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Abstract— We show that a linear time-periodic system with a
smooth impulse response can be arbitrarily well approximated
by a linear time-periodic state-space representation in so-
called Floquet-Fourier form. The Floquet-Fourier form has
a constant state matrix and the input and output matrices
have only finitely many nonzero Fourier coefficients. Such
representations are easier to use for analysis and control
design than the impulse response or fully general state-space
forms. The construction of the Floquet-Fourier form is done
using methods for model approximation of infinite-dimensional
linear time-invariant systems. We also propose a method for
constructing minimal realizations from impulse responses of a
special structure.

I. INTRODUCTION

Linear time-periodic (LTP) systems have been studied for
a long time in the control engineering community, see, for
example, [1], and the survey in [2]. In this paper, we look
at the problem of constructing approximate realizations of
LTP systems given in impulse-response form, using results
from [3]. This problem falls into the intersection of model
reduction and system identification. Finite-dimensional real-
izations greatly simplify both analysis and control synthesis,
see, for example, [4], [5] for norm and gap computation, and
[6], [7] for control design. Algebraic methods involving the
Fourier coefficients of the realizations have also obtained at-
tention, see, for example, [8]–[11]. Hence, once the methods
described in this paper have been applied to a system, a wide
range of tools are available for further analysis and control
design.

A related problem was addressed in circuit theory in
the 1960’s. See, for example, [12]–[14]. There time-varying
filters, so-called N -path filters, were studied. In these papers,
mainly the exact realization problem of LTP systems of cer-
tain structures were addressed. In this paper, the approximate
realization problem is in focus. Also, different mathematical
tools are used here. However, there is some overlap in
Section IV and this is commented there.

We consider LTP systems given in impulse-response form

y(t) =
∫ t

−∞
g(t, τ)u(τ) dτ + D(t)u(t),

g(t, τ) = g(t + T, τ + T ), D(t) = D(t + T ),
(1)

where g is the impulse response, D the direct term, and T the
period. We assume that the system is uniformly exponentially
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stable, meaning that there are positive constants κ1 and κ2

such that

|g(t, τ)| ≤ κ1 · e−κ2(t−τ), t > τ, (2)

and ‖D(t)‖∞ < ∞. Furthermore, the impulse response
should be causal,

g(t, τ) = 0, τ > t.

For simplicity, we only deal with single-input–single-output
(SISO) systems in this paper. We often identify (1) with a
bounded (on L2) linear operator G : u �→ y.

If the LTP system (1) has a state-space realization, then
there are T -periodic matrices such that

˙̄x = Ā(t)x̄ + B̄(t)u
y = C̄(t)x̄ + D(t)u, x̄ ∈ R

n,
(3)

and g(t, τ) = C̄(t)ΦĀ(t, τ)B̄(τ), see [15]. If Ā(t) is
bounded, (3) can be transformed into Floquet form, see [15],
using a T -periodic coordinate transformation x = T (t)x̄.
The Floquet form has the structure

ẋ = Qx + B(t)u
y = C(t)x + D(t)u, x ∈ R

n,
(4)

where Q is constant, and B(t), C(t), D(t) are T -periodic
matrices. Q, B(t), C(t) are not necessarily real even if
Ā(t), B̄(t), C̄(t) are real. The computation of the coordinate
transformation T (t) may be hard in practice. Typically
numerical integration of the equations is required.

The first contribution of this paper, presented in Sec-
tion III, is to show how we directly can approximate G,
given by (1), with an LTP system F in Floquet state-space
form (4), where B(t), C(t), D(t) are expressed with (finite)
Fourier sums

B(t) =
∑

k

Bkejkω0t

C(t) =
∑

k

Ckejkω0t

D(t) =
∑

k

Dkejkω0t

where ω0 = 2π/T . We call a realization in this form
a Floquet-Fourier realization. The second contribution of
this paper, presented in Section IV, is to show how min-
imal Floquet-Fourier realizations can be constructed from
impulse-responses of a special structure. This is done by
generalizing Gilbert’s realization method for linear time-
invariant (LTI) systems.

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

WeIP2.9

1-4244-0171-2/06/$20.00 ©2006 IEEE. 1411



Notation

The set CL(Ω) contains the functions whose (partial)
derivatives up to and including order L are continuous in
the open set Ω. Lp, p ≥ 1, is the space of p-integrable
functions over (−∞,∞) and ‖·‖p denotes its standard norm.
H∞(Ω) contains the functions that are analytic and bounded
in Ω, and ‖ · ‖∞ denotes the supremum of the magnitude
of the functions over Ω. ‖ · ‖ is the induced L2-norm of an
operator. L is the Laplace transformation operator, and ĝ(s)
is the Laplace transform of g(t). For short, derivatives are
denoted by g

(q)
t := ∂q

∂tq g, and if g has only one argument we
simply write g(q). R are the real numbers, Z the integers,
C the complex numbers, and C+ the complex numbers with
strictly positive real part.

II. PRELIMINARIES

In the following, it is assumed that D(t) = 0 in G given
by (1). This is not a serious restriction, since if D(t) �= 0 in
G, one can simply copy it into the resulting approximation
F afterwards. Notice, however, that even if D(t) = 0 in (1),
Dk may still be nonzero in the approximation F we derive
in Section III.

We consider systems G that have smooth impulse re-
sponses g. More precisely, they should belong to the set CL

e .
Definition 1 (The set CL

e [3]): A causal time-periodic im-
pulse response g belongs to the set CL

e if
(E1) g(t, τ) belongs to CL(Ω), where Ω = {(t, τ) : t > τ};
(E2) The limits

g(q)
x (t, t) := lim

Ω�(ν,ξ)→(t,t)
g(q)

x (ν, ξ)

exist for all t, where x = t or τ , and q = 0 . . . L;
(E3) g(t, τ) and all its partial derivatives up to and including

order L have uniform exponential decay (2).
If we assume that g ∈ CL

e , then the integrals

gk(t) =
1
T

∫ T

0

e−jkω0ξg(ξ, ξ − t)dξ (5)

are well defined for all k ∈ Z and t. The functions gk(t)
have the following properties:

Proposition 1: Assume that the causal LTP impulse re-
sponse g belongs to CL

e . Then,
(i) gk(t) = 0, t < 0;

(ii) gk(t) ∈ CL(0,∞);
(iii) |g(q)

k (t)| ≤ κ1e
−κ2t, q = 0 . . . L;

(iv) ĝk(s) ∈ H∞(C+);
(v) ĝk(jω) ∈ C∞(jR).

Proof: Some of the proofs use standard results from
Fourier analysis that can be found in, for example, [16].
(i): Follows from (5), since g(ξ, ξ − t) = 0 when t < 0
(g is causal). (ii): g(t, τ) ∈ CL(Ω), and we are allowed to
differentiate under the integral sign in (5). (iii): Essentially
shown in [3]. Use (E3). (iv): gk(t) is causal from (i) and
we have that ‖ĝk(s)‖∞ ≤ ‖gk(t)‖1, which is finite due to
(iii). (v): We have ĝ

(q)
k (jω) = L[(−t)qgk(t)](jω). Because

of (iii), we have that ‖(−t)qgk(t)‖1 < ∞, and (uniform)
continuity of ĝ

(q)
k (jω) follows for any q ≥ 0.

From an impulse response g ∈ CL
e , we can construct an

LTP system G[K] with impulse response

G[K] : g[K](t, τ) =
K∑

k=−K

gk(t − τ)ejkω0t. (6)

Notice that this is just a finite sum of output-modulated
LTI impulse responses gk(t). A similar expansion but with
input modulation can also be derived, see [3]. If all gk(t)
can be realized exactly with finite-dimensional state-space
representations, then (6) can be realized exactly in Floquet-
Fourier form. However, we do not assume here that gk(t)
have finite-dimensional realizations.

In [3], it is shown that G[K] converges to G as K → ∞
in induced Lp-norms. A formal statement is given in the
following proposition.

Proposition 2 ( [3]): Assume that the impulse response g
of G belongs to CL

e and L > 1. Then the difference between
G and G[K] with impulse response g[K] is bounded by

‖G − G[K]‖ ≤ C1

KL−1
,

for a G- and L-dependent constant C1.
Remark 1: The approximation G[K] corresponds to a

skew truncation of the harmonic transfer function of G, see,
for example [3], [11]. The N -path filters in [12], [14] are
parallel connections of N input- and output-modulated LTI
systems. Thus they have similarities with G[K].

Remark 2: Since we measure the quality of approximation
in an induced norm, we cannot approximate unstable systems
in this framework. If there is a stable/anti-stable decomposi-
tion of a model, one could apply the methods to each term
separately, by reversing time for the anti-stable term.

III. FLOQUET-FOURIER APPROXIMATIONS

In the previous section, we saw that a smooth stable LTP
impulse response g(t, τ) can be arbitrarily well approximated
by a finite sum of modulated LTI impulse responses gk(t).
The purpose of this section is to show that the possibly
infinite-dimensional transfer functions ĝk(s) can be approx-
imated arbitrarily well in H∞ by finite-dimensional transfer
functions f̂k(s). Since this is the case, G itself can be
approximated arbitrarily well in induced L2-norm by an LTP
system F in Floquet-Fourier form.

Remark 3 (Real g): When g(t, τ) is real, then g−k(t) =
gk(t). Then it is only necessary to use the following approx-
imation techniques for g0(t), . . . , gK(t), since the others are
obtained from the conjugates.

We will use a bilinear transformation that is a bijective
map between the closed complex right half-plane s ∈ C+ ∪
{∞} and z ∈ (C \ D) ∪ {∞}, where D = {z : |z| < 1} is
the open unit disc,

z =
s + α

α − s
, s = α

z − 1
z + 1

,

for all α > 0. In particular, the unit circle in the z-plane is
mapped to the imaginary axis in the s-plane.
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Remark 4: The bilinear map is introduced to be able to
do a Fourier expansion on the unit circle. It has nothing to
do with sampling here. Since the map is a bijection, nothing
is lost in the transformation. The choice of the parameter α
is discussed below.

Let us define

Gk(z) := ĝk

(
α

z − 1
z + 1

)
.

Since ĝk(s) ∈ H∞(C+), we have that Gk(z) ∈ H∞(C \ D̄),
and Gk(z) can be expanded in a Laurent series

Gk(z) =
∞∑

l=0

Gk,lz
−l, |z| > 1, (7)

where

Gk,l =
1
2π

∫ π

−π

Gk(ejθ)ejlθdθ. (8)

The integrals and functions are well defined due to Propo-
sition 1(iv)–(v). In particular, Gk(ejθ) is well defined and
bounded for all θ. To compute Gk,l, the integration in (8) can
be done on the unit circle because Gk(z) ∈ H∞(C\D̄). See,
for example, Theorem 13.11 in [17]. The series (7) converges
at least in L2-sense on the unit circle |z| = 1. On the unit
circle the series becomes a Fourier series.

We denote a truncated series by

Gn
k (z) :=

n∑
l=0

Gk,lz
−l. (9)

Truncated Laurent series have been suggested in [18], [19]
for the approximation of infinite-dimensional and large-scale
LTI systems. Since we have decomposed the LTP system into
a sum of LTI systems, we can use the same approach here. In
[19], it is shown that Gn

k (z) converges uniformly to Gk(z)
for |z| = 1, provided Gk(ejθ) is smooth enough. We have
the following lemma:

Lemma 1 ( [19]): For q = 1, 2, . . . it holds that

‖Gk(z) − Gn
k (z)‖2

∞ ≤ n1−2q

2π(2q − 1)

∫ π

−π

∣∣∣∣ dq

dθq
Gk(ejθ)

∣∣∣∣
2

dθ.

The more derivatives of Gk(ejθ) that are bounded, the
faster asymptotic convergence rate can we thus expect for
the truncated series. We will here only use Lemma 1 in the
case q = 1. The next lemma show boundedness of the first
derivative.

Lemma 2: Assume that g ∈ C2
e (L = 2). Then there is a

G-dependent constant C2 such that∣∣∣∣ d

dθ
Gk(ejθ)

∣∣∣∣ ≤ C2,

for all θ and k ∈ Z.
Proof: Using the chain rule we obtain

d

dθ
Gk(ejθ) =

d

dθ
ĝk

(
α

ejθ − 1
ejθ + 1

)

=
2αjejθ

(ejθ + 1)2
ĝ′k

(
α

ejθ − 1
ejθ + 1

)
. (10)

First we bound ĝ′k. Basic Fourier transform identities give

ĝ′k(jω) =
∫ ∞

0

(−t)gk(t)e−jωtdt,

(jω)2ĝ′k(jω) =
∫ ∞

0

e−jωt

(
d2

dt2
(−t)gk(t)

)
dt.

Using Proposition 1(ii)–(iii) with L = 2, we have

|ĝ′k(jω)| ≤ ‖(−t)gk(t)‖1 ≤ M1 < ∞
ω2|ĝ′k(jω)| ≤ ‖ d2

dt2
(−t)gk(t)‖1 ≤ M2 < ∞,

for all ω and k. Hence,

|ĝ′k(jω)| ≤ M1 + M2

1 + ω2
(11)

for all ω and k. Returning to (10) and using (11), we have∣∣∣∣ d

dθ
Gk(ejθ)

∣∣∣∣ ≤ 2α

|ejθ + 1|2
M1 + M2

1 + α2|ejθ−1|2
|ejθ+1|2

=
2α(M1 + M2)

|ejθ + 1|2 + α2|ejθ − 1|2
which is clearly bounded for all θ and we can pick its
maximum value as C2.

Remark 5: One can prove boundedness of higher deriva-
tives of Gk(ejθ) by using L > 2. Since we are mostly
interested in an existence proof, and not in the best possible
convergence bound, we do not use higher derivatives here.

We are now ready to state the first theorem of the paper.
Theorem 1: Assume that the causal LTP system G has an

impulse response g ∈ C2
e , and fix an α > 0. Then for all

(fixed) ε > 0 there are integers n and K such that ‖G−F‖ <
ε where F has impulse response

f(t, τ) =
K∑

k=−K

ejkω0tfk(t − τ)

and fk have transfer functions of McMillan degree less or
equal to n given by

f̂k(s) =
n∑

l=0

Gk,l ·
(

α − s

s + α

)l

, (12)

where Gk,l is defined in (8).
Proof: We have that

‖G − F‖ ≤ ‖G − G[K]‖ + ‖G[K] − F‖.
First we fix a K such that ‖G − G[K]‖ ≤ ε/2 using
Proposition 2. It is clear that a K ≥ 2C1/ε is sufficient.

Next we fix n such that ‖G[K] − F‖ ≤ ε/2. This is done
by approximating ĝk(s), for k = −K . . .K with truncated
Laurent series (9). From Lemmas 1 and 2 we have

‖ĝk(s) − f̂k(s)‖∞ ≤ C2√
n

,
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where f̂k(s) is defined in (12). Let us now choose an n such
that C2/

√
n ≤ ε/(2(2K + 1)). Using the triangle inequality

we then have

‖G[K] − F‖ ≤
K∑

k=−K

‖ĝk(s) − f̂k(s)‖∞ ≤ ε

2
.

This concludes the proof.
Remark 6 (To measure ĝk(jω)): To compute Gk,l, it is

necessary to know ĝk(jω). The functions ĝk(jω) can be
obtained from a Fourier transform of (5). However, they can
also be directly obtained from experiments since the steady-
state response to harmonics ejωt is

y(t) = Gejωt =

( ∞∑
k=−∞

ĝk(jω)ejkω0t

)
ejωt,

as shown in [1], [8], [10]. (See [3] for a derivation using the
current formalism.)

The transfer functions f̂k(s) in (12) all have poles at −α,
and can be written in the form

f̂k(s) =
ck,n−1s

n−1 + . . . + ck,0

sn + an−1sn−1 + . . . + a0
+ dk,

for some (in general complex) numbers ck,l, dk, and

ak = αn−k

(
n
k

)
.

It is now easy to construct a Floquet-Fourier realization of
F .

Corollary 1: A Floquet-Fourier realization of F is given
by

Q =

⎛
⎜⎜⎜⎜⎜⎝

−an−1 −an−2 . . . −a1 −a0

1 0 0 0
0 1 0 0
...

. . .
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

B0 =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , Ck =

(
ck,n−1 ck,n−2 . . . ck,0

)
,

Dk = dk,

for k = −K . . .K . The realization has state-space dimension
n and is controllable, but is not necessarily minimal.

Proof: Use the controllable canonical form to realize
f̂k(s). Since f(t, τ) has modulation on the output, we can
just multiply the outputs of the realizations of f̂k(s) with
ejkω0t and add them. The input-to-state dynamics is time
invariant and identical for all realizations of f̂k(s), and
is realized with Q and B0 above (Bk = 0, k �= 0).
Since the realization is in controllable canonical form, the
controllability follows.

We have reasons to expect that the state dimension n in
Corollary 1 needs to be large in general. The reason is that
all the poles are located in −α, and hence many states should
be needed to approximate dynamics with poles far from −α.

Following the recommendations given in [18], α should be
chosen to be around the bandwidth of the LTI system, for fast
convergence of the truncated series. But since we here have
2K + 1 different LTI systems ĝk(s) with possibly different
bandwidths, such a choice may not be possible.

Of course, there is nothing that prevent us from choosing
different α in the approximation of different ĝk(s). Then the
number of terms in (12) depends on k, call it nk, and it is
generally no longer possible to use the same states to realize
all f̂k(s). In the worst case, we end up with a Floquet-Fourier
realization with

∑K
k=−K nk states.

In [19], [20], a two-step approximation technique is sug-
gested. First a large number of terms n is used in the
truncated series. Then balanced truncation is applied to
bring down the order of the realization. We can use this
method here as well, and apply standard balanced truncation
separately to each f̂k(s). Generically, the poles will then
move away from −α.

In the next section, we show how a minimal Floquet-
Fourier realization can be constructed for f̂k(s) with different
pole locations.

IV. A MINIMAL FLOQUET-FOURIER REALIZATION

It is instructive to look at the structure of gk(t) for a system
in Floquet-Fourier form (4). We then have [3]

g(t, τ) =
∑

k

(∑
l

Ck−le
(Q−jIlω0)·(t−τ)Bl

)
ejkω0t,

and
gk(t) =

∑
l

Ck−le
(Q−jIlω0)tBl, (13)

where the indices k and l run over (finite) intervals that
take all nonzero Fourier coefficients of B(t) and C(t) into
account. Next we assume that Q can be diagonalized and
has the form

Q = diag{λ1Iq1 , . . . , λmIqm}, (14)

where q1 + . . . + qm = n and λ1, . . . , λm are distinct.
Remark 7: The assumption about diagonalizability of Q

simplifies matters next. It can be relaxed by considering
Jordan canonical forms. Notice that for a minimal realization
of a (SISO) LTI system, qi = 1. This need not be true in the
LTP case.

Using the diagonal form of Q, gk(t) can be expressed as

gk(t) =
m∑

i=1

∑
l

γ
[i]
k,le

(λi−jlω0)t, (15)

for some complex numbers γ
[i]
k,l. We notice that if there are

eigenvalues λi and λo that satisfy λi = λo + pjω0 for some
integer p, the realization may not be minimal. It is seen
from the structure of (13) and (15) that the mode λo can
be described by the mode λi by changing its modulation.
Hence, we make the following definition.

Definition 2: The modes λ1, . . . , λm in an impulse re-
sponse (15) are only considered distinct if there are no
integers i, o, p, i �= o, such that λi = λo + pjω0.
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This definition should not be surprising. It is well known
that the characteristic exponents of an LTP system are only
unique modulo jω0, see for example, [15].

Next, we consider the realization problem (the converse
problem): Given a set of LTI impulse responses in the form
(all sums are finite)

gk(t) =
∑

l

γk,le
λlt, (16)

construct a minimal Floquet-Fourier realization of

g(t, τ) =
∑

k

gk(t − τ)ejkω0t. (17)

The first step is to eliminate “unnecessary” modes in (16) and
pick out the smallest number of m distinct modes among λl.
Then (16) can be written in the form (15).

Next, we introduce the notation

BT
k =

(
(B[1]

k )T . . . (B[m]
k )T

)
Ck =

(
C

[1]
k . . . C

[m]
k

) (18)

where B
[i]
k and C

[i]
k correspond to the distinct mode λi and

whose sizes are to be determined. By equating (13) and (15),
we see that B

[i]
k and C

[i]
k should satisfy

γ
[i]
k,l = C

[i]
k−lB

[i]
l , (19)

assuming we have chosen m distinct modes and a Q in the
form (14). We can arrange (19) into the matrix equation

C [i]B[i] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

...

C
[i]
1

C
[i]
0

C
[i]
−1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
. . . B

[i]
1 B

[i]
0 B

[i]
−1 . . .

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .

γ
[i]
2,1 γ

[i]
1,0 γ

[i]
0,−1

γ
[i]
1,1 γ

[i]
0,0 γ

[i]
−1,−1

γ
[i]
0,1 γ

[i]
−1,0 γ

[i]
−2,−1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=: Γ[i] ∈ C
M×N ,

(20)

where the size of Γ[i] is the smallest possible to include all
nonzero elements γ

[i]
k,l. From the above expression, it follows

that up to M harmonics are needed in the output modulation,
and up to N harmonics are needed in the input modulation
to realize the mode λi. The elements C

[i]
k and B

[i]
k can be

found by means of a singular value decomposition (SVD)
or QR factorization of Γ[i]. The realization procedure is
summarized in the following algorithm, and can be seen as
a generalization of Gilbert’s realization of LTI systems, see,
for example [21].

Algorithm 1: Input: gk(t) in the the form (16), and period
T . Output: Floquet-Fourier realization of (17).

1. Pick the smallest number m of distinct modes in (16)
and put gk(t) into the form (15). Determine γ

[i]
k,l.

2. For i = 1 . . .m: construct the smallest possible Γ[i] to
include all the nonzero γ

[i]
k,l, and factorize it into full-

rank factors B[i] and C [i] as in (20). Put qi = rankΓ[i].
3. Construct Q, Bk, and Ck as in (14) and (18).
Theorem 2: The Floquet-Fourier realizations from Algo-

rithm 1 are minimal.
Proof: We prove the theorem by contradiction: Assume

there is a (minimal) realization of (16)–(17) with ñ <
n states. Without loss of generality we can assume the
minimal realization has a Floquet-Fourier form (Q̃, B̃k, C̃k).
This is because we have shown there exist Floquet-Fourier
realizations of (16)–(17), and removing uncontrollable and
unobservable states are just a matter of time-invariant coor-
dinate projections.

Q̃ can always be put in Jordan canonical form. Since
Jordan blocks with α ′1′s on the superdiagonal may lead
to terms tαeλit in the expansion of gk(t), but no such terms
are present by assumption, we can without loss of generality
assume that Q̃ is diagonal.

Assume that Q̃ has m̃ distinct eigenvalues λ̃i. For
(Q̃, B̃k, C̃k) to be able to realize gk(t), we must have m̃ =
m, because of the choice of m in Algorithm 1. Furthermore,
we can always put λ̃i = λi by re-arranging the states and/or
changing the modulation B̃k and C̃k.

Because (Q̃, B̃k, C̃k) is minimal, B̃[i] and C̃ [i] must be
full rank. Otherwise, more states can be removed. Then ñ =∑m̃

i=1 rank B̃[i] =
∑m̃

i=1 rank C̃ [i]. Because λ̃i = λi, we
have C̃ [i]B̃[i] = Γ[i]. Then rank B̃[i] = rank C̃ [i] = qi, and
ñ = n. This gives the contradiction.

Example 1: Consider the LTI impulse responses

g1(t) = e(−1+j)t

g0(t) = e−t

g−1(t) = e(−1−j)t

and let us use Algorithm 1 to find a minimal realization of
g(t, τ) =

∑1
k=−1 ejktgk(t − τ), where ω0 = 1. We have

m = 1 and pick λ1 = −1. Then γ
[1]
1,−1 = 1, γ

[1]
0,0 = 1, and

γ
[1]
−1,1 = 1. Since

Γ[1] =

⎛
⎜⎜⎜⎜⎝

0 0 1
0 0 0
0 1 0
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎠

has rank 3, we put q1 = 3. A Floquet-Fourier realization can
now be obtained by factorizing Γ[1]. One such realization is

C2 =
(
0 0 1

)
B1 =

(
1 0 0

)T

C0 =
(
0 1 0

)
B0 =

(
0 1 0

)T

C−2 =
(
1 0 0

)
B−1 =

(
0 0 1

)T

Q = diag{−1,−1,−1},
and it can be verified to be minimal.
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Example 2: Consider the same problem as in Example 1
but with

g1(t) = e(−1−j)t

g0(t) = e−t

g−1(t) = e(−1+j)t.

Again we have m = 1 and pick λ1 = −1. This gives

Γ[1] =
(
1 1 1

)
.

Since Γ[1] has rank 1, we have q1 = 1, and a minimal
realization is given by

C0 = 1 B1 = 1 B0 = 1 B−1 = 1
Q = −1.

Hence, a seemingly small change in the modulation can give
rise to a large change in the degree of the minimal realization.

Remark 8: In [14], a realization method similar to the one
presented here in Section IV is derived. The framework is
different though, because in [14] the parametric transfer func-
tion formalism introduced in [1] is used. Another difference
is that we here prove that the method generates minimal
realizations.

V. CONCLUSION

We have studied so-called Floquet-Fourier realizations
of LTP systems. These are realizations with constant state
matrix Q and where B(t), C(t), and D(t) only have a finite
number of nonzero Fourier coefficients. These realizations
are convenient both to store and to use for analysis and
control design. The first contribution of the paper was to
show that LTP systems with sufficiently smooth impulse re-
sponses can be arbitrarily well approximated by LTP systems
in Floquet-Fourier form. The proof was constructive and gave
a method to build such realizations via approximation of
infinite-dimensional LTI transfer functions. The realizations
were not necessarily minimal, and the second contribution
of the paper was to show how minimal Floquet-Fourier re-
alizations can be constructed from a certain class of impulse
responses. More general classes of impulse responses can be
considered by using the Jordan canonical form, but details
were not given here.

Future work could include design of efficient algorithms
that directly realizes a set of measured ĝk(jω) with a minimal
Floquet-Fourier form.
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