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Abstract— In identification it is important to take a priori
structural information into account in many applications,
something that is difficult when using subspace methods. Here
will study how to incorporate a special structure, a cascade
structure with two subsystems. Two new methods are derived
for estimating system with this structure. The problem when
using subspace identification on cascade structured system is
that the states from the first subsystem are mixed with states
from the second subsystem via a unknown similarity transform.
The first indirect method finds a similarity transform that takes
the system back to a form such that the subsystems can be
recovered. The second method uses the fact that the structure of
the extended observability matrix is known for cascade systems.
However, it only works when both subsystems have order one.
In practice this is still a common case. The results of the two
methods seem promising, as illustrated by applying the methods
to a real process, the double tank process. The performance is
comparable with state of the art methods. Finally the problem
of optimal input design for cascade systems are introduced, and
illustrated by a simple example.

I. INTRODUCTION

System identification concerns the problem of construction
and validation of mathematical models of dynamical systems
from experimental data. Most of the classical identification
methods deal with Single-Input Single-Output (SISO) sys-
tems. Many of these methods can, however, be generalized to
Multi-Input Multi-Output (MIMO) systems. An identification
technique called subspace identification has proven useful
when dealing with MIMO systems [1], [2]. This is a black-
box technique for identification of state space models. It
is, however, important in identification to take a priori
information about the structure of the system into account.
This has proven difficult when using subspace methods as
well as for other methods.

The objective of this contribution is to study a few methods
to identify systems with a cascade, or serial, structure as
illustrated in Fig. 1, using subspace methods. The current
work has been motivated by a discussion on use of subspace
identification in process industry presented in [3].
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Fig. 1. Cascade system.

In particular systems with one input signal and two output
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signals will be studied. The input-output relations for this
system are

y1 (t) = G1 (q) u (t) + e1 (t)
y2 (t) = G1 (q)G2 (q)u (t) + e2 (t)

(1)

The input signal is denoted u (t) and the outputs, y1 (t) and
y2 (t) respectively. The signals e1 (t) and e2 (t) are assumed
zero mean white Gaussian measurement noise processes with
variances λ1 and λ2. The transfer functions G1 (q) and
G2 (q) are assumed stable. Here q denotes the standard shift
operator, i.e. q−1u (t) = u (t− 1). The notation G3 (q) =
G2 (q)G1 (q) will be used throughout this paper.

The problem is hence to identify the subsystems G1 (q)
and G2 (q) from data {u (t) , y1 (t) , y2 (t)}, t = 1 . . .N . Any
single-input multiple output method could be used, but it
is often not straightforward to impose the cascade model
structure.

The contribution of this paper is two new methods that
integrate structure into the subspace identification of cascade
structured systems. The methods are applied to a real system,
the double tank process. The method shows comparable
performance with state of the art methods. It is hard to say
something about the statistical properties for these methods,
however these estimates could be used as initial estimates
for a Prediction Error Method (PEM) or the Maximum
Likelihood (ML) method.

The problem of optimal input design for cascade systems
is also introduced.

The outline of this paper is as follows. First an overview
of other methods of identifying cascade systems is given
in Section II. In Section III the problem with subspace
identification of cascade systems are presented and some
properties of cascade systems necessary for the new methods
are studied. Section IV introduces two methods for identi-
fying cascade structured systems using subspace methods.
These methods are applied to a real process, the double tank
system, in Section V. The problem of designing an optimal
input for identification of cascade systems are studied in
Section VI. Finally, Section VII concludes the paper.

II. OTHER METHODS AND RELATED WORK

One direct approach to identify the subsystems would be
to first identify G1 (q) from data {u (t) , y1 (t)} and then
in a second step identify G2 (q) from data {û2 (t) , y2 (t)},
where û2 is an estimate of the input to the second subsystem
G2 (q). If the model estimate Ĝ1 (q) is good, one could use

û2 = Ĝ1 (q)u (t). If the noise variance is low for the first
measurement noise process one could use û2 (t) = y1 (t). It
is also possible to use an optimal predictor of u2 (t) based
on the statistical properties of e1 (t).

It is also possible to apply a Prediction Error Method
(PEM) or the Maximum Likelihood (ML) method to this
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problem [1]. But because of the product G1 (q)G2 (q),
simple linear model structures such as OE or ARX are not
directly applicable. It can however be shown that structured
PEM and structured ML are statistically optimal methods
for this problem. The statistical properties of these identified
models are analyzed in [4], [5]. The Prediction Error based
methods or Maximum Likelihood methods often involve
solving non-convex optimization problem. It can therefore be
difficult to guarantee that during the optimization the global
optimum will be found. A way to solve this is to try to
find good initial estimates, hopefully lying in the region of
attraction for the global optimum. The two proposed methods
in this paper could be a way to find such initial estimates.

The problem of imposing some structure into the subspace
method could be found in [6] where they try to identify OE
and ARMAX models using subspace methods. In [7] and
[8] they want to guarantee that the identified model with a
subspace method is stable when the true linear system is
known to be stable.

Another approach proposed in [9] is to identify the transfer
functions G1 and G3 = G1G2 and then obtain an estimate of
G2 by solving the following standard H∞-model matching
problem

Ĝ2 = arg inf
Q∈RH∞

‖ Ĝ3 −QĜ1 ‖∞ (2)

where Ĝ1 and Ĝ3 are the identified models of G1 and G3

respectively. Typically the order of Ĝ2 is equal to the order
of Ĝ1 plus the order of Ĝ3. The order of G2 should be the
order of G3 minus the order of G1 if there is no pole-zero
cancelation. In [9] they solve this by using structured model
reduction to reduce the order of G2.

III. SUBSPACE IDENTIFICATION OF CASCADE SYSTEMS

In this section some basic properties for cascade systems
that are needed for the new identification methods, are
presented. The two new methods will be based on subspace
identification. A good overview of the algorithm can be
found in [2] and [1].

One natural realization of the system (1) on state space
form is

[

x2 (t+ 1)
x1 (t+ 1)

]

=

[

A2 B2C1

0 A1

] [

x2 (t)
x1 (t)

]

+

[

0
B1

]

u (t)

[

y2 (t)
y1 (t)

]

=

[

C2 0
0 C1

] [

x2 (t)
x1 (t)

]

+

[

e2 (t)
e1 (t)

] (3)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 and,

G1(q) = C1(qI −A1)
−1B1, G2(q) = C2(qI − A2)

−1B2.

This special structure of the state space matrices, where the
states x1 (t) correspond to the first subsystem and the states
x2 (t) correspond to the second subsystem, will be called
a realization in cascade form. Note that the matrix B2C1

should have rank (B2C1) = 1.

Just applying a standard subspace method to the system

(1) would return an estimate in the form

x (t+ 1) = Ax (t) +Bu (t)

y1 (t) = C1x (t)

y2 (t) = C2x (t)

A state space realization is not unique with respect to the
input-output relation, i.e. the system is only identified up to
an unknown similarity transform. In general the states from
the first subsystem will be mixed with the states from the
second subsystem, due to this unknown transform. The first
and second subsystems could hence not be directly separated.
If the similarity transform somehow was known, the system
could be transformed back to cascade form (3) and the state
space matrices for G1 and G2 could easily be recovered. In
the first proposed method a transform that transforms the
system back to cascade form is found and from this the
subsystems are recovered.

Basically, the subspace method forms an estimate of the
extended observability matrix from input-output data. As
discussed before the estimate is a transformed estimate
of the true observability matrix. The estimated extended
observability matrix, Õr, has the form [1]

Õr =









C
CA

...
CAr−1









T̃ + ẼN

where T̃ is an unknown transformation of full rank and ẼN

is an unknown matrix due to noise. The model order is
determined by studying the singular values for the extended
observability matrix and keep the n most significant values.
When the model order has been selected the estimate of
Ĉ and Â can be calculated from the extended observability
matrix by solving a linear least square problem. The matrices
B̂ and D̂ can then be found by solving a linear regression
problem. [2], [1].

For the system on cascade form (3) the extended observ-
ability matrix becomes

ÕrT̃ =











C
CA

.

.

.
CAr−1











[

T̃11 T̃12

T̃21 T̃22

]

=























C1T̃11 C1T̃12

C2T̃21 C2T̃22

C1A1T̃11 C1A1T̃12

⋆ C2B2C1T12 + C2A2T̃22

C1A
2
1T̃11 C1A

2
1T̃12

⋆ (C2B2C1A1 + C2A2B2C1)T̃12 + C2A
2
2T̃22

.

.

.
.
.
.























(4)

Some repeated values are replaced by stars (⋆) due to
space limitations. This fundamental structure of the extended
observability matrix will be used to derive the second method
to identify the subsystems.

IV. IDENTIFICATION METHODS

The observations made in the previous section are used to
formulate two methods for identification of cascade systems.
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A. Method 1: Indirect Method

The main idea of this method is to find a similarity trans-
form for the identified system G3 such that the transformed
system is in cascade form (3).

This method of finding a similarity transform that brings
the system to cascade form was proposed in [10]. The
transformation matrix is parameterized and a set of equations
that has to be solved to get the system to cascade form is
formulated. It is shown that the number of parameters is
less than the number of equations needed to be solved. Due
to uncertainties this problem does not in general have an
exact solution. In [10] no method of solving this problem is
presented. The proposed method here solves this problem
by finding a similarity transform that takes the system
to cascade form while minimizing the mean square error
between the estimated output and the measured output. The
method introduced here is related to the method proposed
in [6] where OE and ARMAX models are estimated with
subspace methods by finding suitable transformations, to get
the system to the desired form. The method denoted method
1 has three steps:

Step 1: Identify the state space matrices Â1, Ĉ1, B̂1 from
data {u (t) , y1 (t)}, t = 1 . . .N with order n1 and Â3, Ĉ3

and B̂3 using {u (t) , y2 (t)}, t = 1 . . .N with order n3. The
order of the second subsystem is calculated as n2 = n3−n1.
Step 2: Find a transformation, T by solving the following
optimization problem,

min
T,B̃1

1

λ1

N
∑

t=1

(

Ĉ1

(

qI − Â1

)−1

B̂1u (t)− y1 (t)

)2

+

1

λ2

N
∑

t=1

(

Ĉ3T
(

qI − T−1Â3T
)−1

(

0

B̃1

)

u (t)− y2 (t)

)2

s.t T−1Â3T and Ĉ3T are in cascade form.
(5)

where λ1 and λ2 are the measurement noise variances or can
be seen as some weighting if the variances are unknown.

The D-matrices are assumed zero here but an extension to
non-zero D-matrices should be easy. Some of the constraints
should be chosen such that the lower right corner of T −1Â3T
has approximately the same dynamics as the identified sys-
tem Ĝ1 and that the lower left corner should contain zeros.
The upper right corner of T −1Â3T corresponding to B2C1

should have rank 1. It is not obvious how these constraints
should be chosen when the first subsystem has a order larger
than one. Hence the optimization problem stated above is in
general hard to solve.

Let us study the constraints in more detail. First look at the
constraint that Ĉ3T should be on cascade form. This means
that the last n1 elements of Ĉ3T should be equal to zero.
This in turns means that the last n1 columns of T must be
in the kernel space of Ĉ3. The second set of constraints is
that T−1Â3T should be on cascade form. This means that
the lower right corner should have similar dynamics as the
first identified subsystem Ĝ1 and that the lower left corner
should be the zero matrix.

If we use Schur factorization[11] on Â3

Â3 = UÃ3U
∗ (6)

then Ã3 is similar to Â3 and has the lower left corner equal
to the zero matrix. If the Schur factorization is performed
such that the eigenvalues closest to the eigenvalues of the
first subsystem is located in the lower right corner of Ã3, the
first n2 columns of T should be chosen as the first columns
of U . This is summarized in a proposition.

Proposition 1: If the last n1 columns in T spans the
kernel space of C3 and the first n2 columns span the space
corresponding to the n2 columns of U , where U is given
from the Schur factorization of A3 = UÃ3U

∗ such that the
dynamics from the first system is in the lower right corner
of the block-triangular matrix Ã3. The system transformed
with T will be on cascade form.

Using Proposition 1, the optimization problem (5) could
be simplified. If the optimization is instead performed over
linear combinations of the vectors spanning the kernel space
of C3 and over scaled versions of the appropriate columns
of U from the Schur factorization. Denoting the order of the
kernel space by nK = n2 + n1 − 1 gives

T = [k1u1 . . . kn2
un2

,

nK
∑

i=1

ki+n2
ci . . .

nK
∑

i=1

ki+n2+(n1−1)nK
ci] (7)

where ui is the i:th column of U from the Schur factorization
(6) and ci ∈ Ker(Ĉ3). The optimization is performed over k i

i = 1 . . . (n2+n1(n2+n1−1)). The number of optimization
parameters are reduced from (n1 + n2)

2.

Finally, the constraint that the rank of the upper right
corner of T−1Â3T , denoted Â12, should be one is hard to
incorporate. Instead some heuristics could be used. Here we
will use that the upper right corner should equal B2C1. De-
note the estimate of the system matrix of the first subsystem
from T−1Â3T as Ā1. We denote C̄1(T ) as the transformed

matrix of Ĉ1 where the transform is a similarity transform
between the identified Â1 and Ā1. Ideally the eigenvalues of
Â1 should be the same as the eigenvalues Ā1. If this is the
case a similarity transform could easily be found. In general
this is not the case. One solution to this is to transform
both Â1 and Ā1 to upper triangular form, then replace the
eigenvalues in the diagonal of Ā1 by the corresponding in
Â1. This way the two matrices are similar and a similarity
transform could be found. An estimate of B2 is then given
by

B̂2 = Â12C̄1(T )
†

where (†) denotes the pseudo inverse. We now formulate the
following optimization problem

min
T,B̃1

1

λ1

N
∑

t=1

(

Ĉ1

(

qI − Â1T
)

−1
B̃1u (t)− y1 (t)

)2
+

1

λ2

N
∑

t=1

(

Ĉ2

(

qI − Â2

)

−1
B̂2Ĉ1

(

qI − Â1T
)

−1
u (t)− y2 (t)

)2

(8)
where

Ĉ2 = (CT )1:n2

B̂2 = Â12C̄
†
1

Â2 =
(

T−1Â3T
)

1:n2,1:n2

.
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The optimization is performed over columns of T defined in
(7) and B̃1. This heuristics solves the problem with the rank
condition in many cases.
Step 3: When the transformation is found the system is
transformed to cascade form. From this the estimates of the
state space matrices for the second subsystem Â2 and Ĉ2

can easily be recovered. The matrix estimate B̂2 could be
calculated from the matrix product B2C1 as described above.

B. Method 2: Direct Method

The second method uses the fact that the structure of the
extended observability matrix is known for cascade systems,
see (4). The method only works for systems where both
subsystems have order one. But this is in practice a common
case.

The method consists of the following steps:
Step 1: Identify the first subsystem using data u and y1 with
order n1.
Step 2: Identify the extended observability matrix for the
Single-Input Multiple-Output (SIMO) system from u to
y1 and y2 with order n3. Denote the identified extended
observability matrix

OrT̃ =













ξ1,1 ξ1,2
η1,1 η1,2

...
...

ξr,1 ξr,2
ηr,1 ηr,2













where ξi,1 has size (1× n1) and ηi,2 has size (1× n3 − n1).
Step 3: From (4) it can be seen that for the first subsystem
the state space matrices can be solved with least squares just
as in the standard subspace formulation

Ĉ1 = C1T̃11 = ξ1,1

Â1 = argmin
A1

r−1
∑

i=1

‖ξi+1,1 − ξi,1A1‖
2

2

Step 4: From (4) it is seen that for the second subsystem
the estimate Ĉ2 is given by

Ĉ2 = C2T̃22 = η1,2

In general it is not obvious how a a least square problem
should be formulated for the second subsystem. To illustrate
the concept we consider the special case when the order of
the second subsystem is one. Denoting the matrix product
χ = B2C1 gives the following least square problem in Â2

and χ.

arg min
A2,χ

r−1
∑

i=1

‖ηi+1,2 − ηi,1A2 − χξi,2‖
2

2

Step 5: When χ = B2C1 has been found, B̂2 can be solved.
Finally B̂1 can be calculated as in the standard subspace
formulation as a linear regression problem.

V. EXAMPLES

In this section the two methods presented in this paper
will first be applied to a real application, the double tank
process, and then the first direct method will be applied to
a simulated system to show how the method performs for
higher order systems.

A. The Double Tank Process

The double tank system from Quanser Inc consists of two
equivalent water tanks. A DC-motor drives a pump which
pumps water from the basin into the upper tank. Water then
flows out from the upper tank into the lower tank through a
small outlet. The water from the lower tank then flows out
into the basin. The input to the system is the input voltage
to the DC-motor, u and the outputs are the water level in
each tank, h1 and h2.

The process is nonlinear. The outflow from one tank
is proportional to the square root of the water level. The
identification of the system will hence be performed around
a linearization point.

B. Identification

A white Gaussian noise process is used as input during
the identification. The sampling time is chosen as Ts = 1s.
300 samples of the input and outputs were collected, 200
used for identification and 100 used for validation. When all
data has been collected, the identification process starts. The
methods presented in section IV are used and their results
are compared. First Method 1 is considered.

1) Method 1: The state space matrices, Â1, B̂1, Ĉ1, Â3

and Ĉ3 are identified with N4SID [1], [2]. The orders of
these systems are chosen by looking at the singular values
of their respective extended observability matrices.

The order of G1 is chosen as n1 = 1 and the order for
G3 is chosen as n3 = 2.

A similarity transform is found by solving the optimization
problem (8) numerically. Since the orders of the subsystems
are both one, the rank condition is automatically fulfilled.
When the transformation matrix T and B̃1 are found then it
is straightforward to find Â2, B̂2 and Ĉ2.

2) Method 2: Again the N4SID is used, but now on the
SIMO system to get an estimate of the extended observability
matrix. The singular values of the extended observability
matrix suggest that the order should be chosen as 2. From
previous results we know that the first subsystem is ap-
proximated well by a first order system. Method 2 is now
applied to the extended observability matrix and the state
space matrices for the two subsystems are calculated.

3) Results: The methods previous applied to the two tank
process are compared to a physical model [12] and the H∞-
method (2), [9].

For the first subsystem the two proposed methods and
the H∞-method gives similar result. This is obvious since
all three methods are estimating the first subsystem in the
same way. They also have about the same dynamics as the
physical model and only a very small difference in gain.
The difference in gain could originate from wear and tear
in the real process as well as from the discretization and
linearization in the physical model.

The bode plot for the second system for the two different
methods are shown in Fig. 2. For the second subsystem the
methods gives slightly different results. First we can note
that the estimated system using the H∞-method is of order
3 as expected. The dynamics are about the same for the
two proposed methods, i.e. the eigenvalues of system matrix
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Fig. 2. Bode magnitude plot of the second subsystem G2 for the two
proposed method, the physical model and the H∞-method.

are close but they differ from the H∞-method. As the two
tanks are equal we would expect the dynamics of the first
and second subsystem to be equal. This can be seen in the
physical model. This is the case in both of the proposed
methods but not in the H∞-method.

The gain difference, that can be seen between the two
proposed methods, is due to the different way the two
methods calculates the state space matrices.

Finally the prediction error for the models given by the
three methods, are calculated for the validation data, i.e.

V
(

Ĝ1, Ĝ2

)

=
1

N

N
∑

t=1

(

y1 (t)− Ĝ1 (q)u (t)
)2

+

(

y2 (t)− Ĝ1 (q) Ĝ2 (q)u (t)
)2

(9)

The resulting prediction error is 4.2 · 10−4 for the indirect
method, 3.8 · 10−4 for the direct method and 3.9 · 10−4 for
the H∞-method. The difference in prediction errors for the
three methods is small.

It looks like the second method performs slightly better for
this simple system. The execution time is also much shorter
for this method since the optimization, i.e. the solving of the
least square problem, is much more computational efficient
than for the first method. But on the other hand, it is not
obvious how the second method should be extended to handle
larger systems.

C. Higher order systems

Here we consider a numerical example of a cascade system
with higher order subsystems

G1 (q) =
q − 0.1

(q + 0.6) (q − 0.8)

G2 (q) =
1

(q2 − 0.5q + 0.5)

The measurement noise variances are λ1 = 1 and λ2 = 1.
The input is white Gaussian noise with unit variance. The
system is simulated for 500 data points and the indirect
method is then applied, this is repeated 100 times. The
result of the Monte-Carlo simulation is shown for the second
subsystem in Fig. 3. The first subsystem is the same as for
direct application of the standard subspace method.

From the figure it can be seen that the method performs
well for this system. It seems that the mean over the Monte-
Carlo simulations tends to the true system. The prediction
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Fig. 3. The mean and standard deviation of the Monte-Carlo simulation
for the second subsystem.

error (9) is comparable with the direct subspace method
applied to the SIMO system from u to y1 and y2.

VI. INPUT DESIGN FOR CASCADE SYSTEMS

In the identification of the double tank system the input
was chosen as a Gaussian white noise sequence. This it not
generally the optimal input. The problem is that the input to
the second system can not be chosen directly. We consider
the input signal to the second subsystem

u2(t) = G1(q)u(t)

which consequently is directly colored by the the first un-
known subsystem. Hence, a good input for identification of
G1 may give a bad input to G2 and vice versa.

The recent framework [13] for experiment design, intro-
duced by Hjalmarsson and co-workers could be interesting to
apply to cascade systems. The main idea of this framework
is that the estimation properties could be separated from the
application specification.

To illustrate the framework an example is given for a
simple cascade system. Consider the cascade system with
first order FIR subsystems, i.e. G1 (q) = 1 + b1q

−1 and
G2 (q) = 1+ b2q

−1. The model parameter vector is denoted
θ = [b1 b2] and assume that the true system can be
described by θ0 =

[

b01 b02
]

.
Assume that we have some requirements on the param-

eter covariance, then the application specification could be
written as

Vapp (θ) =
[

b1 − b01 b2 − b02
]

Q

[

b1 − b01
b2 − b02

]

≤
1

γ

where Q is some weighting matrix and γ > 0 is some
constant . This weighting matrix could for example be chosen
such that the parameter in the second subsystem is more
important than the parameter for the first subsystem or vice
versa.

Now consider a typical system identification method that
minimizes the mean square prediction error, i.e.

θ̂N = argmin
θ

VID,N (θ)

VID,N (θ) =
1

N

N
∑

t=1

(

y1 (t)−
(

1 + b1q
−1

)

u (t)
)2

λ1
+

1

N

N
∑

t=1

(

y2 (t)−
(

1 + b1q
−1

) (

1 + b2q
−1

)

u (t)
)2

λ2
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We will now try to find the optimal input for this problem.
The input should be optimal in the sense that it minimizes
the input power such that the application specifications are
fulfilled. This is known as least costly identification [14].
Using the framework [13], asymptotically (N → ∞) it can
be shown that this optimization problem can be formulated
as

min
u(t)

E
[

u (t)
2
]

s.t γV ′′
app ≤ NV ′′

ID

where the constraint is a matrix inequality.
For the simple system presented above the optimization

problem becomes

min
r0

r0

s.t N

[

ρ1 ρ2
ρ2 ρ3

]

≥ γQ

r0 ≥ r1

ρ1 = r0/λ1 + [(1 + b22)r0 + 2b2r1]/λ2

ρ2 = [(1 + b21)r0 + 2b1r1]/λ2

ρ3 = [(1 + b1b2)r0 + (b1 + b2)r1]/λ2

where rτ = Ē [u (t)u (t− τ)]. The optimization problem
is solved for r0 and r1 and a optimal input with this
covariance function could be generated.

Let us look at some special cases. First assume that
λ2 ≫ λ1 and that the parameter b2 is unimportant. Then
we get r1 = 0, i.e. the input should be chosen as white
noise as expected, we know that this is a optimal input for
the MA(1) process. If we instead consider λ1 ≫ λ2 and
that the first parameter, b1 is unimportant, then we would
want a white noise input to the second subsystem. If the
optimization problem above is solved the input becomes a
white noise sequence filtered through the inverse of the first
subsystem, hence the input to the second becomes white
noise.

In general the input becomes an optimal weighting be-
tween these two cases depending on the noise levels and
which parameter that is more important.

For more complex systems, the problem above cannot be
solved for the covariance function rτ but the optimization
problem must be solved for a parametrization of the spectrum
of u (t), see [13]. It would be interesting to study the optimal
input for more complex systems.

VII. CONCLUSIONS

The problem considered in this paper has been inspired
by the discussions on the industrial applications of structural
system identification given in [3]. Two new methods for
identification of cascade systems has been presented. Both
methods show promising results, their performances are
comparable to state of the art methods for estimating cascade

structured systems. But a more thorough analysis has to be
done to verify the performance.

The first method involves solving a nonlinear optimization
problem. This optimization should be further studied. The
problem is solved with a numerical method and there could
be problems with local minima points. The second method
on the other hand is computationally less costly but it is
not obvious how it can be extended to systems with order
larger than one. It would be interesting to study, if it is
even possible, how this method could be extended to larger
systems.

The statistical properties of the model estimates are hard
to analyze. But the methods could be used to find initial es-
timates to Prediction error methods or Maximum likelihood
methods, this would be interesting to explore further.

The problem of optimal input design for cascade systems
was briefly reviewed. This framework should be analyzed for
more complex systems and it would be interesting to study
other applications specification, for example requirements on
the model given by feedback specifications.
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