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Abstract— We rigorously derive the main results of thermo-
dynamics, including Carnot’s theorem, in the framework of
time-varying linear systems.

I. I NTRODUCTION

Classical thermodynamics, since the work of Carnot and
his followers, has been very successful to describe the
relations between heat, energy and mechanical work, the
quantity of work that can be extracted from heat sources,
and to quantify the irreversibility observed in Nature. The
discoveries of classical thermodynamics are summarised by
four Laws, whose validity is based upon the fact that their
consequences have been successfully verified experimentally.

We now quickly review the basics of classical thermody-
namics. For a more detailed discussion see for instance [1].
The Universe is partitioned into one or several systems and
the environment. A physical system is supposed to be at any
moment completely characterized by a small list of ‘relevant’
state variables, such as internal energy, temperature, entropy,
volume, pressure, etc. The first three are in fact defined by
the laws themselves. These state variables are not necessarily
independent. The systems are supposed to be always ‘at
equilibrium’, meaning that if isolated from the environment,
neither the system nor any of its subsystems would undergo
any change of state variables. If we are to deal with systems
‘out of equilibrium’, then we must seek a decomposition of
the system into subsystems that are constantly at equilibrium.
The four laws give some constraints on the type of evolution
of the state variables that any physical systems must respect.
We quickly review those laws.

The Zeroth Law states that if two physical systems are
in thermal equilibrium (i.e., exchange no heat when put into
contact) with a third, they are also in thermal equilibrium
between them; hence ‘being in thermal equilibrium’ is an
equivalence relation. It is argued that this allows the in-
troduction of temperature: To every system is associated a
real number called temperature such that two systems are
in thermal equilibrium if and only if they have the same
temperature. We can now legitimately include temperature
as a state variable. If a system is in a state such that it is
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unable to provide any heat to the environment or any other
system, then we may fix its temperature to zero. This defines
an absolute scale of temperature.

The First Law states that heat is merely a form of energy,
like mechanical energy. Those two forms of energies can be
converted into each other. The First Law also states that we
can associate to any system a state variable called the internal
energy, and another called mechanical energy, whose sum,
the total energy, changes only through exchange of heat and
work with the environment. Definitions of mechanical energy
and work are borrowed from classical physics. This is written
mathematically by the following:

Ė = U̇ + Ėmech = heat+ work,

whereE denotes the total energy of a system,U the internal
energy,Emech the mechanical energy, ‘heat’ is the flow of
heat provided by the environment, and ‘work’ is the work
exerted by the environment per unit of time. An example
of work is the one exerted by forces of pressure to change
the volume of the system. To clarify conventions, we say
work is being supplied (by the environment to the system)
when work is positive and work is being extracted (from the
system to the environment) when work is negative. Similarly
for heat.

The First Law provides a way to measure heat with the
same unit as mechanical energy, rather than in calories
(one calorie is the amount of heat needed to increase the
temperature of one litre of water by one Celsius degree).
Another consequence is that a system isolated from the
environment has a constant total energy.

The Second Law has perhaps the richest consequences and
admits several formulations. The Kelvin-Planck statement
asserts that a system that exchanges heat with one single heat
bath is unable to provide a positive work to the environment
if it undergoes a cyclic transformation. A heat bath is a
system purely characterized by its temperature, that is, so
huge that any exchange of heat in reasonable quantities
with another system will not affect its temperature. A cyclic
transformation is one in which the state variables of the
system assume the same values at the end and at the
beginning of the process.

The Clausius formulation of the Second Law states that
to any system can be associated with a state variable called
entropy and denotedS, whose evolution is given by:

Ṡ =
q

T
,

whereT is the temperature of the system. It also states that
the total entropy of Universe never decreases. From this, it



can be proven that heat never flows from a cold system to a
hot system spontaneously, and that

Ṡ ≥
q

Te
,

whereTe is the temperature of the system that supplies heat
(for instance a heat bath). The Kelvin-Planck statement easily
follows from there. We also see that there is no negative
temperature on an absolute scale.

The Third Law, or Nernst principle, states that the entropy
of any crystalline body at zero temperature can be taken as
zero. As a consequence, it is impossible for such a system
to reach a zero temperature in finite time.

An important consequence of the Second Law is Carnot’s
theorem. It states that the conversion of heat into work is
possible if and only if we are able to exchange energy with
two baths of different temperatures. More precisely, if one
or several systems undergo a cyclic transformation, then the
total work exerted by these systems on the environment
during the cycle is at mostQhot(1 −

Tcold
Thot
), whereQhot

is the total amount of heat supplied by the hot bath. The
heat not converted into work has been transferred to the
cold bath. This optimal quantity is attained for a Carnot
cycle, in which the entropy of the Universe is preserved.
Preservation of entropy implies that all heat transfers are
made between systems with same temperature. As systems
with same temperature do not exchange heat, we have to
suppose that all transfers of heat are ‘infinitely slow’. A
typical Carnot cycle goes through the following phases:

1) A system is connected to a hot bath of temperature
Thot, from which it receives infinitely slowlyQhot;

2) the system is connected to the environment, to which
it supplies work without exchange of heat, and its
temperature drops fromThot to Tcold;

3) the system is connected to a cold bath of temperature
Tcold, to which it gives some heat infinitely slowly;

4) the system is connected to the environment without
exchange of heat, from which it receives work, and its
temperature rises fromTcold to Thot;

Here ends our review of classical thermodynamics. This
theory, although consistent with experiments and of great
convenience for engineers, suffers from the fact that its first
principles are postulated independently from other funda-
mental laws of physics: namely, Newton’s laws or quantum
mechanics.

Statistical mechanics attempts to derive all four Laws
of thermodynamics from the fundamental laws of physics.
For a detailed account, see for instance [2]. This approach
was pioneered by Daniel Bernoulli in the 18th century
and developed by Clausius, Maxwell, Boltzmann and their
followers in the 19th century. The basic idea is to consider
thermodynamics as a theory of large systems, whose full
state is described by a number of state variables of the order
at least1023. Since it is in general not feasible to measure
and handle this many variables, we settle for a handful of
macroscopic variables. The values of the other variables are
unknown and endowed with a probability distribution. There

are many ways to formalize this idea, depending on the
choice of models for physical microscopic reality. We will
assume that microscopic physics are the same as macroscopic
electro-mechanics, but energy conserving, that is, without
dissipation, and with continuous time and state space.

For an isolated system at equilibrium, this microscopic
probability distribution is generally assumed to be uniform
among all microscopic states that are compatible with the
value of macroscopic variables. This fundamental assump-
tion can be used to derive other distributions for non isolated
systems, such as the Boltzmann distribution for systems in
contact with a heat bath.

In this context, internal energyU is interpreted as the
kinetic and potential energy of the many degrees of freedom
composing the system, around their mean positions, and is
no different in nature from the (macroscopic) mechanical
energyEmech. This allows us to derive the First Law as
a consequence of the fact that all fundamental interactions
between particles are conservative.

For isolated systems at equilibrium, entropy is interpreted
as the logarithm of the volume of the microscopic state
space compatible with the value of macroscopic variables
(up to a physical constant). For non isolated systems, entropy
can be generalised as Shannon differential entropy of the
distribution of probability (although Shannon defined his
entropy long after Boltzmann). Sometimes the state space is
discretised into small cells, and the entropy is then defined
as the Shannon discrete entropy of the discretised state. If
internal energy is chosen as a macroscopic state variable,
the concept of temperature is then defined as the inverse
of the rate of increase of entropy when the internal energy
increases:

T−1 = dS/dU,

up to Boltzmann’s constant. From this relation, we can
recover Clausius formula. However the statement that en-
tropy always increases remains a deep issue. Statistical
mechanics also allows to discover new facts, such as the
so-called equipartition of energy: Every degree of freedom
that contributes quadratically to the total energy carries on
average the same energy12T (up to Boltzmann’s constant).

Several of the many possible formulations of statistical
mechanics can be used to derive a rigorous mathematical
formulation of the Second Law. However most of them
are based on assumptions that are not known to hold for
physical systems. For instance, the fact that the equilibrium
distribution of an isolated system is uniform should be
justified. The notion of heat bath is equally difficult to model
rigorously. Moreover, the very notion of probability distribu-
tion is problematic. If probabilities are given a frequentist
meaning, then the uniqueness of a distribution given the
macroscopic variables cannot be proved. If we understand
them in a bayesian meaning, then we are left with the
impression, displeasing to many, that thermodynamics is a
theory of human observation rather than physical systems.
It is fair to say that there is at this time no derivation of



the laws of thermodynamics from the fundamental laws of
physics, that would be perfectly rigorous and embrace the
generality claimed by classical thermodynamics.

Linear systems theory has been used in statistical mechan-
ics, for instance to derive the so-called fluctuation-dissipation
theorem [3]. Conversely, several concepts of thermodynamics
have been fruitfully implemented in systems theory. Let
us cite a few examples — we apologize to the reader
for the probable lack of exhaustivity. Dissipative systems
by Willems [4], [5] are now classical. More recently, the
exchange of heat and entropy in interconnected dynamical
systems has been thoroughly analysed by Haddad et al. [6],
from a classical thermodynamics point of view. Mitter and
Newton [7] have analysed the balance of entropy and energy
in Kalman-Bucy filters. Finally, Brockett and Willems [8]
have provided a stochastic formulation of the problem of
extraction of work from heat baths in linear systems with
a time-varying capacitor, proving Carnot’s theorem in this
context.

It nevertheless seems that no attempt has been made
to unify and synthesise the principal arguments of statis-
tical thermodynamics in the well-understood framework of
stochastic linear systems and recover as much as possible
of classical thermodynamics. This is precisely our goal. The
first motivation is to clarify how different physical concepts
interrelate in a well-defined framework. The second is to
show how thermodynamics and statistical physics can enrich
the theory of stochastic linear systems with new problems,
emphasizing in particular physical realizability in the design
of controllers. The third is the hope that new results, both
in linear systems and in thermodynamics might stem from
this framework. In this paper, we meet some of this goals
through a generalisation of [8] combined with the results in
[9], that provide a microscopic lossless model of heat bath
and dissipative systems.

The paper is organised as follows. First we describe the
class of time-varying lossless, strictly causal linear systems,
which we argue to be the natural class of models to consider.
We define total energy, work and entropy in this context.
Then we introduce a model of heat bath and dissipative
system, introducing heat, dissipation and fluctuation; the
First Law is then stated. We then prove the Kelvin-Planck
statement and a restricted version of Clausius formula, along
with Carnot’s theorem.

II. L OSSLESS STRICTLY CAUSAL TIME-VARYING

SYSTEMS

We consider that all open physical systems, as predicted
by classical physics, are lossless (energy-conserving) and
strictly causal (the effect of an input cannot be felt immedi-
ately in the output). As classical thermodynamics considers
systems changing in time, e.g., via a moving wall, piston,
connection/disconnection to a heat bath, etc., we use time-
varying systems in our study. We model the interaction of
the system with the environment in an input-output fashion.
A behavioural approach [10] would probably be the most

natural. We believe however that the results are not essen-
tially affected by this choice. Note that the environment is
not here explicitly modelled as itself another strictly causal,
lossless system but as an abstract entity able to interact with
the system in any manner compatible with the causality and
losslessness of the system.

Hence we consider systems of the kind:

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),
(1)

wherex(t) ∈ Rn is the state. The total energy of the system
is

E(t) =
1

2
x(t)TΣ(t)x(t).

The matricesA(t), B(t), C(t),Σ(t) are thought of as
controlled through a vector of inputsv(t). The inputs may
be the values of capacitances, inductances, resistances in a
circuit. It may also be a discontinuous signal modeling an
interrupter. To keep the notation simple, however, we write
A(t) instead ofA(v(t)), etc. We assume any time evolution
of these matrices to be possible, as long as conservation of
energy is respected, as detailed below.

The system is controlled in open-loop by the signalsu(t)
andv(t). In the following, we call ‘linear control’ the control
exerted byu(t), and ‘nonlinear control’ the control exerted
by v(t).

Note that several evolutionsA(t), B(t), C(t),Σ(t) de-
scribe the same time-varying system up to a change of
coordinates. Indeed, if we consider the variablez(t) =
R(t)x(t), then Equation (1) becomes

ż(t) = (RAR−1 + ṘR−1)z(t) +RBu(t),

y(t) = CR−1z(t),
(2)

with energy

E(t) =
1

2
z(t)TR−TΣR−1z(t),

where the dependency on time is dropped to simplify the
notation.

Some systems of coordinates are certainly more natural
than others. For example, the equation of a time-varying
capacitorC(t), with currenti(t) as input and voltageV (t) as
output, can be written in the three following ways, according
to whether the chargex(t) = q(t), the voltageV (t) or
z(t) = q(t)/

√
C(t) is chosen as state variable

ẋ = 0x+ i, V = x/C with E =
1

2C
x2;

V̇ = −
Ċ

C
V +

1

C
i, V = V with E =

1

2
CV 2;

ż = −
Ċ

C
z +

1
√
C
i, V =

z
√
C

with E =
1

2
z2.

(3)

The first equation has a zero matrixA, and the third equation
has a constant matrixΣ. The second equation has none of
these advantages. The coordinatesx andz are both used in
the following. Note that while we can take the nonlinear



input v(t) = C(t) using thex-coordinates, we need to
take, for instance,v(t) = (C(t), Ċ(t)) when using the other
coordinates. Hence if we fix the set of nonlinear inputs, then
this restricts the possible changes of coordinates.

In general, let us write the variation of energy:

Ė(t) =
d

dt

1

2
x(t)TΣx(t)

=
1

2
x(t)T (ATΣ+ ΣA+ Σ̇)x(t) + uT (t)BTΣx(t).

The last term involvesu and represents the power provided
by the linear input. In many physical systems, this power
takes the formuT (t)y(t), e.g., the product of current and
voltage. The first term is the power provided to the sys-
tem due to the nonlinear control. For instance, changing
a capacitance, e.g., by changing the distance between two
parallel charged plates, in an electrical circuit, will change
the energy stored in the capacitor through an exchange of
mechanical work with the environment. Similarly, modifying
the shape of a mechanical system may provide work through
pressure forces (but we do not have a precise linear system
to exemplify this case).

Let us now assume that we fix a vector of nonlinear
inputsv(t), such that at any moment, we can instantaneously
freeze their values. For instance, if the inputv is the distance
between two plates, we consider that we can at any moment
suddenly stop moving the plates. If we choose coordinates
in which only v(t) appears, not its derivatives for instance,
then freezingv means freezingA(t), Σ(t), B(t) andC(t)
to their current value, in which case we have a linear time-
invariant system. Then, from dissipativity theory for linear
time-invariant systems, we know that the system is lossless
if and only if

AT (t)Σ(t) + Σ(t)A(t) = 0

Σ(t)B(t) = CT (t)
(4)

for every timet. Since we could freeze the parameters at
any time, (4) must hold instantaneously. We will take such
coordinates as our coordinates of reference and denote them
by x(t), although another set of coordinates, denoted byz(t),
will prove useful in the following. Compare this with the
time-varying capacitor example (3). Using (4), the variation
of energy inx-coordinates is written:

Ė(t) =
d

dt

1

2
x(t)TΣx(t)

=
1

2
x(t)T (ATΣ+ ΣA+ Σ̇)x(t) + uT (t)BTΣx(t)

=
1

2
x(t)T Σ̇x(t) + uT (t)y(t).

(5)
The second term is the power supplied by the linear input
u(t), while the first is the power supplied through the
nonlinear controlv(t).

If the system has many degrees of freedom or is left
unmeasured, then it is reasonable to attribute a probability
distribution onx(t). Here we do not have to decide if the

probability distribution should have a bayesian or frequentist
meaning; see [9] and references within for a short discussion.

If the distribution of the statex(t) is random, then we
call X(t) = E(x(t)−Ex(t))(x(t)−Ex(t))T the covariance
matrix of the state, and it is supposed to be invertible. We
define the entropy of the system to be

S(t) =
1

2
log detX(t).

In the case where the distribution is Gaussian, this is
precisely the Shannon entropy, up to the additive constant
n
2 log(2πe). In any other case, the entropy is higher than the
Shannon entropy.

Jacobi’s formula for an invertible matrixX(t) yields
d
dt detX(t) = detX(t)Tr(X

−1(t)Ẋ(t)), leading to:

Ṡ(t) =
1

2
Tr(X−1Ẋ).

As discussed earlier, we can choose coordinates
z(t) = R(t)x(t) such that the new energy matrix
R−T (t)Σ(t)R−1(t) is the identity, see the last line in (3).
We will also use this system of coordinates, in which some
computations are easier.

The equation of evolution inz-coordinates is written:

ż(t) = (J +M)z(t) +RBu(t)

y(t) = BTRT z(t).

whereJ(t) andM(t) are the skew-symmetric and symmetric
parts ofR(t)A(t)R−1(t) + Ṙ(t)R−1(t). Then the energy is
written E(t) = 1

2z(t)
T z(t) and its variation is

Ė(t) = zT (t)M(t)z(t) + uT (t)y(t). (6)

Now, the work provided through the nonlinear control
v(t) is represented byM . Comparing (5) with (6), we
find that 12 Σ̇ = R

TMR. The entropy can be writtenS =
1
2 log detR

−1ZR−T = 1
2 log detZΣ

−1, whereZ(t) is the
covariance matrix ofz(t). The variation of entropy inz-
coordinates becomes:

Ṡ(t) =
1

2
TrZ−1(t)Ż(t)−

1

2
TrΣ−1(t)Σ̇(t)

=
1

2
TrZ−1(t)Ż(t)− Tr(RTR)−1(t)RT (t)M(t)R(t)

=
1

2
TrZ−1(t)Ż(t)− TrM(t).

Note that the uncertainty in the state can come from a random
initial condition and/or from a random linear inputu(t). If
the linear input is deterministic, then it is easy to see that
Ṡ(t) = 0. Hence the notion of entropy becomes interesting
for randomu(t), as we shall see in the next section.

III. D ISSIPATIVE TIME-VARYING SYSTEMS

As our goal is to understand how heat is transformed
into work, we will suppose that some input/output pairs
(ui, yi) are connected to heat baths of temperatureTi. A
heat bath is intuitively a very large system whose temperature
remains constant for a very long period of time if exchanges



of energies with other systems are moderate. It is shown
in [9] how to construct a lossless strictly causal SISO
linear time-invariant system with many degrees of freedom
whose behaviour approximates arbitrarily well the following
equation

y(t) =
1

2
k2u(t) + k

√
Tn(t)

over an arbitrarily long time horizon, wheren(t) is white
noise of unit intensity, andu, y are the input/output of the
bath. A typical example is a resistor affected by Nyquist-
Johnson thermal noise of temperatureT .

Now a system is connected to such a heat bath, say,
through the connectionui = y andyi = −u. The minus sign
comes from the fact that a lossless connection must satisfy
uy = −uiyi: all the power leaving the system is entering the
heat bath.

If one or several input/output pairsui, yi are related to
such a heat bath, the system is governed by the equation of
the form:

ż(t) = (J +M −
1

2

∑

i

FiF
T
i )z(t) +RBu(t) +

∑

i

√
TiFini(t),

y(t) = BTRT z(t),
(7)

where theni are independent Gaussian white noise pro-
cesses,Fi describe the interconnection with the heat baths
andu, y are the input/output pairs not connected to any heat
bath; see [9]. Such a system is called ‘dissipative’.

We now have to choose in open-loop the evolution of
J(t),M(t), Fi(t), B(t), u(t). The case of closed-loop control
is discussed in Section VII.

IV. H EAT, WORK, AND CLAUSIUS FORMULA

Several forms of energies are to be distinguished next. The
expected total energy of the system is also denotedE(t),
with a slight abuse of notation. We can then writeE(t) =
1
2TrZ(t) +

1
2Ez

T (t)Ez(t). The first termU
.
= 1

2TrZ(t)
can be called internal energy, because it is related to the
random deviation of variables around their mean, while the
second term can be interpreted as (macroscopic) mechanical
energyEmech. For instance, a spring-mass system can have
a mechanical potential energy proportional to the square of
the average length of the spring, and an internal energy due
to small random movements of the mass around its average.

The variation of mechanical energy can be expanded to

Ėmech =
1

2

d

dt
EzTEz

= EzT (M −
1

2

∑

i

FiF
T
i )Ez + Ey

TEu.

Hence the mechanical energy can be increased or de-
creased by a supply or extraction of work through both the
nonlinear and linear inputs; it can also be dissipated under
the form of heat. As far as as the extraction of work is
concerned, the best way to manage mechanical energy is
to drive the meanEz(t) to zero as soon as possible, thus

extracting the corresponding quantity of work. This can be
done for instance by applying an appropriate linear input
u(t). If we wait longer, then the mean will converge to
zero by the effect of the dissipation term, which means the
loss of valuable energy to the heat bath. This phenomenon
is explored quantitatively in [11], both in open-loop and
feedback schemes. Note that while the linear input drives
the mean and has no effect on the covariance matrix, the
white noise fluctuation acts on the covariance but not on the
mean. That is why linear control is unable to extract any
work from a supply of heat, and this justifies a posteriori
the introduction of a nonlinear control. From now on, we
suppose that the mean has been driven to zero by dissipation
or extraction of work, and the mechanical energy is zero. We
therefore focus on the sole internal energy.

The variation of covariance matrixZ(t) is written as:

Ż = (J+M−
1

2

∑

i

FiF
T
i )Z+Z(J+M−

1

2

∑

i

FiF
T
i )
T

+
∑

i

TiFiF
T
i . (8)

Hence the variation of internal energy is written:

U̇(t) = Tr(M −
1

2

∑

i

FiF
T
i )Z +

1

2

∑

i

TrTiFiF
T
i . (9)

The term

w
.
= TrMZ

is interpreted as the rate of work supplied to the system
by the environment through the nonlinear control. The term
1
2

∑
iTrFiF

T
i Z is the amount of power given by the system

to the heat baths, i.e., it is the amount of heat flowing out of
the system. The term12

∑
i TiTrFiF

T
i is the power provided

by the heat baths to the system, i.e., it is the heat flowing
into the system. The net heat flow supplied by bathi is

qi
.
=
1

2
TiTrFiF

T
i − TrFiF

T
i Z.

Now we can write the First Law for internal energy:

U̇ = w +
∑

i

qi,

and prove the following version of the Second Law:
Theorem 1 (Clausius formula):For a dissipative system

in contact with several heat baths of temperatureTi, the
variation of entropyṠ is related to the heat flowsqi as
follows:

Ṡ ≥
∑

i

qi

Ti
. (10)

The equality is obtained if and only if at every time, the
system is connected to only one temperature (i.e., such that
all bathsi for which Fi 6= 0 have the same temperature),
and the covariance matrixZ(t) is TiI.



Proof: We have that

Ṡ −
∑

i

qi

Ti
=
1

2
Tr(Z−1Ż)− TrM −

∑

i

qi

Ti
,

=
1

2

∑

i

TiTrFiF
T
i Z

−1 −
1

2

∑

i

TrFiF
T
i

−
∑

i

qi

Ti

=
1

2

∑

i

Tr(TiZ
−1 − I)FiF

T
i −

1

2

∑

i

TrFiF
T
i

+
1

2
T−1i TrFiF

T
i Z

=
1

2

∑

i

Tr(TiZ
−1 + T−1i Z − 2I)FiF

T
i

=
1

2

∑

i

TrFTi (TiZ
−1 + T−1i Z − 2I)Fi.

Now the quantityTiZ−1 + T
−1
i Z − 2I has an eigenvalue

λ + λ−1 − 2 for every eigenvalueλ of T−1i Z. As λ > 0,
we haveλ + λ−1 − 2 ≥ 0, with equality if and only if
λ = 1. HenceTiZ−1 + T

−1
i Z − 2I is nonnegative definite,

andṠ−
∑
i
qi
Ti
≥ 0. We have equality if and only if at every

moment only one temperature is accessible to the system,
sayTi, andZ = TiI.

This a generalisation of the corresponding theorem in [8].
To maintain equality in the Clausius inequality, we need a
constant equipartitionZ = TI, which means that the internal
energyU is constant and the heat flowq is zero. Hence the
work extracted must be zero as well, andM must be zero
(unlessT = 0). Any attempt to exchange non-zero work by
nonlinear control on a system connected to a heat bath must
result in an entropy production in excess to the right-hand
side of 10. In a somewhat flexible way, physicists attribute
such an excess of entropy to ‘irreversibilities’.

However, if M is nonzero but small compared to all
nonzero12FiF

T
i , this allows a slow exchange of work with

the environment, while the deviationZ − TI from the
equilibrium remains negligible.

If we write Z = T (I +D), whereD is a small deviation
from equipartition, then

Ṡ −
q

T
=
1

2

∑

i

TrFTi (TZ
−1 + T−1Z − 2I)Fi,

=
1

2

∑

i

TrFTi (D + (I +D)
−1 − I)Fi,

∼=
∑

i

1

2
TrFTi D

2Fi.

(11)

On the other hand,D and M are related through the
following equation:

Ḋ = 2M + JD −DJ +MD +DM

−
1

2

∑

i

FiF
T
i D −

1

2

∑

i

DFiF
T
i .

It appears that it takes a smallM (slow exchange of work)
to have a smallD. Thus in the limit of smallD, the terms
MD+DM are even smaller compared to the others. If we
neglect them, we observe the equation is linear inM andD.
If we replaceM by kM , for any k ≥ 0, thenD becomes
approximatelykD.

In conclusion, if we speed up the extraction or nonlinear
supply of work by a factork, the excess production rate of
entropy due to irreversibilities is multiplied byk2. As the
total time needed to exchange a given amount of work is
divided by k, the total excess of entropy is multiplied by
k. This means that by slowing down the transformation of
a time-varying system, we can reduce arbitrarily the excess
amount of entropy. Ift is the time of the transformation
needed to exchange a given amount of energy, then the
excessive entropy generated scales as1/t, in the limit of
large t. This is to be compared to results in finite-time
thermodynamics; see, e.g., [12].

V. ONE TEMPERATURE BATH: KELVIN -PLANCK

STATEMENT OF THESECOND LAW

Suppose now that only one heat bath, of temperatureT ,
is available (or equivalently, all heat baths have the same
temperatureT ). Then, from Clausius formula, we have that
for any evolution from time0 to time t, the increase of
entropy is

ΔS =

∫ t

0

Ṡ ≥
1

T

∫ t

0

q.

But the right-hand side is equal to
∫ t
0
U̇ − w = ΔU −

Work0→t. Hence,

Work0→t ≥ Δ(U − TS),

which is independent of the path taken by the system.
If we suppose that only one heat bath is available, then

the drop ofU−TS (called Helmholtz free energy) gives the
maximum amount of work extractable during a transforma-
tion. The system is said to describe a cycle ifA(t) = A(0),
B(t) = B(0), C(t) = C(0), Σ(t) = Σ(0), X(t) = X(0).
As a result, no work can ever be extracted from a single
temperature source by a system describing a cycle, since the
change of Helmholtz free energy is zero. This is the Kelvin-
Planck’s statement of the Second Law.

VI. T WO TEMPERATURE BATHS: CARNOT’ S THEOREM

When two heat baths or more are available, we expect to
prove Carnot’s theorem, namely that if the system describes
a cycle, the work extracted divided by the heat entering the
system is at most1− Tcold/Thot. The difficulty is to define
‘heat entering the system’. We will discuss two definitions,
and Carnot’s theorem is true for both. For one of them, this
bound is attained by the ‘Carnot cycle’.



A. Hot bath vs. cold bath

Following closely classical thermodynamics, we can sep-
arate the heat

∫ t
0
q as the sum of heat exchanged with the

hot bath and heat exchanged with the cold bath (if only two
baths are available). Every heat bathi exchanges heat

∫ t

0

qi =
1

2

∫ t

0

−TrFiF
T
i Z +TrTiFiF

T
i .

If the system, connected to two baths, describes a cycle,
then from Clausius formula, 1

Thot

∫
qhot +

1
Tcold

∫
qcold ≤

ΔS = 0. From elementary algebraic manipulation, we can
show that the total quantity of work extracted is equal to∫
qhot+

∫
qcold and not larger than(1− Tcold

Thot
)
∫
qhot. Thus,

if the work extracted is positive, then
∫
qhot > 0. Since

1
Thot

∫
qhot +

1
Tcold

∫
qcold ≤ 0, we see that

∫
qcold < 0.

Hence, if work is extracted during the cycle, the hot bath
is globally a source of heat, while the cold source is globally
a sink of heat. The efficiency can hence be defined as the
work extracted divided by the heat

∫
qhot. The efficiency is

at most1− Tcold/Thot.
This efficiency can be attained with equality if Clausius

formula is true with equality at all times. This is the case if
at every moment, the system is either connected to the hot
bath only, with covariance matrixThotI, or it is connected
to the cold bath only, with covariance matrixTcoldI, or it
is connected to neither. A cycle respecting those conditions
is called a ‘Carnot cycle’. As explained in Section IV, it is
not strictly possible to achieve a Carnot cycle, except in the
limit of large times. The simplest example of ideal Carnot
cycle is the following:

1) Fcold = 0 and M has small constant nonnegative
eigenvalues. Work is extracted,Z = ThotI is constant.

2) Fcold = 0 andFhot = 0. M has nonpositive eigenval-
ues (possibly large),Z is decreased toTcoldI.

3) Fhot = 0 and M has small constant nonpositive
eigenvalues. Work is supplied,Z = TcoldI is constant.

4) Fcold = 0 andFhot = 0.M has nonnegative eigenval-
ues (possibly large),Z is increased toThotI.

If more than two baths are available, then it is best to
connect the system to the hottest and coldest baths.

B. In-coming vs. out-going heat

Every heat bath provides a net heat flow to the system
equal toqi = − 12TrFiF

T
i Z +

1
2TrTiFiF

T
i . The first term,

accounting for dissipation, is always nonpositive and the sec-
ond term, accounting for fluctuation, is always nonnegative.
Hence it is natural to consider that the total supply of heat
to the system isq+

.
= 1
2

∑
iTrTiFiF

T
i , while the total loss

of heat is−q−
.
= 1
2Tr

∑
i FiF

T
i Z.

Now the efficiency is the total work extracted
∫ t
0
w divided

by the total supply of heat
∫ t
0
q+. This is essentially the

definition used in [11].
Clausius inequality can then be written

∫ t

0

Tr(FhotF
T
hot + FcoldF

T
cold) ≤

∫ t

0

Tr(T−1hotFhotF
T
hotZ + T

−1
coldFcoldF

T
coldZ). (12)

On the other hand,Tcold ≤ Thot, q+ ≤ 1
2TrThot

∑
i FiF

T
i

and −q− = 1
2Tr

∑
i FiF

T
i Z. Plugging those inequalities

into Clausius inequality leads to
∫
t
0
|q−|∫
t
0
q+
≥ Tcold
Thot

. Hence the

efficiency is bounded by1− Tcold
Thot

.
However, we easily see that, unless trivial case, the in-

equality can never be reached. In particular, it is clear that a
very slow cycle when connected to a bath cannot be optimal,
since if we act slowly a lot of the energy brought in by the
fluctuations will be immediately given back to the bath by
dissipation without producing work, thus deteriorating the
efficiency. This notion of efficiency therefore seems more
challenging to study.

VII. C LOSED-LOOP CONTROL ANDMAXWELL’ S DEMON

So far we have only considered open-loop control. We
are allowed to know the initial value of macroscopic state
variables such as energy, and we never measure the output.
This follows the setting of classical thermodynamics, but
does not use the full power of control theory. Can we
break the Second Law with feedback control? It seems
that by measuring the output, we reduce the uncertainty,
thus decreasing the covariance matrix and increasing the
expected value. In other terms, measurement reduces entropy
and converts internal energy into mechanical energy. This
energy can then be easily retrieved as work by linear control,
apparently for free. This is essentially what physicists call
Maxwell’s demon paradox.

The generic solution to the paradox is to explain why
such a controller, if physically implemented, should dissipate
enough energy and generate enough entropy to keep the
Second Law unviolated; see [13]. In our case, the solution
goes as follows: Whatever linear time-varying feedback con-
troller (possibly itself controlled in open-loop by nonlinear
inputs) we choose, the closed-loop system must take the form
(7) again, thus breaks neither the Second Law nor Carnot’s
theorem, as proved above.

To illustrate this general result, we can for instance think
of a controller composed of a measuring device, a Kalman
filter, and an actuator, where every of these elements must be
modeled by an equation of the form (7). It seems obvious
that an estimator like the Kalman filter is to converge to
a good estimate of the state, hence any physical linear
realization must dissipate energy and be disturbed by thermal
noise, leading to imperfections. The impossibility of perfect
measurement is discussed quantitatively in [9], and is used in
[11] to analyse in depth the performance of heat engines with
imperfect measurement, over finite and infinite time intervals.

The following general question remains open: Given a
linear system of the form (7), what is the optimal feedback
controller of the same form? Here optimal is understood in



relation to the extraction of work. We can optimise, e.g., the
power extracted or the efficiency in the one of the meanings
of Section VI.

VIII. C ONCLUSION

We recovered the main results of thermodynamics, espe-
cially concerning a system connected to one or several heat
baths. Future work can be devoted to generalising this to
any interconnection between any kind of physical systems,
and to explore more precisely the impact of finite-time
transformation.
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