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Abstract— General black-box system identification tech-
niques such as subspace system identification and FIR/ARX
least squares system identification are commonly used to
identify multi-input multi-output models from experimental
data. However, in many applications there are a priori given
structural information. Here the focus is on linear dynamical
systems with a cascade structure, and with one input signal
and two output signals. Models of such systems are important
in e.g. cascade control applications. It is possible to incorporate
such a structure in a prediction error method, which, however,
is based on rather advanced numerical non-convex optimization
techniques to calculate the corresponding structured model
estimate. We will instead study how to use model approximation
techniques to approximate a general black-box estimate with
a structured model. This will avoid the use of numerical
optimization and works well with e.g. subspace system identifi-
cation, which is a standard method in process industry where
cascade systems are very common. The problems of cascade
structural model approximation and model reduction are rather
non-standard, and we will study several new methods. The
basic idea is to first find a higher order but structured model
approximation using standard H∞ model matching techniques,
and then in a second step use so-called structured balanced
model reduction to find lower order structured approximation.
Structured balanced model reduction is a rather new approach,
with powerful model order selection tools and error bound
results. The results of the corresponding two step model
approximation approach seem promising, as illustrated by a
simple numerical example.

I. INTRODUCTION

System identification deals with estimation and valida-
tion of models of dynamical systems from experimental
data. Most system identification methods concern, however,
single-input single-output (SISO) systems. Many of these re-
sults can be generalized to multi-input multi-output (MIMO)
systems. In particular, subspace system identification meth-
ods have shown very useful when dealing with MIMO
systems. This is a black-box technique to identify state-space
models and it is difficult to take a priori information of the
underlying system into account to specify the model struc-
ture. The current work has been motivated by a discussion on
use of subspace identification in process industry presented
in [17]. In this application area it is common to first identify
unstructured sub-models, which then in a second step are
merged into a high order model. The complexity of this
combined model has then to be reduced in order to apply
e.g. model predictive control algorithms. In industry, simple
standard model reduction techniques, such as balanced model
reduction, are used, which do not take the structure into
account.

The objective of this contribution is to study identification
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and approximation of systems with a cascade or series
structure as illustrated in Fig. 1.
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Fig. 1. Cascade system.

The corresponding input/output relations are

y1(t) = G1(q)u(t)+ e1(t)
y2(t) = G2(q)G1(q)u(t)+ e2(t).

The input signal is denoted by u(t) and the two output signals
are y1(t) and y2(t), respectively. The transfer functions are
G1(q) and G2(q), and are assumed to be stable. Here q is the
shift operator. The signals e1(t) and e2(t) denote the mea-
surement noise processes. We assume that the dimensions of
the input and the two output signals are all one (the scalar
case).

There are several questions that have to be answered
and important user choices to be made when applying
system identification methods to a data set obtained from
a cascade system of the form {u(t),y1(t),y2(t)}, t = 1 . . .N.
Any single-input-multi-output (SIMO) system identification
method, such as subspace system identification, can be
applied, but it is not straightforward to impose the cascade
model structure.

It is possible to apply a Prediction Error Method (PEM) or
the Maximum Likelihood (ML) method, [3], to a constrained
model structure that only allows for models of cascade form.
Because of the product G1(q)G2(q) simple linear in the
parameters model structures such as FIR or ARX models
are not directly applicable. However, structured PEM and
ML are asymptotically statistically optimal methods to solve
the structured cascade system identification problem. In [16],
[15], the statistical properties of identified cascade models
are analyzed in detail and an initial discussion on how to take
the uncertainty of the estimates into account to use model
reduction to find structured models are given. Our aim is to
develop cascade structural model approximation methods for
identified state space models.

The outline of this paper is as follows. An introduction to
system identification using model approximation/reductions
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with a focus on cascade systems is given in Section II.
Section III reviews structured model reduction of cascade
systems. The idea start with a high order but structured
approximation of the identified model, and then in a second
step approximate this with a lower order one while keeping
the structure. The proposed method is closely related to
balanced model reductions. Section IV deals with using
H∞ approximation model matching techniques in order to
find cascade structured, but possible high order, approxi-
mation of unstructured estimates. Two methods for cascade
structural model approximation are outlined together with
corresponding error bounds and model order selection tools
are also outlined in this section. These methods are evaluated
in Section V on two simple numerical examples. Finally,
Section VI concludes the paper.

II. SYSTEM IDENTIFICATION AND MODEL
APPROXIMATION

The problem of first estimating an unstructured SIMO
model and then in a second step find a structured cascade
model is closely related to model approximation. A simple
approach is to first estimate G1(q) from u(t) and y1(t) and
then the series transfer function G3(q) = G2(q)G1(q) from
u(t) and y2(t). Denote the corresponding estimates by Ĝ1(q)
and Ĝ3(q), respectively. Another approach is to apply a state
space system identification method, e.g. a subspace approach,
to obtain an unstructured state-space model estimate

x(t +1) = Âx(t)+ B̂u(t)
y1(t) = Ĉ1x(t)
y2(t) = Ĉ3x(t) (1)

and take

Ĝ1(q) = Ĉ1(qI− Â)−1B̂, (2)

Ĝ3(q) = Ĉ3(qI− Â)−1B̂, (3)

which both will be of the same order as the total state
space model. We will assume that the true system and the
corresponding estimate are both stable.

One way to find the cascade transfer function G1(q) and
G2(q) is to minimize the cost function

V̄ (G1,G2) =
1
λ1

∫ π

−π
|G1(eiω)− Ĝ1(eiω)|2Φu(ω)dω

+
1
λ2

∫ π

−π
|G2(eiω)G1(eiω)− Ĝ3(eiω)|2Φu(ω)dω,

where Φu(ω) is the input spectral density. This approach is
called the asymptotic ML approach in [14], and is closely
related to PEM methods. One of the first ideas of using model
reduction in system identification is [18]. Model reduction in
system identification has more recently been further studied
by Tjärnström and co-workers in a series of papers, [10], [9],
[11]. The general result is that it is best to first estimate a
high order model, which gives a good description of the true
system, and then in a second step approximate this model
with a reduced order one. It is, however, important to take
the statistical properties of the model estimate into account
when doing the model reduction.

There seem to be few results on how to find reduced order
models with specific structures without using nonconvex
numerical optimization methods. However, recently there

have been some techniques developed, see, for example [12],
[13], [6], [7]. We will here use a method that is similar to
the one developed in [7], since it comes with a priori error
bounds.

For cascade systems, it is rather straightforward to find a
model of the first transfer function G1(q) by for example
using a balanced model approximation of Ĝ1(q) defined
by (2). The more difficult problem is how to find G2(q)
from Ĝ3(q) in (3), (and G1(q)). In principle one has to solve

min
G2

‖G1G2 − Ĝ3‖,

for fixed G1 with some suitable norm. A naive approach
would be to take

Ĝ2(q) =
Ĝ3(q)
G1(q)

where G1(q) is the approximation of Ĝ1(q) obtained in
the first step, and then apply model reduction on Ĝ2(q) to
find G2(q). A problem with this idea is that Ĝ2(q) may
be unstable and/or anti-causal, which means that a standard
model reduction method would fail. A way to overcome this
is to use the approximative stable inverse

1
G1(q)

≈ K
1+KG1(q)

where the gain K > 0 is designed to assure stability of
the right hand side. This is equal to designing a stable P-
regulator with gain K for feedback control of G1(q) and
then performing model reduction of

Ĝ2(q) =
Ĝ3(q)

G1(q)+1/K
(4)

to find a reduced order model G2(q). See [4] for more ideas
of using feedback inversion in system identification.

The idea of using feedback to find G2 is closely related to
applying cascade control to the estimated state space model
(1). That is find a high gain controller for the inner loop, e.g.

u(t) = −K(y1(t)− r2(t))

such that the closed loop system is stable. Here r2(t) is
the reference signal to the second system. The interpretation
of the approximation is that the dynamics of closed loop
inner system should be much faster than G2. Then do model
reduction of closed loop system

x(t +1) = (Â−KB̂Ĉ1)x(t)+KB̂r2(t)
y2(t) = Ĉ3x(t)

to find a reduced order state-space model of G2.

The ideas presented above are quite ad hoc and do not use
the full power of the state-of-the-art in model approximation.
In the next section we will develop more efficient methods
for the cascade model approximation problem.

III. STRUCTURED MODEL REDUCTION OF CASCADE
SYSTEMS

In this section, we apply results from [7] to a system in
cascade form, which is a special case of an interconnected
linear system. The results in [7] are given in continuous time,
but the results can be extended to discrete time as is shown
here.
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A high-order model Ĝ1(q) of G1(q) can be obtained
directly using standard identification techniques, as described
in Section II. Assume also that a high-order approximation
Ĝ2(q) of G2(q) has been obtained in some way, for example
from (4). More advanced methods for computing Ĝ2(q) are
given in Section IV using H∞ model matching.

A realization of the cascade system

[
Ĝ1

Ĝ2Ĝ1

]
is given by

[
x̂1(t +1)
x̂2(t +1)

]
=

[
Â1 0

B̂2Ĉ1 Â2

][
x̂1(t)
x̂2(t)

]
+

[
B̂1
0

]
u(t)

[
y1(t)
y2(t)

]
=

[
Ĉ1 0
0 Ĉ2

][
x̂1(t)
x̂2(t)

]
,

(5)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 and,

Ĝ1(q) = Ĉ1(qI− Â1)−1B̂1, Ĝ2(q) = Ĉ2(qI− Â2)−1B̂2.

The order of Ĝ1(q) is smaller or equal to n1, and the order of
Ĝ2(q) is smaller or equal to n2. If standard model reduction
methods, such as balanced truncation, is applied to (5), the
particular structure of the realization is generally lost. This
means that we cannot extract reduced order models G1(q)
and G2(q) from such a reduction. The problem is that normal
reduction usually mixes the states x̂1(t) and x̂2(t). The idea in
structured model reduction [12], [13], [7] is to find a suitable
block-diagonal coordinate transformation, i.e.,[

x̃1(t)
x̃2(t)

]
=

[
T1 0
0 T2

][
x̂1(t)
x̂2(t)

]

for the realization (5). After such a transformation the block
structure remains intact and the states are truncated from
each subsystem. That is, we apply canonical projections
S1

L,S
1
R,S2

L,S
2
R,

S1
L = (S1

R)T =
[
Ir1 0r1×(n1−r1)

] ∈ R
r1×n1 ,

S2
L = (S2

R)T =
[
Ir2 0r2×(n2−r2)

] ∈ R
r2×n2 ,

where r1 and r2 are the orders of the reduced models. If the
transformation and projection is applied to (5), the realization

of the reduced model

[
G1

G2G1

]
is now given by

[
A1 0

B2C1 A2

]
=

[
S1
LT1Â1T

−1
1 S1

R 0
(S2

RT2B̂2)(Ĉ1T
−1
1 S1

R) S2
LT2Â2T

−1
2 S2

R

]

[
B1
0

]
=

[
S1
LT1B̂1

0

]
,
[
C1 0
0 C2

]
=

[
Ĉ1T

−1
1 S1

R 0
0 Ĉ2T

−1
2 S2

R

]
.

(6)

From this realization it is straightforward to identify real-
izations of the reduced subsystems,

G1(q) = C1(qI−A1)−1B1,

G2(q) = C2(qI−A2)−1B2.
(7)

The question remains how to choose the transformations
T1,T2 and the approximation orders r1,r2 so that the approx-
imation error ∥∥∥∥ Ĝ1 −G1

Ĝ2Ĝ1 −G2G1

∥∥∥∥
∞

is small. An attractive method is balanced truncation with
(generalized) structured Gramians [7] (“structured balanced
truncation”), since then a priori error bounds on the H∞ error
is obtained. The details are given next.

Remark 1: An alternative to structured balanced trunca-
tion is to apply model reduction separately to the models
Ĝ1(q) and Ĝ2(q). A problem with this is that one does not
take into account that all inputs to Ĝ2(q) are filtered through
Ĝ1(q). This generally alters the relative importance of the
states in Ĝ2(q). For this reason it is often important to include
a frequency-dependent weight in the approximation criterion
[1], as is done in structured balanced truncation.

The structured (generalized) controllability Gramian and
the structured observability Gramians for (5) are symmetric
positive definite matrices[

P1 0
0 P2

]
,

[
Q1 0
0 Q2

]
, (8)

respectively, that satisfy the controllability Lyapunov in-
equality

[
Â1 0

B̂2Ĉ1 Â2

][
P1 0
0 P2

][
Â1 0

B̂2Ĉ1 Â2

]T

−
[
P1 0
0 P2

]

+
[
B̂1(B̂1)T 0

0 0

]
< 0 (9)

and the observability Lyapunov inequality

[
Â1 0

B̂2Ĉ1 Â2

]T [
Q1 0
0 Q2

][
Â1 0

B̂2Ĉ1 Â2

]
−

[
Q1 0
0 Q2

]

+
[
(Ĉ1)TĈ1 0

0 (Ĉ2)TĈ2

]
< 0. (10)

The Gramians are generalized since they satisfy linear matrix
inequalities (LMIs) instead of equalities. The inequalities are
needed to guarantee a block-diagonal structure. The LMIs
can be effectively solved using software like SeDuMi [8].
To obtain unique generalized Gramians, we solve the LMIs
while minimizing the traces of the structured Gramians (8).
Finding structured Gramians and reduced models for the
cascade system is a well posed problem because of the
following propositions.

Proposition 1: The matrices Â1 and Â2 are stable if,
and only if, there are symmetric positive definite matrices
P1,Q1,P2,Q2 that satisfy the Lyapunov inequalities (9)–(10).

Proof: Application of the Schur lemma.

Proposition 2: Assume there are symmetric positive defi-
nite matrices P1,Q1,P2,Q2 to the cascade system (5). Define
the structured singular values by

σ1,i = λ 1/2
i (P1Q1) > 0, i = 1, . . . ,n1,

σ2,i = λ 1/2
i (P2Q2) > 0, i = 1, . . . ,n2.

Then there are invertible matrices T1,T2 such that the struc-
tured Gramians are balanced, i.e.,

Σ1 = T−T
1 Q1T

−1
1 = TT

1 P1T1 = diag{σ1,1, . . . ,σ1,n1}
Σ2 = T−T

2 Q2T
−1
2 = TT

2 P2T2 = diag{σ2,1, . . . ,σ2,n2}.
If these transformations T1,T2 are used to construct the
reduced models G1(q) and G2(q) as in (6)–(7), then the
models satisfy the upper error bound∥∥∥∥ Ĝ1 −G1

Ĝ2Ĝ1 −G2G1

∥∥∥∥
∞
≤ 2

n1

∑
i=r1+1

σ1,i +2
n2

∑
i=r2+1

σ2,i, (11)
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and G1(q) and G2(q) are guaranteed to be stable.

Proof: This is a discrete-time version of Proposition 2
in [7].

Remark 2: The matrices T1 and T2 that balance the struc-
tured Gramians can be computed using the same techniques
as in regular balancing, see [19].

Remark 3: The upper error bound (11) is useful since it
helps to select the model orders r1 and r2.

IV. MODEL APPROXIMATION OF CASCADE SYSTEM IN
H∞-NORM

The problem we would like to solve in this section is

inf
G1∈Rr1H∞,G2∈Rr2H∞

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

. (12)

Here RrH∞ denotes rational transfer functions in H∞ of
McMillan degree less or equal to r. The problem is to
find stable transfer functions G1(q) and G2(q) of McMillan
degree less or equal to r1 and r2, respectively, such that the
given approximation criterion is small. (To simplify notation,
we omit the argument q for the transfer functions in the rest
of the section.) The approximation problem (12) is hard, but
can be relaxed in various ways, as we shall see next. Note
that the approximation criterion is not the same as in (11)
since Ĝ3 does not (yet) have the form Ĝ2Ĝ1.

A. A fundamental lower error bound
From optimal Hankel norm approximation [19] it is known

that

inf
G1∈Rr1H∞

‖Ĝ1 −G1‖∞ ≥ σr1+1(Ĝ1)

inf
G3∈Rr1+r2H∞

‖Ĝ3 −G3‖∞ ≥ σr1+r2+1(Ĝ3),

where σi(G) is the i-th largest Hankel singular value of
G. These can be used to derive a lower bound on the
problem (12).

Proposition 3: The optimization problem (12) has the
lower bound

max{σr1+1(Ĝ1),σr1+r2+1(Ĝ3)}
≤ inf

G1∈Rr1H∞,G2∈Rr2H∞

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

.

Proof: Define G3 = G2G1. Then G3 ∈ Rr1+r2H∞, and

inf
G1∈Rr1 H∞

G3∈Rr1+r2 H∞

∥∥∥∥ Ĝ1 −G1
Ĝ3 −G3

∥∥∥∥
∞
≤ inf

G1∈Rr1 H∞
G2∈Rr2 H∞

∥∥∥∥ Ĝ1 −G1
Ĝ3 −G2G1

∥∥∥∥
∞

.

Furthermore, we have∥∥∥∥ Ĝ1 −G1

Ĝ3 −G3

∥∥∥∥
∞
≥ ‖Ĝ1 −G1‖∞ ≥ σr1+1(Ĝ1).

A similar inequality holds for σr1+r2+1(Ĝ3), and the result
follows.

The next problem is to design methods that generate
suboptimal solutions G1,G2 to (12), with upper error bounds.
If the distance between the upper and lower bound is small,
then we know the suboptimal solution is close to the optimal
solution.

B. Suboptimal solution with upper bound, Method 1

The suboptimal method presented here uses the structured
model reduction technique in Section III. First we construct
an intermediate model of high order but with the desirable
cascade structure, and then we reduce it to obtain G1,G2.

The method, denoted Method 1, has two steps:

Step 1: A high-order candidate Ĝ2 for G2 is obtained by
solving the standard H∞-model matching problem [2]

Ĝ2 := arg inf
Q∈RH∞

‖Ĝ3 −QĜ1‖∞,

α1 := inf
Q∈RH∞

‖Ĝ3 −QĜ1‖∞,
(13)

using for example the command hinfsyn in MATLAB.
Note that there is no order constraint on Ĝ2, and that if
Ĝ3/Ĝ1 is stable and causal, then α1 = 0 and we get Ĝ2 =
Ĝ3/Ĝ1. Typically, the order of Ĝ2 is n2 = n1 +n3, where n1
and n3 are the orders of Ĝ1 and Ĝ3, respectively.

In this paper, we assumed a priori that the models Ĝ1
and Ĝ3 come from system identification of a stable cascade
system. Hence, it should be possible to find a stable Ĝ2
such that Ĝ3 ≈ Ĝ2Ĝ1. If α1 is a relatively large number,
this indicates that the a priori assumption made is wrong, or
that the identified models Ĝ1 and Ĝ3 are too bad.

The cascade model

[
Ĝ1

Ĝ2Ĝ1

]
approximates the given model[

Ĝ1

Ĝ3

]
with the error α1, since

∥∥∥∥ Ĝ1 − Ĝ1

Ĝ3 − Ĝ2Ĝ1

∥∥∥∥
∞

= α1. (14)

In the next step the order is reduced.

Step 2: Using the structured model reduction technique in

Section III with the system

[
Ĝ1

Ĝ2Ĝ1

]
obtained in Step 1 as

input, approximations G1 and G2 are obtained such that (11)
holds, i.e.,

∥∥∥∥ Ĝ1 −G1

Ĝ1Ĝ2 −G1G2

∥∥∥∥
∞
≤ 2

n1

∑
i=r1+1

σ1,i +2
n2

∑
i=r2+1

σ2,i,

where σ1,i and σ2,i are the structured singular values of Ĝ1

and Ĝ2, respectively, and degG1 = r1, degG2 = r2, deg Ĝ1 =
n1, and deg Ĝ2 = n2.

Returning to our original problem, (12), we have (using
the triangle inequality) that

max{σr1+1(Ĝ1),σr1+r2+1(Ĝ3)}
≤

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

≤ α1 +2
n1

∑
i=r1+1

σ1,i +2
n2

∑
i=r2+1

σ2,i. (15)

For the lower bound, we have used Proposition 3.
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C. Suboptimal method with upper bound, Method 2

The second method is a slight variation of the first method
in Section IV-B. The method, called Method 2, has three
steps:

Step 1: The reduced-order model G1 is obtained by
approximating Ĝ1 directly. If regular balanced truncation
[19] is used, we obtain the error bound ‖Ĝ1 − G1‖∞ ≤
2∑n1

i=r1+1σi(Ĝ1), where σi(Ĝ1) are the Hankel singular val-
ues of Ĝ1.

Step 2: To find a high-order candidate Ĝ2 of G2, we solve
the standard H∞-model matching problem [2]

Ĝ2 := arg inf
Q∈RH∞

‖Ĝ3 −QG1‖∞,

α2 := inf
Q∈RH∞

‖Ĝ3 −QG1‖∞.
(16)

Notice the difference to (13): Here Ĝ2 is in series with the
approximation G1, not with the original model Ĝ1. The order
of the optimal Ĝ2 in (16) is typically n2 = r1 +n3, which is
smaller than the order of Ĝ2 in the (13).

Step 3: Solve the frequency-weighted model reduction
problem infG2∈Rr2H∞ ‖(Ĝ2−G2)G1‖∞, where G1 from Step 1
acts as frequency-dependent weight, and Ĝ2 comes from
Step 2. This is not a standard model matching problem
because of the degree constraint on G2, and it is not known
how to compute the optimal solution. However, there are
many suboptimal methods available, for example Enns’
classical method [1], or one of the many methods presented
in the book [5]. A suboptimal solution with error bound and
stability guarantee is also obtained if the structured model
reduction method in Section III is applied. This is the method
we use here. To do that, just delete the output channel y1 from
the cascaded realization. As input to the method we use the
model Ĝ2G1 and none of the structured singular values σ1,i
are truncated since G1 shall remain intact. The bound (11)
then becomes ‖Ĝ2G1−G2G1‖∞ ≤ 2∑n2

i=r2
σ2,i, where σ2,i are

the structured singular values corresponding to Ĝ2.

Returning to our original problem, (12), we have (using
the triangle inequality) that

max{σr1+1(Ĝ1),σr1+r2+1(Ĝ3)}
≤

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

≤ 2
n1

∑
i=r1+1

σi(Ĝ1)+α2 +2
n2

∑
i=r2+1

σ2,i. (17)

V. EXAMPLES

For the two examples, we use the identified models

Ĝ1(q) =
q−0.11

q3(q−0.1)(q−0.4)
,

Ĝ3(q) = Ĝ1(q)
q

q2 −0.5q+0.5
+Δ(q).

The first subsystem (Ĝ1(q)) is a low-pass filter, and the
second subsystem has resonant poles. When Δ(q) = 0, the
system can be exactly realized in cascade form, using
G1(q) = Ĝ1(q) and G2(q) = q/(q2 − 0.5q+ 0.5). Note also

1 2 3 4 5
0

2

4

0 2 4 6 8 10 12
0

1

2

3

σ1,i

σ2,i

i

i

Fig. 2. The structured singular values from Method 1 in Example 1.

that there is almost a pole-zero cancellation in Ĝ1(q). Hence,
we expect the model reduction methods to detect this, and
suggest that the corresponding state is truncated.

In these examples we assume that the system identification
part of the problem has already been performed (Ĝ1 and Ĝ3
are given from the start). The objective of the examples is to
check that the model reduction methods in Section IV give
reasonable models of low order and to see how they react to
errors in the identified models (Δ(q) �= 0).

Example 1: In the first example, choose Δ(q) = 0. This is
to check that the methods can detect when the model can be
perfectly described by a model in cascade form.

The structured singular values for Method 1 are shown
in Fig. 2. As can be seen, we have n1 = 5 and n2 = 12.
The command hinfsyn in MATLAB that performs the
model matching (13) terminates with α1 = 5.91 ·10−4. The
structured singular values clearly indicate that we should
choose r1 = 4 and r2 = 2. That r1 = 4 means that the pole at
0.1 in Ĝ1(q) that is close to a zero can be removed without
causing a large input-output error. The norm of the original
system and the approximation error are∥∥∥∥ Ĝ1

Ĝ3

∥∥∥∥
∞

= 2.58,

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

= 1.32 ·10−5,

and the upper error bound (15) becomes 4.22 ·10−3. Hence,
for practical purposes, the approximation error is essentially
zero. The upper error bound is a factor 100 too conservative,
but the structured singular values are still very useful to pick
out the correct approximation orders r1,r2.

Method 2 also works well, and the singular values have
the same qualitative behavior as the singular values in Fig. 2.
Hence, we choose the same orders r1 and r2 for Method 2.
Both the approximation error and the error bound (17)
are slightly smaller for Method 2, 9.51 · 10−6 and 1.11 ·
10−3, respectively. The computation time is also smaller
for Method 2, 1.7 seconds, compared to 2.4 seconds for
Method 1. This is because the LMIs in Method 2 are of lower
dimension. Hence, for this particular example Method 2 is
slightly better. But both methods perform well and recover
the system in cascade form.

Example 2: In the second example, we choose the per-
turbation Δ(q) = 0.2/(q− 0.7). Such a perturbation could
have been caused by noisy input-output data in the system
identification. The structured singular values for Method 1
are shown in Fig. 3. As can be seen, now n2 is increased
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Fig. 3. The structured singular values from Method 1 in Example 2.

with one. The model matching problem (13) now results in
α1 = 0.348, which is much larger than α1 in Example 1.
This is a clear indication that we will not be able to find a
perfect match using a cascaded approximation. The reson is
of course the perturbation Δ(q).

In Fig. 3, it is seen that there are large drops from σ1,4
to σ1,5, and from σ2,2 to σ2,3. This suggest that we should
choose r1 = 4 and r2 = 2. But the structured singular values
σ2,3, . . . ,σ2,6 are now clearly greater than zero, and one could
also consider to choose r2 = 6. Using r1 = 4 and r2 = 2, we
obtain ∥∥∥∥ Ĝ1

Ĝ3

∥∥∥∥
∞

= 2.84,

∥∥∥∥ Ĝ1 −G1

Ĝ3 −G2G1

∥∥∥∥
∞

= 0.423,

and the upper error bound (15) is 2.20 which is about a factor
5 too conservative. Using r2 = 6 instead, the approximation
error becomes 0.347 and the upper bound 0.350. It turns out
that no matter how r1 and r2 are chosen, the error is never
smaller than 0.347. Hence, the constant α1 is a good indicator
on how good approximation one can get using Method 1.

The singular values for Method 2 look qualitatively the
same as in Fig. 3. Using r1 = 4 and r2 = 2, the approximation
error and the error bound (17) is 0.425 and 2.22, respectively.
This is slightly worse than for Method 1. Using r2 = 6
instead, the approximation error becomes 0.347 and the
upper bound 0.360, which again is slightly worse than for
Method 1. The computation time is 2.0 seconds, compared
to 2.1 seconds for Method 1.

In this example, neither method was able to compute a
perfect approximation. This was not expected either, since
Δ(q) �= 0. But both methods were able to compute two
relatively good approximations in cascade form, and the
singular values gave good insight about good approximation
orders r1,r2. It should be remembered that both methods are
suboptimal, and it is unknown how far away these solutions
are from a truly optimal solution.

VI. CONCLUSION

The problem considered in this paper has been inspired
by the discussion on the industrial applications of structural
system identification given in [17]. A typical approach is to
first estimate sub-models, which then are merged into a high

order model. Next model reduction is used to find a lower
order approximation suitable for e.g. model predictive control
design. If a standard model reduction technique, such as
balanced model reduction, is used the structure is, however,
lost. The aim of this contribution has been to propose and
study model approximation methods that retain the structure,
and in particular for cascade systems. The idea is to first find
a structured but higher order approximation. We have studied
H∞ methods, but it is as well possible to apply standard H2
model matching techniques. The second step is then to use
structured balanced truncation based on LMI techniques. The
advantage is explicit error bounds, which can be used for
model order selection.

Industrial applications often concern system models com-
posed of cascade, feed-forward, feedback and multiplicative
connections of linear dynamics and zero memory nonlinear
elements. It would be interesting to develop model approxi-
mation techniques for such more general systems.
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