
Representing Structure in Linear Interconnected Dynamical Systems

E. Yeung‡, J. Gonçalves∗, H. Sandberg◦, S. Warnick†

Abstract— Interconnected dynamical systems are a pervasive
component in our modern world’s infrastructure. One of the
fundamental steps to understanding the complex behavior and
dynamics of these systems is determining how to appropriately
represent their structure. In this work, we discuss different ways
of representing a system’s structure. We define and present, in
particular, four representations of system structure–complete
computational, subsystem, signal, and zero pattern structure–
and discuss some of their fundamental properties. We illustrate
their application with a numerical example and show how
radically different representations of structure can be consistent
with a single LTI input-output system.

I. INTRODUCTION

Dynamical systems can be useful for modeling complex
phenomena with underlying network structure. Examples of
such phenomena include the power grid, formations of vehi-
cles, distributed systems, social networks, chemical reaction
networks, and cooperative multi-agent systems. Depending
on the context, the notion of a system’s structure can lead to
a variety of interpretations. Even within a single application,
a dynamic system’s structure can be discussed in multiple
ways.

For example, in chemical reaction networks, system struc-
ture can refer to the direct physical interactions between
chemical species of the system, e.g. binding events, allosteric
regulation. On the other hand, system structure in chemical
reaction networks can also refer to nonphysical correlations
or dependencies among signals (manifest variables). This
notion of structure may be relevent when 1) only a subset
of the chemical species can be directly measured, 2) the
number of different chemical species in the system is so
large that only a subset of chemical species can be modeled
to ensure computational tractability. In this context, recent
research [1], [2] has represented system structure as the
causal dependencies between manifest variables.

Zooming out to the microscopic level, system structure
can refer to the interaction between multiple chemical reac-
tion networks physically separated by selectively permeable
membranes, e.g. a cluster of cells interacting via intercellular
cross-talk. In such systems direct physical interaction may
not be an appropriate basis for formulating system structure;
the more appropriate representation of system structure de-
scribes interaction between subsystems.

One of the most important issues, in characterizing a
system’s structure, is understanding the available represen-
tations for studying system structure and the relationships
between these different representations. Our goal is to build a
framework for understanding the different ways to represent
or describe system structure. We will define four definitions

of system structure which reflect different aspects of a sys-
tem’s structure. In Section II we consider the most complete
representation of system structure: complete computational
structure. In Section III we introduce the concept of a
partial representation of structure– these representations will
highlight certain aspects of system structure while obscuring
unnecessary or unwanted complexity. Throughout these two
sections, we will show how each of these four definitions de-
fines a dynamical graph with an associated set of dynamics.
Finally, in Section IV, we conclude with a numerical example
to show how each of these representations highlight different
aspects of a dynamical system’s structure.

II. COMPLETE COMPUTATIONAL STRUCTURE

The complete computational structure of a system char-
acterizes the actual processes it uses to sense properties of
its environment, represent and store variables internally, and
affect change externally. At the core of these processes are
information retrieval issues such as the encoding, storage,
and decoding of quantities that drive the system’s dynamics.

Mathematically, state equations are typically used to de-
scribe these mechanisms. Although there may be many
realizations that describe the same input-output properties
of a particular system, its complete computational structure
is the architecture of the particular realization fundamentally
used to store state variables in memory and transform system
inputs to the corresponding outputs.

To make this concept precise, we begin by considering a
linear system G with state space realization:

ẋ = f (x,w,u) := Ax+ Âw+Bu,
w = g(x,w,u) := Āx+ Ãw+ B̄u,
y = h(x,w,u) := Cx+C̄w+Du,

(1)

where A ∈ Rn×n, Â ∈ Rn×l , Ā ∈ Rl×n, Ã ∈ Rl×l , B ∈ Rn×m,
B̄ ∈Rl×m, C ∈Rp×n, C̄ ∈Rp×l , and D ∈Rp×m and u ∈Rm,
x∈Rn, w∈Rl , and y∈Rp so that m, n, l and p characterize
the dimensions of the input, state, auxiliary and output
vectors, respectively.

The auxiliary variables, w, are used to characterize inter-
mediate computation in the composition of functions. Thus,
for example, we distinguish between ẋ1 = f1(x) = −x1 and
ẋ1 = f1(x) =−2(.5x1) by computing the latter as ẋ1 =−2w1
and w1 = g1(x) = .5x1. In this way, the auxiliary variables
serve to identify stages in the computation of the state space
realization (1). Frequently we may not require any auxiliary
variables in our description of the system; indeed it is the
standard practice to eliminate auxiliary variables to simplify
the state descriptions of systems, see [3], [4] for an extensive
discussion. Nevertheless, as we discuss structure, it will

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 6010

be critical to use auxiliary variables to distinguish between
systems with dynamically equivalent, yet structurally distinct
architectures, leading to the following definition.

Definition 1: Given a system (1), we call the number of
auxiliary variables, l, the intricacy of the realization.

Notice that by eliminating these auxiliary variables, we ob-
tain the standard linear time invariant state space realization.
We note with the following lemma that if I− Ã is invertible,
then elimination is always possible.

Lemma 1: For any system (1) with intricacy l > 0 and
(I − Ã) invertible, there exists a unique minimal intricacy
realization (Ao,Bo,Co,Do) with l = 0 such that for every
solution (u(t),x(t),w(t),y(t)) of (1), (u(t),x(t),y(t)) is a
solution of (Ao,Bo,Co,Do).
To understand the structure of (1), we need a notion of
dependence of a function on its arguments. For example,
the function f (x,y,z) = xy− x+ z clearly depends on z, but
it only depends on x when y 6= 1 (or on y when x 6= 0).
Since “structure" refers at some level to the dependence of
the system variables on each other, it is important that our
notion of dependence be made clear.

Definition 2: A function f (w), from l-dimensional do-
main W to s-dimensional co-domain Z , is said to depend
on the ith variable, wi, if there exist values of the other l−1
variables w j, j 6= i, such that f (w) is not constant over all
values of wi while holding the others variables fixed. If l = 1,
then f (w) depends on w if it is not constant over all values
of w.

Definition 3: Given a system G with realization (1), its
complete computational structure is a weighted directed
graph C with vertex set V (C), and edge set E(C). The
vertex set contains m + n + l + p elements, each element
associated with one mechanism that produces either an input,
state, auxiliary variable, or output of the system, and we label
the vertices accordingly. In particular, the vertex associated
with the ith input is labeled ui, 1 ≤ i ≤ m, the vertex
associated with the jth state is labeled f j, 0 ≤ j ≤ n, the
vertex associated with the jth auxiliary variable is labeled
g j, 0 ≤ j ≤ l, and the vertex associated with the kth output
is labeled hk, 1 ≤ k ≤ p. The edge set contains an edge
from node i to node j if the function associated with the
label of node j depends on the variable produced by node i.
Moreover, the edge (i, j) is then labeled (weighted) with the
variable produced by node i.

The complete computational structure of a system is a
graphical representation of the dependency among input,
state, auxiliary, and output variables that is in direct, one-
to-one correspondence with the system’s state realization,
generalized to explicitly account for composition intricacy.
All structural and behavioral information is fully represented
by this description of a system. Nevertheless, this represen-
tation of the system can also be unwieldy for large systems
with intricate structure.

III. PARTIAL STRUCTURE REPRESENTATIONS

Complex systems are often characterized by intricate
computational structure and complicated dynamic behavior.

State descriptions and their corresponding complete com-
putational structures accurately capture both the system’s
structural and dynamic complexity, nevertheless these de-
scriptions themselves can be too complicated to convey an
efficient understanding of the nature of the system. Simplified
representations are then desirable.

One way to simplify the representation of a system is to
restrict the structural information of the representation while
maintaining a complete description of the system’s dynamics.
An extreme example of this type of simplified representation
is the transfer function of a linear time invariant (LTI) system.
A transfer function completely specifies the system’s input-
output dynamics without retaining any information about the
computational structure of the system.

We use this power of a transfer function to obfuscate struc-
tural information to develop three distinct partial structure
representations of an LTI system: subsystem structure, signal
structure, and the zero pattern of a (multiple input, multiple
output) system’s transfer function matrix.

A. Subsystem Structure

One of the most natural ways to reduce the structural
information in a system’s representation is to partition the
nodes of its computational structure into subsystems, then
replace these subsystems with their associated transfer func-
tion. Each transfer function obfuscates the structure of its
associated subsystem, and the remaining (partial) structural
information in the system is the interconnection between
transfer functions.

Subsystem structure refers to the interconnection structure
of the subsystems of a given system. Abstractly, it is the
condensation graph of the complete computational structure
graph, C , taken with respect to a particular partition of C
that identifies subsystems in the system. Such abstractions
have been used in various ways to simplify the structural
descriptions of complex systems [5], [6], for example by
“condensing" strongly connected components or other groups
of vertices of a graph into single nodes, but here we define
a particular condensation graph as the subsystem structure
of the system. We begin by characterizing the partitions of
C that identify subsystems.

Definition 4: Given a system G with realization (1) and
associated computational structure C , we say a partition
of V (C) is admissible if every edge in E(C) between
components of the partition represents a variable that is
manifest, not hidden.

Although sometimes any aggregation, or set of funda-
mental computational mechanisms represented by vertices
in C , may be considered a valid subsystem, in this work a
subsystem has a specific meaning. In particular, the variables
that interconnect subsystems must be manifest, and thus
subsystems are identified by the components of admissible
partitions of V (C).

Definition 5: Given a system G with realization (1) and
associated computational structure C , the system’s subsystem
structure is a condensation graph S of C with vertex set
V (S) and edge set E(S) given by:

6011

• V (S) = {S1, ...,Sq} are the elements of an admissible
partition of V (C) of highest cardinality, and

• E(S) has an edge (Si,S j) if E(C) has an edge from
some component of Si to some component of S j.

We label the nodes of V (S) with the transfer function of
the associated subsystem, which we also denote Si, and the
edges of E(S) with the associated variable from E(C).

A system’s subsystem structure always exists, although it
may be trivial (a single internal block) for those systems
that do not decompose naturally into an interconnection of
subsystems. Note that S always identifies the most refined
subsystem structure possible; it is by defining S as the
most refined subsystem structure, i.e. requiring V (S) to have
maximal cardinality, that guarantees the uniqueness and well-
definedness of a system’s subsystem structure. We state this
as a lemma and refer the reader to [4] for a proof.

Lemma 2: Given a system G with realization (1) and as-
sociated computational structure C , the system’s subsystem
structure S exists and is unique.

The subsystem structure reveals the way natural subsys-
tems are interconnected, and it can be represented in other
ways besides (but equivalent to) identifying S . For example,
one common way to identify this kind of subsystem structure
is to write the system as the linear fractional transformation
(LFT) with a block diagonal “subsystem" component and
a static “interconnection" component (see [7], [8], [9] on
using the LFT to represent structure). In general, the LFT
associated with S will have the form

N =

[
0 I
L K

]
S =

S1 0 ...

0
. . .

... 0 Sq

 (2)

where q is the number of distinct subsystems, and L and K
are each binary matrices of the appropriate dimension. In
this work we will restrict our attention to where

[
L K

]
is a

permutation matrix. Note that if additional output variables
are present, besides the manifest variables used to intercon-
nect subsystems, then the structure of N and S above extend
naturally. In any event, however, N is static and L and K are
binary matrices. Notice that there is no loss of generality in
this restriction on N, since every LFT with a dynamic N(s)
can be rewritten so that all dynamics are expressed in the S
matrix. This convention simply allows for a unique LFT (up
to a reordering of the manifest variables) to be associated
with each subsystem structure S .

B. Signal Structure

Another very natural way to partially describe the structure
of a system is to characterize the causal dependence among
each of its manifest variables. Although subsystem structure
also considers causal dependencies between manifest vari-
ables, signal structure will not demand that the nodes of
C be partitioned, and thus it offers a perspective on the
dependency between manifest signals without characterizing
the internal interconnection of subsystems.

We begin by considering the system (A,B,C,D) given by

[
ẋ1
ẋ2

]
=

[
A11 A12
A21 A22

][
x1
x2

]
+

[
B1
B2

]
u

[
y1
y2

]
=

[
I 0

C21 0

][
x1
x2

]
+

[
D1
D2

]
u

(3)

where x∈Rn, u∈Rm, y1 ∈Rp1 with p1 ≤ n, and y2 ∈Rp2

with p1 + p2 = p. The next lemma ensures that restricting
our attention to systems of this form does not result in
a loss of generality; note that (A,B,C,D) in (3) are not
the same (A,B,C,D) from (1), although no confusion (and
significantly simpler notation) should arise as the context
makes each reference clear.

Lemma 3: Every system (1), with minimally intricate re-
alization (Ao,Bo,Co,Do), has a realization of the form (3),
where p1 ≤ n is the rank of Co, and the order of the outputs,
y, may be renumbered.

Proof: Consider the zero-intricacy realization, given by
(Ao,Bo,Co,Do) and which Lemma 1 ensures is well defined,
of any system characterized by (1). Let p1 ≤ n be the rank
of Co, and let PL be a permutation such that the first p1
rows of PLCo are linearly independent. Now, consider a
permutation PR, so that the first p1 columns of CoPR are
linearly independent, resulting in the corresponding partition

PLCoPR =

[
C1 C2
C3 C4

]
. (4)

Note that C1 ∈Rp1×p1 is invertible, leading to the transfor-
mation

T =

[
C−1

1 −C−1
1 C2

0 I

]
. (5)

We then see that

PLCoPRT =

[
I 0

C21 0

]
, (6)

with C21 = C3C−1
1 . Thus a state transformation x̄ =

(PRT)−1x, along with a renumbering of the system outputs
consistent with PL, will yield a realization of the form (3).

We thus characterize the signal structure of any system (1)
in terms of the dynamical structure function of the canonical
realization (3). Dynamical structure functions were defined
in [1], [10], but we derive them here again to apply them
to general linear systems. Taking Laplace transforms of (3),
and assuming initial conditions are zero, yields[

sX1
sX2

]
=

[
A11 A12
A21 A22

][
X1
X2

]
+

[
B1
B2

]
U

where X(s) denotes the Laplace transform of x(t), etc.
Solving for X2 in the second equation and substituting into
the first then yields

sX1 =W (s)X1 +V (s)U (7)

where W (s) =
[
A11 +A12(sI−A22)

−1A21
]

and V (s) =[
B1 +A12(sI−A22)

−1B2
]
. Let D(s) be the matrix of the

6012

diagonal entries of W (s), yielding

X1 = Q(s)X1 +P(s)U (8)

where Q(s) = (sI−D(s))−1(W (s)−D(s)) and P(s) = (sI−
D(s))−1V (s). From (3) we note that X1 = Y1−D1U , which,
substituting into (8), then yields:[

Y1
Y2

]
=

[
Q(s)
C21

]
Y1 +

[
P(s)+(I−Q(s))D1

D2−C21D1

]
U (9)

The matrices (Q(s),P(s)) are called the dynamical struc-
ture function of the system (3), and they characterize the
dependency graph among manifest variables as indicated in
Equation (9). We note a few characteristics of (Q(s),P(s))
that give them the interpretation of system structure, namely:
• Q(s) is a square matrix of strictly proper real rational

functions of the Laplace variable, s, with zeros on the
diagonal. Thus, if each entry of y1 were the node of a
graph, Qi j(s) would represent the weight of a directed
edge from node j to node i; the fact Qi j(s) is proper
preserves the meaning of the directed edge as a causal
dependency of yi on y j.

• Similarly, the entries of the matrix [P(s)+(I−Q(s))D1]
carry the interpretation of causal weights characterizing
the dependency of entries of y1 on the m inputs, u. Note
that when D1 = 0, this matrix reduces to P(s), which
has strictly proper entries.

Definition 6: The signal structure of a system G, with
realization (1) and equivalent realization (3) with dynamical
structure function (Q(s),P(s)) characterized by (8), is a
graph W , with a vertex set V (W) and edge set E(W) given
by:
• V (W) = {u1, ...,um,y11, ...,y1p1 ,y21, ...,y2p2}, each rep-

resenting a manifest variable of the system, and
• E(W) has an edge from ui to y1 j, ui to y2 j, y1i to y1 j or

y1i to y2 j if the associated entry in [P(s)+(I−Q(s))D1],
D2−C21D1, Q(s), or C21 (as given in Equations (8) and
(9)) is nonzero, respectively.

We label the nodes of V (W) with the name of the associated
variable, and the edges of E(W) with the associated transfer
function entry from Equation (9).

Signal structure is fundamentally a different type of graph
than either the computational or subsystem structure of a
system because, unlike these other graphs, vertices of a
system’s signal structure represent signals rather than sys-
tems. Likewise, the edges of W represent systems instead
of signals, as in C or S . We highlight these differences by
using circular nodes in W , in contrast to the square nodes
in C or S .

C. Zero Pattern Structure

A fourth natural notion of system structure is the descrip-
tion of output dependencies on input variables. In linear
systems, these dependencies are characterized completely by
the transfer function of the system. In particular, the location
of zero and nonzero entries, or the boolean structure, of
the transfer function matrix determine the dependency of

each output on the input variables of the system. However,
their characterization of input-output relationships is the most
basic description of system structure.

Definition 7: The zero pattern structure of a MIMO sys-
tem G, with realization (1) and transfer function G(s) is a
graph Z , with vertex set V (Z) and edge set E(Z) given
by:
• V (Z) = {u1, ,um,y1, ...,yp}, each representing a

manifest signal of the system,

• E(Z) has an edge from u j to yi, if the associated i jth

entry in [G(s)] is nonzero.

We label the nodes of V (Z) with the name of the associated
variable and the edges of E(Z) with the associated transfer
function entry from the transfer function.
The zero pattern structure is the weakest description of
system structure. For example, certain systems will exhibit
dynamics where states combine to cancel out the effects of
one or more inputs on an output. In these scenarios, a zero
in the transfer function matrix is indicative of exact cancel-
lation, as opposed to decoupling in the system. However,
the zero pattern structure of a transfer function does not
distinguish between these two situations. These cancelling
dynamics are internal details that are too refined for the zero
pattern to capture. In this way, the zero pattern is a partial
representation of structure.

IV. COMPUTATIONAL EXAMPLE

In this section, we will study a LTI input-output system
using all four representations of structure. These representa-
tions will illustrate that a system can simultaneously possess
structure in a variety of ways. Begin with the linear system:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

=

−3 0 0 0 0 0
0 −1 0 1 0 0
0 0 −5 0 0 5
1 0 0 −2 0 0
0 0 9 0 −12 0
0 0 0 0 7 −7

x1
x2
x3
x4
x5
x6

+

0 1 0
0 0 0
0 0 0
0 0 1

2
1 0 0
0 0 0

w1

w2
w3

+

2 0 0
0 −3 0
0 0 0
0 0 0
0 0 0
0 0 1

u1

u2
u3

w =

 3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0

x

y =
[
I3 03x6

][w
x

]
(10)

The computational structure of (10) is given in Figure 1(a).
Notice that Ã, B̂,C̄,D are zero matrices in this example. The
auxiliary variables w1,w2,w3 play a major role in charac-
terizing the computational structure of (10). In particular,
w1 and w3 act as linking variables between the vertex sets
{ f1, f2, f4,g2,g1} and {g3, f3, f5, f6}. Notice that w1,w2,w3

6013

are also manifest variables, as indicated by their connections
to output vertices “1". The auxiliary variables keep track
of the structural differences introduced by the composition
of functions. This allows a degree of flexibility in how
refined a view of the computational structure one considers
“complete." If we eliminate these auxiliary variables, we get

f6

f3

f5

u3

w1

x5
x6

x3

x6

1

g3

w3

x3

u3

f2

f1 f4

u2 u1

w2 x2
x4

x4
w3

x1

1

1

g2

w2

g1

w1

x1

u1

u2

(a) The computational structure C of a linear system with realization (10)
and intricacy l = 3. Notice the system can be admissibly partitioned as two
cyclic subsystems interconnected by manifest variables in a feedback loop.

f6

f3

f5

u3

x5

x3

x6
h3

x3

u3

f2

f1 f4

u2 u1

x2
x4

x4

x1

h1

h2

x1

u1

u2

(b) The complete computational structure C of realization (11) with minimal
intricacy l = 0. Notice that in the absence of w1,w2,w3, we lose the ability
to admissibly partition C into two cyclic subsystems.

Fig. 1. The complete computational structure of realizations (10) and (11).

the minimal intricacy system:

ẋ = Aox+Bou and y =Cox (11)

where

Ao =

−3 3 0 0 0 0
0 −1 0 1 0 0
0 0 −5 0 0 5
1 0 1 −2 0 0
3 0 9 0 −12 0
0 0 0 0 7 −7

 ,

Bo =

2 0 0
0 −3 0
0 0 0
0 0 0
0 0 0
0 0 1

 Co =

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0

u1

u2

u3

S1

u1

u2
u3

S2

1 1

1

w3

w1

w2

Fig. 2. The subsystem structure of C in Figure 1(a) with intricacy l = 3.
Edges are labeled with manifest variables and vertices are labeled with
transfer functions. Vertices carry the meaning of subsystems while edges
carry the meaning of signals.

Notice that in the absence of auxiliary variables, C of
the minimal intricacy realization has a different admissible
partition than C of realization (10). This observation is
important in determining the subsystem structure S of (10).

Recall that the subsystem structure is a condensation graph
defined by the maximal admissible partition on V (C). It is
easy to see from the shaded regions in Figure 1(b) that if
we omit all auxiliary variables (as in the minimal intricacy
realization), the subsystem structure of (11) is comprised of a
single subsystem with three inputs. If we retain the auxiliary
variables, the subsystem structure S can be expressed as the
LFT F (N,S), where N and the block diagonal entries S1,S2
of S are given by:

N =
[

e1 e2 e3 e1 e5 e6 e3 e4
]T

S1(s) =

 9
2(s3+6s+11s+3)

−27(s+2)
s3+6s2+11s+3

6(s+1)(s+2)
s3+6s2+11s+3

3
2(s+3)(s3+6s+11s+3)

−9(s2+5s+6)
s3+6s2+11s+3

6
s3+6s2+11s+3

S2(s) =

[
14

5s3+120s2+895s+2037
2(s+12)

5s3+120s2+895s+2037

]
and satisfy the dynamics[

Y
π(Y,U)

]
= N(s)

[
U
Y

]
, , Y = Sπ ,

where π =
[
Y3 U2 U1 Y1 U3

]T
. Subsystem structure

describes the interconnection between subsystems; it does
not comment about the internal computational structure
of individual subsystems. It is a graph connecting inputs,
outputs, and subsystems.

To find the signal structure W of realization (10), we
apply the state space transformation z= T x on the equivalent
minimal intricacy realization, where T is the diagonal matrix
diag(3,2,10,1,1,1). The resulting realization is a simplified
case of (3), with D1,D2,C21 = 0. Following the steps detailed
in Subsection III-B and equations (7), (8), and (9), we derive
the dynamical structure function (Q,P) where

Q(s) =

 0 s
s+3 0

1
s2+3s+2 0 3

2(s2+3s+2)
70s2+1330s+5880

s5+43s4+719s3+5522s2+17030s+8820 0 0

 ,

P(s) =

6

s+3 0 0
0 −9

s+1 0
0 0 10s2+190s+840

s4+31s3+347s2+1358s+735

 .
6014

The entries of (Q,P) are transfer functions that characterize
the causal dependencies between manifest variables. Figure
3 shows the signal structure of the system. Notice that in
a signal structure graph, vertices represent signals/manifest
variables and edges represent subsystems. The signal struc-
ture is essentially a single cycle graph with a feedback loop
between Y1 and Y2, despite that it was derived from a system
consisting of two cyclic subsystems. Nonetheless, these
structures are related, as they both describe the system (10),
but highlight different qualitative aspects of the system’s
structure.

Y1

Y2

Y3

U3

U2

U1 Q31

Q12

Q21
Q23

P33

P22

P11

Fig. 3. The signal structure of system (10) is a single cyclic graph with
one feedback loop between Y1 and Y2. Notice that this view of system
structure obscures the subsystem structure of (10), namely the feedback
interconnection of two internally cyclic subsystems.

Finally, the zero pattern structure of the system Z is
illustrated in Figure 4. The associated transfer function of
the system is a full matrix (this is the extreme case of a zero
pattern structure with no zeros)

G =

G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)
G31(s) G32(s) G33(s)

 .
Here, we have omitted the actual numerical entries since they
are easily computed but cumbersome to write down.

Y
1

Y
2

Y
3

U
3

U
2

U
1

G
12

G
1111

12

2

1212

G
13

G
31

G
32

G
33

G
22

G
21

G
23

Fig. 4. The zero pattern structure Z of realization (10).

With the exception of edges linking outputs to outputs and
edges linking inputs to inputs (which are never present in a
zero pattern structure), every input has an outgoing edge to
each output node. In this way, the zero pattern structure of
realization (10) is fully connected and is the least structured
or organized relative to its counterpart representations. It is

possible to develop examples in which the computational,
subsystem, and signal structures each in turn appear to be
the least structured relative to the other three representations.

V. CONCLUSION

In conclusion, the complete computational, subsystem,
signal, and zero pattern structure of a system each high-
light different facets of system structure. A system can be
highly organized with respect to its signal representation,
but completely unstructured or typical with respect to its
other three representations. We emphasize that our analysis
has been concerned only with linear time invariant systems
formulated within an input-output framework (though the
notions of complete computational structure generalize to
nonlinear models). This is because we have defined partial
representations of structure using transfer functions, which
are LTI input-output system constructs. Future research will
investigate representing structure for more general systems,
especially those described in the behavioral framework, see
for example [3]. In addition, new problems in systems
theory regarding subsystem, signal, and zero pattern sructure
have arose such as structure realization, structure preserving
model reduction, and approximate structure reconstruction.
These research problems are described in [4] and will be the
subject of future research as well.

VI. ACKNOWLEDGMENTS

This work was supported in part by the Air Force Research
Laboratory Grant FA 8750-09-2-0219 and by the Engineer-
ing and Physical Sciences Research Council grant number
EP/G066477/1.

REFERENCES

[1] J. Gonçalves, R. Howes, and S. Warnick, “Dynamical structure func-
tions for the reverse engineering of LTI networks,” IEEE Transactions
of Automatic Control, 2007, August 2007.

[2] Y. Y., S. G.B., W. S., and G. J., “Minimal dynamical structure
realisations with application to network reconstruction from data,” in
Proceedings of the 48th IEEE Conference on Decision and Control
(IEEE-CDC 2009), December 2009.

[3] J. C. Willems, “The behavioral approach to open and interconnected
systems,” Control Systems Magazine, vol. 27, no. 6, pp. 46–99, 2007.

[4] E. Yeung, H. Sandberg, J. Gonçalves, and S. Warnick, “The meaning
of structure in dynamic systems, manuscript in preparation,” Control
Systems Magazine, July 2010.

[5] D. Siljac, Large Scale Dynamic Systems: Stability and Structure. New
York: North-Holland, 1978.

[6] F. Harary, Graph Theory. Reading, Massachusetts: Addison-Wesley
Pub. Co., 1969.

[7] K. Z. J. Doyle, K. Glover, Robust and Optimal Control. Englewood
Cliffs, N.J.: Prentice Hall, 1996.

[8] H. Sandberg and R. M. Murray, “Model reduction
of interconnected linear systems,” Optimal Con-
trol Application and Methods, 2009, preprint at
http://www.ee.kth.se/˜hsan/intermodred.pdf.

[9] A. Vandendorpe and P. Van Dooren, “On model reduction of intercon-
nected systems,” in Proceedings International Symposium Math. Th.
Netw. Syst., Belgium, 2004.

[10] R. Howes, S. Warnick, and J. Gonçalves, “Dynamical structure
analysis of sparsity and minimality heuristics for reconstruction of
biochemical networks,” Proceedings of the Conference on Decision
and Control, December 2008.

6015

