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Abstract— A predictive outage compensator co-located with
the actuator node in a networked control system can be used to
counteract unpredictable losses of data in the feedback control
loop. When a new control command is not received at the
actuator node at an appropriate time instance, the predictive
outage compensator suggests a replacement command based
on the history of past control commands. It is shown that
a simple tuning phase together with the monitoring of the
control history can lead to a compensator that can improve the
closed-loop control performance under communication outages
considerably compared to traditional schemes. Worst case
performance bounds are given that relate the quality of the
tuning phase and the complexity of the compensator with the
length of the communication outage period. Zero-order-hold
(holding the past control command if the current is lost) and
applying an a priori decided constant signal (using a predefined
value on the control command if the current is lost) are special
cases of the more general compensation scheme presented. The
predictive outage compensator is illustrated through computer
simulation with communication outages.

I. INTRODUCTION

Communication networks are commonly used in dis-
tributed control systems since the seventies [1]. The recent
introduction of wireless technology has led to new challenges
due to the large variations in reliability and quality that radio
links impose. These problems have recently been tackled
through the design of communication protocols suitable for
control (e.g., [2], [3], [4]), through network aware compen-
sation schemes for control and estimation algorithms (e.g.,
[5], [6], [7]), and through joint communication and control
designs (e.g., [8], [9], [10]).

In this paper we focus on the problem of communica-
tion outages in networked control systems. These outages
correspond to short time intervals during which sensor data
do not reach the controller node or control commands do
not reach the actuator node. They are due to variations in
radio conditions, because of moving objects, interference etc.
Typical scenarios in industrial control settings are reported
in [2]. It is hard to prevent communication outages to occur,
and it is difficult to provide accurate stochastic models for
them. Stationary models commonly used in the literature on
networked control can be hard to justify in practice [6], [7].

A motivating scenario for the contribution of this paper
is the control of the floatation tanks in an ore concentrator
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at Boliden in Sweden. This system is being investigated
within the SOCRADES project [11]. It consists of four tanks
in series and is today controlled using four individual PI-
controllers [12]. The control objective is to maintain stable
levels in all tanks, compensating for fluctuations in inflow
and for load disturbances. For this process we are interested
in replacing the wired level and flow sensors with wireless
sensors. In doing so, it is desirable not to have to change the
overall control structure or not even the control parameter
tuning. We look instead for a solution where some additional
compensation is done at the actuator node, but no other
changes are needed in the closed-loop system.

The main contribution of this paper is a new predictive
outage compensator (POC) co-located with the actuator
nodes in a networked control system. The POC counteracts
unpredictable losses of data in the feedback control loop.
No modifications to the existing controller implementation
is needed, which is a desirable feature in many practical sys-
tems. The POC suggests a replacement command based on
the history of past control commands. So by a simple tuning
phase together with the monitoring of the control history,
the closed-loop control performance under communication
outages can be considerably improved. Predictive control has
been extensively used in various networked control settings
(e.g., [13]), but we believe that our study on the complexity
and actuator implementation of the compensator scheme is
new.

The outline of the paper is as follows. In Section II the
general idea of the POC is given. Section III describes the
procedure to use it. Section IV shows and describes POC
variants. Qualitative bounds for these are given in Section V.
The POC methodology is then evaluated in Section VI. Con-
cluding discussions and future work are given in Section VII.

II. PREDICTIVE OUTAGE COMPENSATION

The proposed POC is a generalization of the communi-
cation outage compensation algorithms used today such as
zero-order-hold, applying constant outputs, and is related to
a generalized hold function (e.g., [14]). The general idea
is to monitor the control signal and use a signal model
to extrapolate the signal in the event of a communication
outage. The proposed control setup is shown in Fig. 1. The
POC listens to the control signal sent from the controller.
If the signal is received, the POC passes the control signal
forward to the actuator and updates its own internal states
using the received signal. In the case that no control action
is received the POC uses its internal model to extrapolate
the control signal based on the signal model and previous
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Fig. 1. Networked Control System with Predictive Outage Compensator
(POC)

received data. An outage in the sensor signal link can
be treated using the same POC simply by instructing the
controller not to send a control command in the case that
the corresponding sensor signal is lost. Since no control
command is received at the POC when the sensor signal
is lost, it will act and work in the same way as usual
when a control signal is lost, regardless of where the outage
occurred.

A. System Description

First we define the signals and transfer functions describ-
ing the system. In the system modelling it is assumed that
the disturbances entering the system are load disturbances,
here denoted by d(k). The system output is given by

y(k) = P(q)
(
u(k)+d(k)

)
=

B(q)
A(q)

(
u(k)+d(k)

)
where B(q) and A(q) are polynomials of degree nB and
nA respectively and q denotes the one step forward shift
operator. The controller output is given by

uc(k) = C(q)
(
r(k)− y(k)

)
=

S(q)
R(q)

(
r(k)− y(k)

)
where S(q) and R(q) are polynomials of degree nS and nR

respectively.

B. Predictive Outage Compensator

The POC control signal estimate is given by

û(k) = G(q)d̂(k) =
E(q)
F(q)

d̂(k) (1)

where E(q) and F(q) are polynomials of degree nE and nF

respectively and d̂(k) can be interpreted as a virtual distur-
bance.The control action actuated on the plant is decided by
the switching mechanism inside the POC, given by.

u(k) =
{

uc(k) Command from controller received
û(k) Command from controller lost

C. Closed Loop Models

We will from this point onwards for the sake of simplicity
assume that the reference is r(k) ≡ 0. This can be done
without loss of generality since the influence of the reference
can be modelled in the load disturbance. Using this we can
conclude that when communication is working, i.e. the loop

Control
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Compensator
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Control
GenerationInitialization Outage?

No

Yes

Fig. 2. Flow diagram describing the POC

is closed, this gives the system output (2) and the controller
signal (3).(

A(q)R(q)+B(q)S(q)
)
y(k) = B(q)R(q)d(k) (2)

(
A(q)R(q)+B(q)S(q)

)
uc(k) = −B(q)S(q)d(k) (3)

We introduce the transfer function from d(k) to uc(k) (4),
compare with (3), where E0(q) and F0(q) are polynomials
of degree nE0 and nF0. Notice that (4) is −T (q), where T (q)
is the complementary sensitivity function for the closed loop
system.

uc(k) = − B(q)S(q)
A(q)R(q)+B(q)S(q)

d(k) =
E0(q)
F0(q)

d(k) (4)

When communication is lost, i.e. the loop is open, the system
output is as

y(k) = P(q)
(
û(k)+d(k)

)
(5a)

F(q)A(q)y(k) = B(q)E(q)d̂(k)+B(q)F(q)d(k) (5b)

By comparing (1) and (4) one can see that for a smart choice
of F(q), E(q) and d̂(k), and under some assumptions on the
reference and disturbances, we should be able to get similar
or same behavior of the system output when communication
is lost as when it is functioning. Since E(q)/F(q) should
describe −T (q), i.e. the negated complementary sensitivity
function, it should be a well-behaved function with lowpass
characteristics, given a reasonable control design. However,
when communication is lost the system is operated in open-
loop and unstable systems are therefore inherently difficult
to handle.

III. PREDICTIVE COMPENSATION PROCEDURE

The method used when designing and running the pro-
posed POC is given in Fig. 2 which shows the different parts
of the work flow in commissioning and running the proposed
algorithm.

A. Initialization

When first commissioning the POC one needs to make
some initial design decisions. The first is to decide the order
of E(q) and F(q). The choice of model order will later show
to be a key factor in the POC performance as it turns out
that zero-order-hold and applying constant signals are special
cases of the general POC. Another design parameter is the
methodology for detecting packet losses. This problem is left
outside the scope of this paper, however it is assumed to be
directly detectable if a packet has been lost or not.
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B. Compensator Tuning

The next stage is to tune the POC by identifying E(q) and
F(q) according to the previously decided model order. The
POC tuning is based on conventional recursive identifica-
tion [15]. The identification problem is not treated further in
the paper, instead E(q) and F(q) are assumed to have been
identified using an appropriate algorithm. The identification
experiment can be done by adding an excitation signal to the
control signal and measure the response from the controller
at the location of the POC.

C. Control Monitoring

This step is the core part of the POC. During this phase
the POC listens to the received control signal uc(k) and uses
it to filter out an estimate of d̂(k) as

d̂(k) =
F(q)
E(q)

uc(k)

or more precisely shifted as q−nF E(q)d̂(k) = q−nF F(q)uc(k)
which after rearranging gives

e0d̂(k+(nE −nF)) =
= uc(k)+ . . .+ fnF uc(k−nF)−
− e1d̂(k−nF −1+nE)− . . .− enE d̂(k−nF)

where ei and fi are the coefficients of E(q) and F(q)
respectively. As seen, what one can actually estimate is d̂(k)
shifted back nF −nE which is the relative degree of the POC.

D. Outage Control Generation

When an outage occur an estimate of d̂(k) is used to drive
the POC filter, in order to extrapolate the signal and provide
a control signal to actuate. When communication is lost and
we no longer receive any control signals, we can no longer
estimate d̂(k) using uc(k). Instead we have to decide on a
new policy. This can be done in several different manners.
In this paper we use the method to hold the last known d̂(k)
which we denote by d̄, another policy is to set d̄ = 0. The
general POC is now given by

û(k) =
E(q)
F(q)

d̄ (6)

again shifted as q−nF F(q)û(k) = q−nF E(q)d̄ which in the
same way as before gives

û(k) =
(
e0 + . . .+ enE

)
d̄−

− f1û(k−1)− . . .− fnF û(k−nF)

if the true value for uc is known for any time instant in the
recursion, the true value is used instead of the predicted û.

IV. POC INTERNAL MODEL COMPLEXITY

Within the proposed framework we have the freedom to
choose different complexity for the general POC (6). Next
we highlight three special cases.

Zero POC: This is the simplest version of outage com-
pensation. If no new control signal arrives to the POC an a
priori decided constant command, zero say, is actuated. This
corresponds to setting F(q) = 1 and E(q) = 0 in (6) so that
û(k) = 0.

Hold POC: Another common version of outage com-
pensation is zero-order-hold in which the action when no
command is received is to keep the last received value. In
this framework it corresponds to choosing F(q) = q−1 and
E(q) = 0 giving

(
q− 1

)
û(k) = 0 or shifted back in time,

û(k) = û(k−1).
Optimal POC: The best POC one can use in this frame-

work is to choose F(q) = F0(q) and E(q) = E0(q), i.e. their
true value. This corresponds to F0(q)û(k) = E0(q)d̄

V. WORST-CASE ERROR BOUNDS FOR PREDICTIVE

OUTAGE COMPENSATOR

In order to bound the error in the POC model, the
following lemma is useful.

Lemma 1: Consider the linear time-invariant input-output
model

δ (k) =
k

∑
j=k0

γ(k− j)ρ( j), k ≥ k0,

with impulse response γ( j). It holds that

|δ (k)| �
(

k−k0

∑
j=0

|γ( j)|
)

max
k0� j�k

|ρ( j)|.

For bounded input over the interval [k0,k f ], the maximum
output over the same interval is bounded by

max
k0�k�k f

|δ (k)| �
(

k f−k0

∑
j=0

|γ( j)|
)

max
k0�k�k f

|ρ(k)|.

Both bounds are tight, i.e., there is an input ρ(k) that
achieves equality.

Proof: Application of Theorem 27.2 in [16].
We are going to use the lemma to bound the difference

between the ideal input from the nominal model, uc(k), and
the input from the POC, û(k), when there is an outage. We
assume that the outage occurs in the time interval k ∈ [0,k f ],
without loss of generality. First, we re-define the nominal
model and the POC model in the following way:

uc(k) =
qnF0−1

F0(q)
p(k), (qnF0−1p(k) = E0(q)d(k)) (7)

û(k) =
qnF−1

F(q)
p̂(k), (qnF−1 p̂(k) = E(q)d̂(k)) (8)

where degF = nF and degF0 = nF0. The signal p(k) can be
thought of as a driving noise signal that contains everything
in uc(k+1) that cannot be explained by a linear combination
of uc(k), . . . ,uc(k− nF0 + 1). The signal p̂(k) has a similar
interpretation for û(k).

The model (7) can be realized in the state-space form

x(k+1) = c(F0)x(k)+Kp(k)

uc(k) = KT x(k),
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where c(F0) is a companion matrix of the polynomial
F0(q) = qnF0 + f 0

1 qnF0−1 + . . .+ f 0
nF0

,

c(F0) =

⎛
⎜⎜⎝

− f 0
1 − f 0

2 ... − f 0
nF0

1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 0

⎞
⎟⎟⎠ ∈ R

nF0×nF0

and

K =

⎛
⎝ 1

0
...
0

⎞
⎠ ∈ R

nF0 , x(k) =

⎛
⎜⎝

uc(k)
uc(k−1)

...
uc(k−nF0+1)

⎞
⎟⎠ ∈ R

nF0 .

The model (8) can be realized in exactly the same form
using a companion matrix c(F). If degF < degF0, we can
define the polynomial coefficients fnF+1 = . . . = fnF0 = 0 so
that c(F) ∈ R

nF0×nF0 , and both models have the same state
dimension.

If the POC has been run in the control monitoring mode,
as described earlier, and an outage occurs at k = 0, then the
signals û(k),uc(k) when k ∈ [0,k f ] are given by

û(k) = KT c(F)kx(0)+
k−1

∑
j=0

KT c(F)k− j−1Kp̂( j) (9a)

uc(k) = KT c(F0)kx(0)+
k−1

∑
j=0

KT c(F0)k− j−1Kp( j) (9b)

Subtracting (9b) from (9a), the error between ideal and actual
input in outage mode is given by

û(k)−uc(k) = KT [c(F)k − c(F0)k]x(0)

+
k−1

∑
j=0

KT c(F)k− j−1Kp̂( j)−
k−1

∑
j=0

KT c(F0)k− j−1Kp( j).
(10)

In order to derive simple expressions for the error bounds,
the following assumptions are made. They should be rela-
tively easy to verify for a given system.

Assumptions 1: It is assumed that both (7) and (8) are
exponentially stable, i.e., there are constants c0 > 0, c > 0,
0 ≤ λ0 ≤ 1, 0 ≤ λ ≤ 1 such that ‖KT c(F0)k‖1 ≤ c0λ k

0 ,
‖KT c(F)k‖1 ≤ cλ k. Where ‖ · ‖1 is the 1-norm of a vector
(sum of magnitude of elements). Furthermore, we assume the
actual input and the innovations are bounded |uc(k)| ≤ ρu,
|p(k)| ≤ ρp, ∀k and |p̂(k)| ≤ ρ p̂ for k ≥ 0.

The constants λ and λ0 are measures of how fast the
systems are. Using the error model (10) and the assumptions
we are going to analyze the error behavior. A simple example
is also given at the end of this section.

A. Zero POC

In the zero POC, the input is simply set to zero in
outage mode, i.e., û(k) = 0, k > 0. In the model framework
developed here, this means û(k+1) = 0 · û(k)+ p̂(k), that is
F(q) = 1, together with the outage policy p̂(k) = 0, k ≥ 0.
The error model (10) reduces to

û(k)−uc(k) = −KT c(F0)kx(0)−
k−1

∑
j=0

KT c(F0)k− j−1Kp( j),

for k > 0. Applying the triangle inequality and Lemma 1, we
have

|û(k)−uc(k)| ≤ ρu‖KT c(F0)k]‖1 +ρp

k−1

∑
j=0

|KT c(F0)k− j−1K|

≤ ρuc0λ k
0 +ρpc0

1−λ k
0

1−λ0
=: Γ0(ρu,ρp,k).

The error bound Γ0 converges exponentially fast with rate
λ0 to ρpc0

1−λ0
.

B. Hold POC

The hold POC can be modelled as before by the model
û(k+1) = û(k)+ p̂(k), that is F(q) = q−1, together with the
outage policy p̂(k) = 0, k ≥ 0. Hence, if there is an outage
at k = 0, we have û(k) = uc(0), for k ≥ 0. The error model
(10) reduces to

û(k)−uc(k) = KT [I−c(F0)k]x(0)−
k−1

∑
j=0

KT c(F0)k− j−1Kp( j),

since uc(0) = KT x(0). We make the following assumptions.
Assumptions 2: Assume there are constants c1 ≥ c′1 such

that ‖KT [I−c(F0)k]‖1 ≤ c1−c′1λ k
0 . Conservative choices for

c1,c′1 that work under Assumptions 1 are c1 = 1 + c0 and
c′1 = 0.

Applying the assumptions, the triangle inequality, and
Lemma 1, we have

|û(k)−uc(k)| ≤ ρu(c1 − c′1λ k
0 )+ρpc0

1−λ k
0

1−λ0

=: Γ1(ρu,ρp,k).

The error bound Γ1 converges exponentially fast to ρuc1 +
ρpc0
1−λ0

, at a rate λ0.

C. General POC

For the general POC,

û(k+1) = − f1û(k)− . . .− fnF û(k−nF +1)+ p̂(k),

we make the following assumptions.
Assumptions 3: Assume there are constants c2 ≥ c′2 and

1 ≥ λ2 ≥ λ ′
2 ≥ 0 such that ‖KT [c(F)k − c(F0)k]‖1 ≤ c2λ k

2 −
c′2(λ ′

2)
k. Conservative choices that work under Assump-

tions 1 are c2 = c+ c0,λ2 = max{λ ,λ0}, and c′2 = 0.
The error bound is now

|û(k)−uc(k)| ≤ ρu(c2λ k
2 − c′2(λ ′

2)
k)+ρpc0

1−λ k
0

1−λ0
+

+ρ p̂c
1−λ k

1−λ
=: Γ2(ρu,ρp,ρ p̂,k)

To make the worst-case bound Γ2 small, it is clear that it is
best to use a zero policy for p̂(k), i.e., ρ p̂ = 0. It is important
to remember that this is a strict worst-case analysis that
assumes that we have no knowledge whatsoever of p(k). If
we have knowledge of how quickly p(k) evolves, then it can
be very beneficial to choose a nonzero p̂(k) to counteract it,
as shall be seen in Section VI.
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Fig. 3. The worst-case bounds for systems with different bandwidth.

D. Example

As described in Section II-C the transfer function from
disturbance d(k) to control uc(k) is given by the negated
complementary sensitivity function. To illustrate the worst
case bounds we use a simple example. Let us assume
the feedback control system is operating well and is well
designed so that it can be described by a first-order system
(in continuous time) −ωb/(s+ωb), i.e., the control system
has bandwidth ωb. A zero-order-hold sampled realization
with sampling period h is uc(k+1) = λ0uc(k)+ p(k), where
λ0 = e−ωbh, and p(k) = (e−ωbh − 1)d(k). As general POC,
let us use the model û(k + 1) = λ û(k) + p̂(k), where λ =
e−1.3ωbh. This means that we have overestimated the actual
bandwidth of the system with 30% in the POC. The other
constants in Assumptions 1 are c0 = c = 1, and we assume
control signals uc(k) must be smaller than one, ρu = 1, and
that disturbances d(k) are smaller than 0.1. This means that
ρp = 0.1(1−e−ωbh). Based on the discussion in Section V-C,
we also choose the zero policy for p̂(k), i.e., ρ p̂ = 0. It is
also easy to verify that the constants in Assumptions 2 and
3 can be chosen as c1 = c′1 = 1, c2 = c′2 = 1, λ2 = λ0, and
λ ′

2 = λ .
We plot the error bounds Γ0, Γ1, and Γ2 as functions of

outage time k in Figs. 3(a) and 3(b). In Fig. 3(a), the feedback
control system is slow with ωbh = 0.1 and in Fig. 3(b) the
system is fast with ωbh = 1.0. As can be seen, for the slow
system, the general POC is best for all times, whereas the
hold POC is better than the zero POC for outages shorter
than seven samples. If the bandwidth is increased with a
factor 10, then the hold POC is by far worst for all times.
The reason is that the system is capable of very fast changes,
and to hold a constant input can quickly push the system in
the wrong direction. Also in the fast case is the general POC
best for all times, even though the zero POC does quite well
also.

The example has shown that a general POC can do much
better than the traditional hold and zero POCs compensators
both for slow and fast systems, even though the model had
a parameter error of 30%.

VI. SIMULATION EVALUATION

To give intuition around the boundaries for the three
POC versions in Section V for a more complex system,
simulations are performed on a system consisting of a
double integrator controlled with a lead-lag controller. The

y(k)

u(k)
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Fig. 4. Behavior of the zero POC policy (solid) compared to the Nominal
system behavior (dashed)

continuous time controller is discretized using sampling and
zero-order-hold with a sampling interval of Ts = 0.1s.

A. Simulation Scenario

The scenario considered in the simulation examples is the
following:

t = 0 The system starts at rest
t = 2 A load disturbance with amplitude 1 hits the system
t = 5 The communication between the controller and the

actuator is lost and the backup policy is activated
t = 8 The load disturbance disappears. Since there is no

communication between controller and POC the
disturbance is invisible and hence it can not be
compensated for. This is a fundamental limitation
for all compensators

t = 10 Communication is restored and the controller starts
to actuate the system back into rest

In the following three subsections we discuss the system
behavior under this scenario for the three compared POC
versions.

B. Zero POC

The response for the system with the zero POC can be
seen in Fig. 4. As seen, when the outage occur, the system
output instantly starts to grow rapidly, taking the system far
away from the desired setpoint. As a consequence of the
large perturbation caused during the outage the controller
has to use a large control signal to stabilize the system once
communication is restored.

C. Hold POC

The hold POC system response can be seen in Fig. 5.
Compared to the zero POC the hold POC initially, for the
first few samples after the outage, manage to keep the system
quite close to the nominal trajectory. However, after these
initial samples the system trajectory starts growing away
from the setpoint, although not as fast as in the zero POC
setup. When communication is restored the controller just
as in the zero POC case needs to use a large control signal
to stabilize the system again. The large magnitude of the
control signal for the zero POC and the hold POC, once
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communication is restored, is dependent on two factors. The
first and most apparent reason is the fact that the system
drifts far away from the setpoint and therefor a large signal is
needed. The second and more subtle reason is that there is a
large difference between the control signal that the controller
is computing and the one that is actuated. This difference will
cause wind-up effects in the controller which also appear in
the transient after communication is restored.

D. General POC

The system response with the general POC is shown in
Fig. 6. In this simulation scenario the internal model of the
POC is chosen as the nominal system, giving the optimal
POC. As seen the predicted trajectory follows the nominal
trajectory exactly during the outage up until t = 8s when
the disturbance changes. This is the best we can do since
we can only follow the nominal trajectory that was observed
prior to the outage. As the disturbance changes so does the
nominal trajectory. However since communication is lost the
POC can not detect this change of nominal trajectory since
it can not measure it.

When communication is restored the controller can use a
small input correction term to get the system stabilized again
after the outage. This is due, relating to Section VI-C, both
to the fact that the drift compared to the nominal trajectory
is small, causing a small control error, and that this in turn
yields a much smaller wind-up term in the controller. We
can also note that the settling time for the nominal system
and the system using the optimal POC are almost identical.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a new general methodology for com-
pensating for communication losses in networked control
systems. It has been shown that this method gives signifi-
cantly improved performance compared to previously used
compensation schemes without increasing the complexity too
much.

The ongoing work consists of examining how measure-
ments of the disturbances entering the system can be utilized
to get even better performance and tighter bounds on the
error modelling. Also work is currently being done on im-
plementing the proposed algorithm on a physical laboratory
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Fig. 6. Behavior of the optimal POC policy (solid) compared to the
Nominal system behavior (dashed)

process as well as further developing the method for more
general disturbances and systems.
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