+O(t2), t → 0.

For the first coefficient, which is dominant for short mea-
surements, we obtain the equation

P−1 = P−1C
TZCP−1/2kBTZ .

Since Var[ŷ∗m(t) − ym(t)] = CP (t)CT , the best possible
estimation accuracy of the output becomes

Var[ŷ∗m(t)− ym(t)] = 2kBTZZ
−1t−1 +O(1). (5)

It is seen that a medium of low temperature and large
characteristic impedance yields a small lower limit on the
accuracy. It is also clear that a longer measurement (larger
t), gives a better estimate. Hence, it seems that a large
medium impedance Z is preferable. However, as seen next,
there are problems with large Z.

Notice that the difference between the unperturbed output
y(t) and the expected measured output becomes

y(t)−Eym(t) = M−1Zy0t+O(t2), t → 0.

We call this quantity the deterministic back action of the
measurement, which is present even when TZ = 0. When
TZ > 0, it creates an uncertainty in ym, and we obtain

Eym(t)− ym(t) = M−1
√

2kBTZZ

∫ t

0

wZ(τ)dτ +O(t
√
t),
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Velocity sensor

Beam

Fig. 2. A cart system. In Example 2, the problem of measuring the second cart’s velocity v2 is considered.

and the variance

Var[ym(t)] = 2kBTZM
−1ZM−T t+O(t2), (6)

is defined as the stochastic back action of the measurement.
It seen that both the deterministic and stochastic back
action are increasing with measurement time t and with
impedance Z. Hence, the measurement accuracy (5) is
obtained at the expense of perturbation of the system S,
and it is not possible to measure S without perturbation.
We summarize the physical limits we have obtained in the
following theorem.

Theorem 2. For the measurement problem defined above,
the estimation accuracy of any measurement device M is
bounded as

Var[ŷm(t)− ym(t)] ≥ Var[ŷ∗m(t)− ym(t)]

= 2kBTZZ
−1t−1 +O(1).

The measurement simultaneously perturbs the output
according to

y(t)−Eym(t) = M−1Zy0t+O(t2),

Var[ym(t)] = 2kBTZM
−1ZM−T t+O(t2).

Furthermore, there is a trade-off between measurement
accuracy and perturbation (back action),
√

Tr Var[ym(t)]
√

Tr Var[ŷm(t)− ym(t)]

≥ 2kBTZTr M
−1 +O(t). (7)

Proof. It remains to prove (7), which is the first main
result of this paper. Indeed 2kBTZM

−1 = UV , where U =
M−1

√
2kBTZZt and V =

√
2kBTZZ

−1/2t−1/2. From the
Cauchy-Schwartz inequality, one gets 2kBTZTr M

−1 ≤√
Tr UTU

√
Tr V TV , which is, up to O(t), equal to

√

Tr Var[ym(t)]
√

Tr Var[ŷ∗m(t)− ym(t)] which is a lower

bound on
√

Tr Var[ym(t)]
√

Tr Var[ŷm(t)− ym(t)].

The observer effect is therefore dependent on both the
temperature TZ of the measurement medium and the ‘size’
M of the measured system. We consider the following
numerical example to evaluate its importance in a practical
situation.

Example 2. Consider the double cart system in Fig. 2.
Assume we would like to measure the velocity y = v2
of the second cart. The interconnection to the velocity
sensor is modelled by a lossless elastic beam with acoustic
impedance Z. The carts can be modelled using the matri-
ces

A =







0 1 0 0
−k/m1 −d1/m1 k/m1 0

0 0 0 1
k/m2 0 −k/m2 −d2/m2






, B =







0
0
0

1/m2







C = (0 0 0 1) ,

where m1,m2 denote the masses of the carts, k the
spring constant, and d1, d2 viscous friction. The conjugate

variable to v2 is the force on the second cart, u = F2. Using
this input and output, we obtain the inertia M = m2,
i.e., the mass of the second cart. Assume now the second
cart initially has a positive velocity, y0 = v2,0 > 0,
and interconnection to the measurement medium and
device occurs at t = 0. The bounds in Theorem 2
now say the expected decrease of velocity after a short
measurement over [0, t] is Zv2,0t/m2, and the variance
in the cart velocity is 2kBTZZt/m2

2. At the same time,
no velocity sensor can obtain a velocity estimate with
a variance smaller than 2kBTZ/Zt. The product of the
corresponding standard deviations is 2kBTZ/m2, which
is 8.2810−21 m2/ s2 for TZ = 300K and m2 = 1kg. It
is therefore negligible. However, for a mass of 10−23 kg,
which is realistic for a nanomachine, this product becomes
828m2/s2, which is not negligible any more.

Remark 4. We have considered above that the measure-
ment time is so short that there is no back action of
the measurement device M onto the system S. Due to
the nonzero length l of the transmission medium I, the
information takes a certain time δ = l/v to travel from
the measured system to the measuring device; thus the
estimate of the state at time t is computed by the measur-
ing device only at time t+ δ. If the measuring time is less
than δ, then no information has time to travel from the
measurement device to the measured system; if we suppose
a measuring time larger than δ, of course this would only
increase the back action and make the trade-off even worse.

4. PHYSICAL SYSTEM S IN THERMAL
EQUILIBRIUM

In the previous section, we assumed the state of the system
S was completely unknown to the measurement device.
Many times this is not a realistic assumption. For example,
in many cases it is reasonable to assume that the system
S is in a thermal equilibrium with its environment, and
its state stays close to a fixed point of the dynamics, in
other words remain confined in a well of potential energy.
If the temperature is known, the measurement device can
use this information. But as we see next, there are still
very similar trade-offs between estimation accuracy and
back action.

As argued in, for example, Cervera et al. (2007), a natural
framework for modeling of physical systems is a port-
Hamiltonian model framework, which is a generalization
of the Hamiltonian systems often encountered in physics.
This is also a suitable framework for studying systems
in thermal equilibrium. A linear port-Hamiltonian system
without any dissipation takes the form

ẋ(t) = JQx(t) +Bu(t)

y(t) = BTQx(t),
(8)
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where J is anti-symmetric J = −JT , and H(x) = 1
2x

TQx
is the Hamiltonian of the system, where Q is assumed to
be symmetric positive definite, Q = QT > 0. The inverse
inertia is here defined as M−1 := BTQB. Indeed typically
BTQB has the physical interpretation of a partial inverse
of the inertia matrix for port-Hamiltonian systems 1 . For
example, in a typical mechanical system context, Q =
diag{Ki,M

−1
i } where Ki is the stiffness matrix (springs)

and Mi is the inertia (mass) matrix, and then BTQB
contains elements of M−1

i . The pair (y, u) constitutes a
port, and since the system has no dissipation, it holds that

dH(x(t))

dt
= y(t)Tu(t),

and the amount of energy stored is given by H. Next, we
split the port (y, u) into two pairs (yK , uK) and (yZ , uZ),
using the partition B = [BK BZ ].

Remark 5. That we here consider linear port-Hamiltonian
systems, and not more general nonlinear ones, is justified
since we next assume the systems are in thermal equilib-
rium and hence are close to their equilibrium points.

Assume now the port variables (yK , uK) in the system (8)
are connected to a dissipative element of temperature TK

that satisfies the fluctuation-dissipation theorem (Proposi-
tion 1), uK(t) = −KyK(t)−

√
2kBTKKwK(t). This results

in a generalized Langevin equation,

ẋ(t) = (J −BKKBT
K)Qx(t) +BZuZ(t)

−BK

√

2kBTKKwK(t),

yZ(t) = BT
ZQx(t).

(9)

In the following, we will model the unmeasured system S
using (9) and putting uZ = 0. The following lemma guar-
antees that the system S is stabilized by the dissipative
element if the realization is controllable.

Lemma 3. If (JQ,BK) is controllable and K = KT > 0,
then (J −BKKBT

K)Q is Hurwitz.

In steady state, the variance of the state vector in the
unmeasured S, P∞ = limt→∞ Ex(t)x(t)T , satisfies the
Lyapunov equation

(J −BKKBT
K)QP∞ + P∞Q(J −BKKBT

K)T

+ 2kBTKBKKBT
K = 0,

with the unique solution (by Lemma 3) P∞ = kBTKQ−1.
In fact, we define the temperature of the port-Hamiltonian
system using this observation.

Definition 1. A port-Hamiltonian system S is of temper-
ature T if its steady-state state covariance is in the form
P∞ = kBTQ

−1. S is then said to be in thermal equilibrium.

This definition conforms well with physical insight. For ex-
ample, the expected value of the (quadratic) Hamiltonian
becomes

EH(t) =
1

2
Tr[QP∞] =

n

2
kBTK , (10)

which is what the equipartition theorem found in the
physics literature also predicts.

If the system S in (9) is connected to a measurement
medium I using the port variables (yZ , uZ), we obtain
the model
1 The authors would like to thank an anonymous reviewer for
pointing this out.

ẋm(t) = (J −BKKBT
B −BZZBT

Z )Qxm(t)

−BK

√

2kBTKKwK(t)−BZ

√

2kBTZZwZ(t),

ym(t) = BT
ZQxm(t), xm(0) = x0,

um(t) = −Zym(t)−
√

2kBTZZwZ(t).
(11)

This can be compared to the model (3). Assume now the
system is in steady-state of temperature TK before the
measurement starts at time t = 0. The question is if we
still obtain trade-offs similar to those in Section 3.

An expansion of the solutions to (9) (putting uZ = 0) and
(11) yields

(y − ym)(t) = BT
ZQBZ

√

2kBTZZ

∫ t

0

wZ(τ)dτ

+BT
ZQBZZBT

ZQx0t+O(t
√
t),

assuming wK(t) are identical. So the back action, the
difference between unmeasured and measured S, becomes

E[(y − ym)(t)] = M−1
Z Zy0t+O(t2),

Var[(y − ym)(t)] = 2kBTZM
−1
Z ZM−1

Z t+O(t2),

where M−1
Z = BT

ZQBZ is the inverse inertia of S, as seen
from the measurement port variables (yZ , uZ).

A Taylor expansion of the solution to the Kalman filter
differential Riccati equation for (11),

P (t) = P (0) + P1t+O(t2) = kBTKQ−1 + P1t+O(t2),

yields that

P1 = −1

2

kBT
2
K

TZ
BZZBT

Z . (12)

Here we have assumed S has temperature TK at time t = 0
(P (0) = kBTKQ−1) before the measurement starts. Thus
the uncertainty in the estimation of the output becomes

Var[(ŷ∗m − ym)(t)] = BT
ZQP (t)QBZ

= kBTKM−1
Z − 1

2

kBT
2
K

TZ
M−1

Z ZM−1
Z t+O(t2).

This relation quantifies how much the estimation uncer-
tainty decreases after a measurement of length t using an
optimal measurement device. We summarize the physical
limits for port-Hamiltonian systems in thermal equilibrium
in the following theorem.

Theorem 4. Suppose the port-Hamiltonian system S has
temperature TK [Kelvin] at time t = 0. For the measure-
ment problem defined above, the improvement of estima-
tion accuracy for any measurement device M,

∆Var(t) := kBTKM−1
Z −Var[(ŷm − ym)(t)],

is bounded as

∆Var(t) ≤ ∆Var∗(t) = kBTKM−1
Z −Var[(ŷ∗m − ym)(t)]

=
1

2

kBT
2
K

TZ
M−1

Z ZM−1
Z t+O(t2). (13)

The measurement simultaneously perturbs the output
according to

E[(y − ym)(t)] = M−1
Z Zy0t+O(t2),

Var[(y − ym)(t)] = 2kBTZM
−1
Z ZM−1

Z t+O(t2). (14)

Hence, there is a price to pay for measurement accuracy
in terms of perturbation (back action), and it holds
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√

Tr Var[(y − ym)(t)] =
2TZ

TK

√

Tr ∆Var∗(t) +O(t
√
t)

≥ 2TZ

TK

√

Tr ∆Var(t) +O(t
√
t).

(15)

This is the second main result of the paper. Remark that
(15) is consistent with (7). Indeed, as TK grows to infinity,
the initial variance of the state grows to infinity. The
improvement of variance grows to infinity as well, and the
ratio above tends towards zero. Here however, the size
of the measured system does not play a role anymore.
When the temperature TK of the measured system is
small, the trade-off becomes unfavorable: this comes from
the fact that the initial state is then already well known
with a small variance of the error; therefore only a small
improvement of the error variance is to be expected.

Example 3. We consider a system which is inspired from
Kamiti and van de Ven (1996). There, a blood cell is
connected to a wall with a macromolecular spring. We
model the blood cell as a point mass m connected through
a linear spring constant k. The cell is immersed in a fluid
with viscous friction K = f and temperature TK . The
system can be modelled as a port-Hamiltonian system
where

x =

(

x1

p1

)

, J =

(

0 1
−1 0

)

,

Q =

(

k 0
0 1/m

)

, BK = (0 1)
T
,

uK = F, yK = BT
KQx = p1/m = v,

where F is the frictional force on the blood cell, and v its
velocity. For viscous friction with thermal noise, we obtain

uK = −fp1/m−
√

2kBTKfwK .

At time t = 0, we assume the blood cell is brought
into contact with a mechanical measurement probe with
acoustic impedance Z. The measurement port and inverse
inertia then becomes

BZ = (0 1)
T
, M−1

Z = BT
ZQBZ = 1/m.

The blood cell has the mass m = MZ = 2.3 ·10−13 kg, and
the molecular spring has k = 1.9·10−6 N/m. Let us assume
the environment has room temperature TK = 300K. The
fluid has viscous friction f = 1.63 · 10−7 Ns/m, see Kamiti
and van de Ven (1996). In thermal equilibrium, this gives

Ev(0) = 0m/s Ev(0)2 = 1.78 · 10−8 m2/s2.

Next, we compute the exact back action and estimation
uncertainties by numerically solving the corresponding
differential Lyapunov and Riccati equations, and compare
with the Taylor approximations in Theorem 4. Let us first
assume the measurement probe has the same temperature
and impedance as the fluid, i.e., TZ = TK and Z = f . The
blood cell experiences this as a doubling of the friction
when the measurement starts. In Figs. 3–4, the estimation
accuracy and the back action are shown as functions of
measurement time t. For small times t, in this case about
t < 0.2µs, the curves are close to being affine and the
approximation predicts the bounds well. Changes in Z and
TZ will change the slopes of the curves, as predicted in
Theorem 4. That is, increased accuracy in Fig. 3 is only
obtained at the expense of larger perturbation in Fig. 4.
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ŷ
∗ m
−

y m
)(
t)
][
m

2
/s

2
]

time t [s]

Fig. 3. The variance of the estimation error of an opti-
mal velocity measurement device. Exact and affine
approximation shown, see (13).
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Fig. 4. The stochastic back action. Exact and linear
approximation shown, see (14).
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TZ = 2TK , Z = f, f/2, 2f

TZ = TK , Z = f, f/2, 2f
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Fig. 5. The ratio between stochastic back action and
estimation uncertainty improvement is approximately
constant and equal to 2TZ/TK , see (15), far beyond
the affine regime t < 0.2µs found in Figs. 3–4 (note
maximum time is here 10µs).

Interestingly, the trade-off (15) seems to extend rather well
far beyond the affine regime t < 0.2µs, see Fig. 5. This is
especially true when TZ and TK are close, as seen in the
figure. Furthermore, it is seen that the influence of Z on the
trade-off is small (the acoustic impedance of the probe),
just as predicted in (15).
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Remark 6. It is tempting to try to avoid back action by
using a more noninvasive measuring device than a probe.
For example, one could put a microphone in the fluid
to record the pressure waves created by the cell. Note,
however, that this only moves the interface between the
system S and medium I away from the blood cell. The
system S would now include the blood cell and the sur-
rounding fluid which together also can be modelled by
a much larger port-Hamiltonian system. The membrane
of the microphone becomes I and has its own acoustic
impedance and temperature. So the previous results hold
and bound the accuracy with which we can estimate the
pressure wave. Based on this estimate, one could use the
model S to estimate the velocity of the blood cell. An
optical measuring device could be modelled similarly, but
would require that we model interaction with electromag-
netic fields as well.

5. CONCLUSIONS

We have exhibited a general form of the observer effect,
so general indeed that its conclusion seems unescapable in
any practical situation. As long as the measuring device
and the measured system are physically separated, they
must be interconnected through a transmission medium.
As the media considered here are of linear nature, it
seems tempting to use nonlinear, e.g., digital channels
instead. But then an analog transmission line is likely
to exist in the analog/digital converter. Although our
analysis is confined to the case of short measurements,
numerical experimentations in the last section suggest
that the main conclusion remains true for long time
measurements. Future work will be devoted to finding the
weakest assumptions under which the observer effect holds.
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