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Abstract— The experimental implementation and validation
of a localization system based on a heterogeneous sensor
network is described. The sensor network consists of ultrasound
ranging sensors and web cameras. They are used to localize a
mobile robot under sensor communication constraints. Apply-
ing a recently proposed sensor fusion algorithm that explicitly
takes communication delay and cost into account, it is shown
that one can accurately trade off the estimation performance by
using low-quality ultrasound sensors with low processing time
and low communication cost versus the use of the high-quality
cameras with longer processing time and higher communication
cost. It is shown that a periodic schedule of the sensors is
suitable in many cases. The experimental setup is discussedin
detail and experimental results are presented.

I. I NTRODUCTION

Wireless sensor networks provide opportunities for the
development of new applications in monitoring and automa-
tion [1], [2]. One such possible application area is location
systems for tracking mobile objects in indoor and outdoor
environments, e.g., [3], [10]. Tracking and localization are
well-studied problems, see for example [4]. Nevertheless,
implementation of such algorithms in wireless networks pose
new challenges: Resource limitations such as battery power
and communication bandwidth need to be taken into account
in the design of estimation and control algorithms, as well
as communication protocols. When not all sensors can be
used simultaneously, they need to be actively selected. Sensor
scheduling problems have been studied extensively in the
literature, e.g., [5]. One class of scheduling problems is when
there is a cost associated with the use of the sensors [6].
Another problem recently studied is when the schedule
depends on the sensor quality, the processing time and the
communication cost [7].

The problem considered in this paper is to estimate the
position of a mobile robot using two types of sensors:
ultrasound ranging sensors and web cameras. The system
architecture is illustrated in Fig. 1. The sensors share the
same communication medium, so the fusion center needs
to both schedule which sensor to use and decide on how
to incorporate the sensor data into a position estimate. The
ultrasound sensors provide low-quality measurements, small
processing delay, and a light communication cost. The web
camera provide high-quality measurements, large processing
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Fig. 1. The system architecture for the localization of a mobile agent using
a heterogeneous sensor network.

delay, and a high communication cost. The solution described
in the paper shows how optimal sensor schedules and fu-
sion algorithms developed in [7] can be implemented and
extended. The periodic and aperiodic schedules are found by
means of search over a finite set. The main contribution of
the paper is an experimental implementation and validation
of our solution using a heterogeneous sensor network and a
mobile robot.

The outline of this paper is as follows. Section II presents
robot and sensor models used in the fusion center. A sensor
fusion algorithm together with a scheduler for the sensor
communication is described in Section III. The experimental
setup is given in Section IV. In Section V the experimental
results are presented and some filter design choices are
discussed. The paper is concluded in Section VI.

II. ROBOT AND SENSORMODELS

In this section, the kinematic mobile robot model and the
sensor models are presented. It is also shown how the models
are sampled and how stochastic noise enters in the models.

A. Kinematic Models

The mobile robot used for the experimental validation can
be modeled by a simple non-linear kinematic model,

Ẋ = V cos θ, Ẏ = V sin θ

Jθ̈ = T, mV̇ = F,
(1)

where V is the velocity,θ the heading,J the moment of
inertia, T the applied moment,F the applied motor force,
andm the vehicle mass. The model is depicted in Fig. 2.

To simplify the description further, we consider one-
dimensional movement along theX-direction (θ = 0), which
reduces (1) to

Ẋ = V, mV̇ = F. (2)
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Fig. 2. Mobile agent kinematic model.

The driving forceF is supposed to be unknown. We model
the motion of the robot as a random walk and an integrated
random walk.

Remark 1: If the model (1) is linearized, it is straightfor-
ward to extend the following theory to movement in two
dimensions by doubling the state space dimension. Another
option is to apply Extended Kalman Filtering theory directly
to the nonlinear model (1), but that lies outside the scope
of this paper since we here mainly want to experimentally
verify the ideas in [7].

The sampled data models are as follows.
1) Random Walk Model: In the first model, we assume the

robot motion is a random walk. This means that the velocity
V is white noise. If the model (2) is sampled with a uniform
sampling interval under this assumption, we obtain

Xk+1 = Xk + wk,

where wk is a random process noise variable such that
Ewk = 0 andEwkwk′ = Wδk−k′ .

2) Integrated Random Walk Model: In the second model,
we assume instead that the forceF acting on the robot is
subject to white noise. If the model (2) is sampled with a
uniform sampling intervalh under this assumption, we obtain

Xk+1 = Xk + hVk, Vk+1 = Vk + wk,

where wk is a random process noise variable such that
Ewk = 0 andEwkwk′ = Wδk−k′ .

As is well known, the random walk and the integrated
random walk models can be written as a state-space model,
commonly used for estimation and tracking purposes [4] as,

xk+1 = Axk + Bwk, (3)

with state a vectorxk ∈ R
n. For the first model, we have

xk = Xk, A = B = 1, and for the second model we have

xk = (Xk, Vk)T , A =

(

1 h
0 1

)

, andB =

(

0
1

)

.

B. Sensor Models

The heterogeneous sensor network consists of ultrasound
sensors and web cameras.

In Fig. 3, the ultrasound-based localization system is
illustrated. The ultrasound receivers are placed in the ceiling
and an ultrasound transmitter is carried by the mobile robot.
Each receiver can calculate its distance to the robot. Fusing
the distances given by three receivers, it is possible to
determine the robot position through multilateration [9].
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Fig. 3. Ultrasound-based localization system model with measurement
error ∆X. Each pair of ultrasound receiver and transmitter calculates
their absolute distanceRi and ultrasound transmitter position is achieved
applying the multilateration localization method.
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Fig. 4. Vision-based localization system model with measurement error
∆X1,∆X2. The measurement error will increase when the mobile agent
is more distant from the vision sensor.

In Fig. 4, the vision-based localization system is il-
lustrated. The web camera span-angle isθ and its pixel
resolution is denoted by∆α. Through image processing
it is possible to compute the agent centroid position by
performing a transformation from pixel coordinates to world
coordinates. A given area will map into the same pixel. The
size of the area depends on the distance to the camera. The
position error will increase when the mobile agent is more
distant from the web camera.

To get mathematically tractable sensor models, the posi-
tion measurements will be modeled as

Xmeas,k = Xk + ∆Xk,

where the measurement error is zero on average,E∆Xk = 0.
The variances of the measurement error are assumed to be
in the form E∆Xk∆Xk′ =: Σδk−k′ for the ultrasound
measurement, andE∆Xk∆Xk′ =: σδk−k′ for the camera
measurement. The variancesΣ andσ depend on the position
X of the robot. If we consider movement in a small area,
however, the dependance on position can be neglected. If
the dependence ofΣ and σ on X is known, that can
be explicitly taken into account in the covariance-based
scheduler described in Section III-B.2, but not in the periodic
scheduler in Section III-B.1.

III. SENSORFUSION AND SCHEDULING

In this section, the sensor fusion and the scheduling
algorithms are presented. These algorithms were originally
proposed in [7]. We recall them here and include a slight
extension to the scheduler that can be used to take varying
variance of measurement into account.



A. Sensor Fusion

Define two sets of discrete time instantsThq andTlq, such
that whenk ∈ Thq the high quality sensor is used by the
sensor fusion center, and whenk ∈ Tlq the low quality sensor
is used. The model (3) together with the sensors is then

xk+1 = Axk + Bwk, k ≥ 0, (4)

y1,k = C1xk + v1,k, k ∈ Tlq, (5)

y2,k = C2xk−d + v2,k, k ∈ Thq, (6)

wherey1,k is the low-quality measurement andy2,k the high-
quality measurement. The variablesv1,k andv2,k are white
measurement noise,Ev1,kv1,k′ = Σδk−k′ , andEv2,kv2,k′ =
σδk−k′ . It is assumed that the high-quality sensor measure-
ment y2,k is more accurate thany1,k, i.e., σ < Σ, but
delayed byd samples because of a higher processing and
communication time. It is assumed that the delay of the
low quality sensor can be neglected since its processing and
communication time is lower than one time step. Note that
y1,k is not defined whenk ∈ Thq and y2,k is not defined
whenk ∈ Tlq.

We next derive a time-varying Kalman filter for (4)–(6).
We rewrite the system to accommodate for the time delayd
by introducing a new state vector

x̄k =
(

xk xk−1 . . . xk−d

)T
, (7)

so that (4)–(6) becomes

x̄k+1 = Āx̄k + B̄wk, (8)

ȳk = C̄kx̄k + v̄k. (9)

where,

Ā =
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(10)

C̄k =

{ [

C1 0 . . . 0 0
]

, k ∈ Tlq
[

0 0 . . . 0 C2

]

, k ∈ Thq.
(11)

Introduce the following time-varying recursive Riccati
equation

P̄ ∗
k+1|k = Ā

[

P̄ ∗
k|k−1

− P̄ ∗
k|k−1

C̄T
k

×
[

C̄kP̄ ∗
k|k−1C̄

T
k + V̄k

]−1

× C̄kP̄ ∗
k|k−1

]

ĀT + B̄WB̄T ,

(12)

where P̄ ∗
k|k−1

is the minimum possible covariance of the
estimation error of the statēxk given the measurements up
until time k − 1. The time-varying Kalman filter that gives
the optimal estimate is given by

ˆ̄xk+1|k =
(

Ā − K̄kC̄k

)

ˆ̄xk|k−1 + K̄kȳk (13)

K̄k = ĀP̄ ∗
k|k−1

C̄T
k

(

C̄kP̄ ∗
k|k−1

C̄T
k + V̄k

)−1

, (14)

whereˆ̄xk+1|k is the new state estimate and̄Kk is the Kalman
gain. See [7] for further details on this filter.

B. Sensor Scheduling

How to schedule the sensors, i.e., how to choose the sets
Tlq andThq, is described next.

The overall estimation quality is defined as the average
trace of the covariance matrix of the estimation error:

paverage(k) :=
1

k + 1

k
∑

i=0

traceP ∗
i|i, (15)

where P ∗
k|k is the block of P̄ ∗

k|k that corresponds to the
current statexk in (7), see [7]. It is desirable to minimize
paverage(k) through a proper choice ofThq. To also take
communication cost into account, the following performance
criterion is considered:

VT (k, M) :=
Mλ

k + 1
+ paverage(k), (16)

whereM is the number of times the high-quality sensor is
used over the time interval[0, k] andλ is a positive parameter
that is proportional to the communication cost.

The average communication cost per time sample is
Mλ

k + 1
. When only the high-quality sensor is used, the

performance isVT (k, k) = λ + paverage(k), and when only
the low-quality sensor is usedVT (k, 0) = paverage(k). Thus
λ is a measure of how much better (measured in resulting
average error covariance) than the low-quality sensor the
high-quality sensor must be for us to prefer to use it
(VT (k, k) > VT (k, 0)).

It is legitimate to ask when the high-quality vision sensor
is useful at all, since data from that sensor are delayed
and have a communication cost. It is shown in [7] that
there exists non-trivial sensor schedules that incorporates
the vision sensor while minimizingVT . The optimization
problem grows exponentially with the time horizonk. To find
suboptimal solutions, we restrict the presentation to periodic
schedules and to a local search for so called covariance-based
schedules.

1) Periodic Scheduler: For the periodic scheduler, we
assume that the high-quality sensor is used with period
N ≥ 1:

Thq(N) = {N − 1, 2N − 1, 3N − 1, . . .}

= {k ≥ 0 | (k + 1) mod N = 0},

Tlq(N) = {0, 1, 2, . . . , N − 2, N, . . .}

= {k ≥ 0 | (k + 1) mod N 6= 0}.

One can show thatP̄ ∗
k|k−1

(and P̄ ∗
k|k) converges to an

N -periodic matrix function whenk → ∞, under weak
assumptions on the system [7]. Hence,paverage(k) tends to
a constantpaverage(N). For sufficiently largek, the optimal
sensor cycle period is given by

N∗
k = arg min

N

(

λ

N
+ p∗average(k)

)

. (17)

Note that (17) is a simple minimization problem over a finite
set. The steady-state optimal periodN∗ is given by

N∗ = arg min
N

(

λ

N
+ p∗average(N)

)

.
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Fig. 5. Tree search for the covariance-based scheduler whenD = 2.

2) Covariance-Based Scheduler: For the covariance-
based scheduler, we let the sensor choice be given by the
sensor that decreases the estimation error covariance the
most in one step. Such an online scheduler is interesting
to compare with the offline periodic scheduler discussed in
previous section.

At a fixed time instantk, the covariance-based scheduler
computes the error covariancesP ∗

k+i|k+i−1
, i = 0, . . . , D,

for all possible sensor combinations. The search depthD is a
tuning parameter. To find the appropriate sensor schedule, the
a tree search is done to find the lowest sum ofP ∗

k+i|k+i−1
,

i = 0, . . . , D (adding the communication costλ each time
a high-quality measurement is used). An example of such
a tree search is shown in Fig. 5 for depthD = 2. The
scheduleThq for the time intervalk, k + 1, . . . , k + D is
the path that generates the minimum. The algorithm is run
when k = 0, D, 2D, . . .. Another alternative is to optimize
the schedule at everyk in a receding horizon approach,
but that requires more computations. Based on the estimates
of current and future position, it is also possible to let the
noise covariance matricesΣ, σ, W, depend on position when
computingP ∗

k+i|k+i−1
, as mentioned in Section II-B.

IV. EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 6. The system
is composed of ultrasound sensors, web cameras, wireless
network, fusion center, and a mobile agent to track. The web
camera presents the high-quality sensor and is connected to
a laptop enabling image processing and data exchange. A
single camera was used in the tests described here. The
ultrasound sensors use wireless sensor nodes for signal
processing and data exchange. Both types of sensors com-
municate with a base-station placed in the same area which
is used to perform the data fusion, filtering and estimation.
The base-station’s processing unit is connected to a wireless
node in order to communicate with the ultrasound nodes
over IEEE 802.15.4 and an IEEE 802.11g wireless card to
communicate with the vision system’s processing unit. The
ultrasound sensor network consists of 16 wireless nodes with
ultrasound sensors placed in the ceiling of our corridor. The
web camera is placed on the wall in the area where the tests
are performed. A radio-controlled car is used as the mobile

Fig. 6. Overview of the experimental setup that consists of ultrasound
sensors, web cameras, wireless network, fusion center, anda mobile agent
to track.

agent to be located. The rest of this section describes in some
more detail the ultrasound-based sensor system, the vision-
based sensor system, and the sensor fusion center.

A. Ultrasound-Based Sensor System

The ultrasound transmitter and receiver circuitry are con-
nected to wireless sensor nodes of the type Tmote Sky [8]. In
order to perform the multilateration position computation, a
method based on the time-delay-of-arrival (TDOA) technique
was implemented. See [9] and [10] for further details on this
method.

The ultrasound system works as follows. A transmitter
circuitry placed on the mobile agent interact with the ul-
trasound receivers connected to the wireless nodes in the
ceiling. With a 250ms period, the ultrasound transmitter
node is simulatenously sending a wireless (IEEE 802.15.4)
message and an ultrasound signal. The ultrasound receiver
computes the time of flight of the ultrasound signal, using
time calibration for the wireless message and the speed
of sound. This gives the distances between each receiver
node and the transmitter node. The position calculation
is performed in the fusion center where all the distances
achieved by the receiver nodes are collected and used in a
multilateration computation. Filtering and outlier rejection
are used to improve information.

B. Vision-Based Sensor System

A vision-based system that is composed of a Logitech
Quickcam Fusion web camera [11] connected to a process-
ing unit was developed. The processing unit performs the
image acquisition, storage, and processing according to the
scheduler in the sensor fusion center. The communication
with the fusion center is over a IEEE 802.11g network. The
output of the vision-based system is the 2D position of the
mobile agent in the experimental area. It is computed through



a linear transformation between pixel coordinates and world
coordinates.

The image acquisition and storage is performed using the
OPENCV library functions [12]. The image processing was
done in MATLAB. The time spent for these three tasks is
about 1 s, which is more than the communicating delay.
An artificial delay was introduce to investigate the proposed
filtering schemes. In the experiments presented in Section V,
the artificial delay was set to 2 s, so the total delay it
took from requesting a vision-based position measurement
to having it available in the sensor fusion center was 3 s.

C. Sensor Fusion Center

The sensor fusion center is responsible for reading mea-
surements from both sensors and using them according to
the specified filter. It also has the task of triggering the
vision-based system measurements. The ultrasound measure-
ments are received periodically. The sensor fusion center
implements the sensor fusion and scheduling algorithms of
Section III.

V. EXPERIMENTAL VALIDATION

This section presents some experimental results performed
on the testbed. First, we discuss how some model parameters
used in the filter were obtained, and then we compare the
periodic and the covariance-based scheduler for some choices
of tuning parameters.

A. Model Parameter Estimation

The ultrasound sensors give on average an error of8 cm,
with a variance of12 cm2. The vision-based system gives
more precise measurements with average errors less than
2 cm, and with variance lower than1 cm2. These values
were achieved by testing the system using fixed positions
of the vehicle. Based on these measurements, we use for the
model (4)–(6)Σ = 12 for the ultrasound-based system and
σ = 1 for the vision-based system.

The mobile agent moves in the tests in theX-direction:Y
is fixed andX is varying. The test trajectory is approximately
4.5 m long, and a single test takes about12s. Since the
measurements given by the camera are very accurate and
taken at precise times, one can estimate the velocity by
V = (Xk−Xk−1)/∆t. The mobile agent starts up (first2 s)
with a velocity approximately equal to11 cm/s, followed
by an approximately constant velocity of50 cm/s. For the
final 3 s it has a constant velocity of11 cm/s. Using these
velocities, the process noises of the model 3 in Section II-A
were set toU = 0.5 andU = 0.05, respectively.

B. Sensor Fusion Tests

Tests were made using the random walk and the integrated
random walk models in (3). The periodic schedules and the
covariance-based schedule were evaluated. In each test,29
samples were taken with the sampling periodh = 1 s. The
performance of each filter was evaluated through the cost

VE(k, M) =
1

k + 1
(Mλ +

k
∑

i=0

∣

∣xreal,i − xest/raw,i

∣

∣

2
),

(18)

TABLE I

OPTIMAL PERIODIC HIGH-QUALITY SENSOR SWITCHINGN∗ FOR

MODEL 1 AND 2 CONSIDERING DIFFERENT COMMUNICATION COSTλ.

λ Model 1|U=1.8 Model 2|U=0.05

0 N∗= 9 N∗= 6, 8, 12
2000 N∗= 9, 14 N∗= ∞

where xreal,i is the actual robot position at timei, and
xest/raw,i is the measured or estimated position at timei,
depending on what filter was used. The empirical costVE

should be compared with the costVT in (16).
We expressVT as roughly the average ofVE over several

different identical experiments:

VT (k, M) = lim
i→∞

1

i

i
∑

j=1

V j
E(k, M),

whereV j
E(k, M) denotes thej-th repeated experiment and

we assume the noise sequences in different experiments are
independent.

Let us first consider the periodic scheduler in an exper-
iment in which the communication cost was set toλ = 0.
Fig. 7 shows the empirical costVE as a function of the
the periodN . The upper plots are derived for the random
walk model and the lower plots for the integrated random
walk model. The cost for the estimated positions with the
periodic scheduler is shown together with the cost for the
raw position measurements. The integrated random walk
model (lower plots) provides better position estimates than
the random walk model, which is expected since the motion
of the mobile agent is closer to the integrated random walk
model. It is also clear that in this case, the periodic scheduler
presented in the paper gives much better estimates than
the raw measurements. Fig. 7(a) indicates that the resulting
performance for the proposed filter is for most values ofN
worse than using the direct measurements.

Also the performance of the covariance-based scheduler
is shown in Fig. 7. The optimal schedule obtained was to
never use the high-quality sensor in the case of the random
walk model and to useM = 12 for the integrated random
walk model. The parameter search depth parameter was
tuned toD = 4. It can be seen Fig. 7 that the covariance-
based scheduler does not give as good results as the periodic
scheduler.

The optimal periodN∗ for communication costλ = 0
and 2000 are given in Table I. It is natural that when the
communication costλ is large, the schedule periodN∗ is
large (since the vision sensor is then too expensive to use).

Fig. 8 shows a position trajectory. Both filtered and raw
position measurements are compared to the real positions.
The period for the high-quality sensor isN = 6. We note
again the results using the integrated random walk model for
the sensor fusion filter together with the periodic scheduler
are good (lower plot). The initial transient in the estimation
error is due to the initial error in the estimator.



(a) Empirical costVE for the random walk model.

(b) Empirical costVE for the integrated random walk model.

Fig. 7. Empirical costVE as a function of the the periodN computed
for the estimated positions with the periodic and the covariance-based
schedulers. The cost for the raw position measurements are also shown.
As expected, the integrated random walk model provides better position
estimates than the random walk model.

VI. CONCLUSIONS

An implementation and evaluation of a localization system
based on a heterogeneous sensor network was presented.
The system is suitable for testing various networked control
and estimation algorithms. A sensor fusion scheme with an
intelligent scheduler that takes communication cost and delay
into account was demonstrated with promising results. The
sensor network consisted of ultrasound proximity sensors and
web cameras. They were used to localize a mobile robot
under sensor communication constraints.

Our ongoing work is on integrating other applications
over the same wireless network and show how this type
of wireless sensor infrastructure can provide a multitude
of services with guaranteed quality. In doing so, it will be
important to handle a variety of imperfections in the sensor
scheduling and sensor fusion, such as packet losses and
dynamic allocation of network resources.
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