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Abstract— The experimental implementation and validation ) MM
of a localization system based on a heterogeneous sensor Mobile Agent 1 Accurate but delayed
network is described. The sensor network consists of ultramind | Web-camers
ranging sensors and web cameras. They are used to localize a
mobile robot under sensor communication constraints. Appj- Y2 Y1
ing a recently proposed sensor fusion algorithm that expliitly
takes communication delay and cost into account, it is shown -
that one can accurately trade off the estimation performane by Fusion Center—f
using low-quality ultrasound sensors with low processingime s(:ﬁe/dulgri

and low communication cost versus the use of the high-qualit

Cameras_WIth longer processing tl_me and higher communicati . Fig. 1. The system architecture for the localization of a iechgent using
cost. It is shown that a periodic schedule of the sensors is 3 heterogeneous sensor network.

suitable in many cases. The experimental setup is discussed
detail and experimental results are presented.

|. INTRODUCTION delay, and a high communication cost. The solution desdribe
, . . in the paper shows how optimal sensor schedules and fu-
Wireless sensor networks provide opportunities for the. . ) )
. . N Sion algorithms developed in [7] can be implemented and
development of new applications in monitoring and automa- T L
. . L . ._extended. The periodic and aperiodic schedules are found by
tion [1], [2]. One such possible application area is loaatio . . N
. . . S means of search over a finite set. The main contribution of
systems for tracking mobile objects in indoor and outdoog . . . ! S
) . o the paper is an experimental implementation and validation

environments, e.g., [3], [10]. Tracking and localizatiore a . :

: of our solution using a heterogeneous sensor network and a
well-studied problems, see for example [4]. Nevertheles§ﬁobile robot

implementation of such algorithms in wireless networksegpos . . . .
) S The outline of this paper is as follows. Section Il presents
new challenges: Resource limitations such as battery power . .
L , . rgbot and sensor models used in the fusion center. A sensor
and communication bandwidth need to be taken into accoupt . : )
. : - . ﬁjsmn algorithm together with a scheduler for the sensor
in the design of estimation and control algorithms, as we AT : . ) .
o communication is described in Section Ill. The experimenta
as communication protocols. When not all sensors can be o . : . :
. . Sétup is given in Section IV. In Section V the experimental
used simultaneously, they need to be actively selectecddBen ) . .
. : . .~ results are presented and some filter design choices are
scheduling problems have been studied extensively in tr(lje . . .
i : . iscussed. The paper is concluded in Section VI.
literature, e.g., [5]. One class of scheduling problemshismv
there is a cost associated with the use of the sensors [6].
Another problem recently studied is when the schedule
depends on the sensor quality, the processing time and thdn this section, the kinematic mobile robot model and the
communication cost [7]. sensor models are presented. It is also shown how the models
The problem considered in this paper is to estimate thae sampled and how stochastic noise enters in the models.
position of a mobile robot using two types of sensors: _
ultrasound ranging sensors and web cameras. The systémKinematic Models
architecture is illustrated in Fig. 1. The sensors share the The mopbile robot used for the experimental validation can
same communication medium, so the fusion center neegg modeled by a simple non-linear kinematic model
to both schedule which sensor to use and decide on how . .
to incorporate the sensor data into a position estimate. The X =V cosb, Y = Vsinf
ultrasound sensors provide low-quality measurementsll sma Jo=1 mV = F 1)
processing delay, and a light communication cost. The web ’ ’
camera provide high-quality measurements, large prawgssiwhere V' is the velocity,d the heading,/ the moment of
inertia, T' the applied momentF' the applied motor force,
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Il. ROBOT AND SENSORMODELS
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Fig. 2. Mobile agent kinematic model.
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Fig. 3. Ultrasound-based localization system model withrasneement
error AX. Each pair of ultrasound receiver and transmitter caleslat

The driving forceF is supposed to be unknown. We modelftheir absolute distancé; and ultrasound transmitter position is achieved

the motion of the robot as a random walk and an integrateag plying the multiateration localization method.

random walk. o Q!
Remark 1: If the model (1) is linearized, it is straightfor- e Ao

ward to extend the following theory to movement in two

dimensions by doubling the state space dimension. Another

option is to apply Extended Kalman Filtering theory dirgctl

to the nonlinear model (1), but that lies outside the scope

of this paper since we here mainly want to experimentally Q o

verify the ideas in [7]. — N
The sampled data models are as follows. AX AX:
1) RandomWalk Model: In the first model, we assume theFig. 4. Vision-based localization system model with meement error

robot motion is a random walk. This means that the velocit® X1,AX2. The measurement error will increase when the mobile agent

V' is white noise. If the model (2) is sampled with a uniform® More distant from the vision sensor.

sampling interval under this assumption, we obtain

In Fig. 4, the vision-based localization system is il-
lustrated. The web camera span-anglefisand its pixel
where w;, is a random process noise variable such thatsolution is denoted byA«. Through image processing
Ew, =0 and Ewgwy = Wog_. it is possible to compute the agent centroid position by

2) Integrated Random Walk Model: In the second model, performing a transformation from pixel coordinates to wlorl
we assume instead that the forgeacting on the robot is coordinates. A given area will map into the same pixel. The
subject to white noise. If the model (2) is sampled with &ize of the area depends on the distance to the camera. The
uniform sampling intervab under this assumption, we obtain position error will increase when the mobile agent is more
distant from the web camera.

To get mathematically tractable sensor models, the posi-
where wy, is a random process noise variable such thdton measurements will be modeled as
Ew, =0 and Bwiwy = Wg_p. o

As is well known, the random walk and the integrated Xomeaso = Xi + DXk,
random walk models can be written as a state-space modehere the measurement error is zero on averBgeX; = 0.
commonly used for estimation and tracking purposes [4] aghe variances of the measurement error are assumed to be
in the form EAX,AX; =: Y0,_, for the ultrasound
measurement, anBAX,AX,, =: 00— for the camera
with state a vector;, € R™. For the first model, we have Measurement. The variancBsands depend on the position
rx = X, A= B =1, and for the second model we haveX Of the robot. If we consider movement in a small area,

1 h 0 however, the dependance on position can be neglected. If
e = (Xi, V)T, A= (0 1>’ andB = <1 : the dependence oE and o on X is known, that can
be explicitly taken into account in the covariance-based

B. Sensor Models scheduler described in Section 111-B.2, but not in the paido
The heterogeneous sensor network consists of ultrasouggheduler in Section I11-B.1.

sensors and web cameras.

In Fig. 3, the ultrasound-based localization system is Ill. SENSORFUSION AND SCHEDULING
illustrated. The ultrasound receivers are placed in thingei In this section, the sensor fusion and the scheduling
and an ultrasound transmitter is carried by the mobile robadlgorithms are presented. These algorithms were originall
Each receiver can calculate its distance to the robot. Busiproposed in [7]. We recall them here and include a slight
the distances given by three receivers, it is possible txtension to the scheduler that can be used to take varying
determine the robot position through multilateration [9]. variance of measurement into account.

Xit1 = X + wy,

Xip1 = X + Vi, Vi = Vi +wy,

Trp+1 = Azy + Bwy, 3



A. Sensor Fusion B. Sensor Scheduling

Define two sets of discrete time instaffig, andj,, such How to schedule the sensors, i.e., how to choose the sets
that whenk € Ti, the high quality sensor is used by theTj, andTj,, is described next.
sensor fusion center, and where Tj, the low quality sensor ~ The overall estimation quality is defined as the average
is used. The model (3) together with the sensors is then trace of the covariance matrix of the estimation error:

k
Tri1 = Az + Bwy, k>0, 4 1 .
s i b ( ) paverage(k) = m Ztrac i|ia (15)
yl,k - lek + ’Ul.,kv k S ﬂqa (5) + =0
Y26 = Coltp—a + v2,k, k € Thy, (6)  where Py, is the block of Py, that corresponds to the

wherey, ; is the low-quality measurement apgl, the high- ~ current statex;, in (7), see [7]. It i_s desirable to minimize
quality measurement. The variables; and v, ; are white Paverage(k) through a proper choice dfi,,. To also take

measurement Nois&u; vy x» = S0x_1, andEus pve » = COMMuUNication cost into account, the following performanc
o8,_y . It is assumed that the high-quality sensor measurétiterion is considered:

) : M
ment y» , iS more accurate tham, x, i.e., o < X, but Vr(k, M) := —— + paverage (k), (16)

delayed byd samples because of a higher processing and k+1

communication time. It is assumed that the delay of theshere M is the number of times the high-quality sensor is

low quality sensor can be neglected since its processing anged over the time intervi, k] and) is a positive parameter

communication time is lower than one time step. Note thahat is proportional to the communication cost.

y1,, iS not defined wherk € Th, and ys ; is not defined The average communication cost per time sample is

whenk € Tj,. A
We next derive a time-varying Kalman filter for (4)—(6). k +1 i

We rewrite the system to accommodate for the time delay Performance iz (k, k) = A + paverage (k), and when only

. When only the high-quality sensor is used, the

by introducing a new state vector tht_—? low-quality sensor is uséldr(k,0) = pavemge(k)_. Thus _
T A is a measure of how much better (measured in resulting
Tk = (xk Th—1 .- kad) ; (7)  average error covariance) than the low-quality sensor the
so that (4)—(6) becomes high-quality sensor must be for us to prefer to use it
_ < = (VT(k’ k) > VT(kvo))'
Ty1 = ATy + By, € It is legitimate to ask when the high-quality vision sensor
G = CpZTr, + Uy (9) is useful at all, since data from that sensor are delayed
where, and have a communication cost. It is shown in [7] that

there exists non-trivial sensor schedules that incorpsrat

A0 0 0 B the vision sensor while minimizingr. The optimization
~ I 0 0 0 - 0 problem grows exponentially with the time horizbnTo find
A= U 0 0 ,B = 0 (10) suboptimal solutions, we restrict the presentation toqukci
Lo Lo : schedules and to a local search for so called covariancsdbas
0 0 ... I, 0 0 schedules.
1) Periodic Scheduler: For the periodic scheduler, we
cCi 0 ... 00 keT assume that the high-quality sensor is used with period
Cr = ’ 1 (11) .
0 0 ... 0 Cy R kEThq. N>1
Introduce the following time-varying recursive Riccati The(N)={N—-1,2N—-1,3N —1,...}
equation ={k>0](k+1) mod N =0},
p§+1|k - A [p;‘k_l _ pl:|k—lég T,(N)=1{0,1,2,...,N —2,N,...}

={k>0](k+1) mod N # 0}.

-1
X {Ckpgwchzz +Vk] X CkPl:kl] A"+ BWB, One can show that;, , (and P;,) converges to an
(12) N-periodic matrix function wherk — oo, under weak
assumptions on the system [7]. Hengg,crqqe (k) tends to
a constanpayerage (V). For sufficiently largek, the optimal
sensor cycle period is given by

where P,j“%l is the minimum possible covariance of the
estimation error of the state, given the measurements up
until time £ — 1. The time-varying Kalman filter that gives

the optimal estimate is given b  _ . A *
p g y N} = arg min (N —|—pav€mg€(k)) ) a7)

T = (A - KxCy) 1 + Kiy 13
S ( g k) Hk KUk ( Note that (17) is a simple minimization problem over a finite

_ _ _ _ _ _\—1
K = AP,Q,CACE (CkP,j‘k,lC,f + Vk) ., (14) set. The steady-state optimal peridtt is given by

wherezy 1, is the new state estimate afd, is the Kalman N* = arg min <i + Divera e(N)> )
gain. See [7] for further details on this filter. N AN J



Fig. 5. Tree search for the covariance-based scheduler When2.

] ) Fusion Center

2) Covariance-Based Scheduler: For the covariance-
based scheduler, we let the sensor choice be given by the
senso_r that decreases the estl_matlon error C.()V?”ance_ﬂik? 6. Overview of the experimental setup that consists lohspund
most in one step. Such an online scheduler is interestirgnsors, web cameras, wireless network, fusion centeraandbile agent
to compare with the offline periodic scheduler discussed if¢ track.
previous section.

At a fixed time instantc, the covariance-based scheduler . . . .

. : agent to be located. The rest of this section describes i som

computes the error covariancéy ., . ¢ =0,..., D,

for all possible sensor combinations, The search dépiha more detail the ultrasound-based sensor system, the vision

tuning parameter. To find the appropriate sensor schedhae, tbased sensor system, and the sensor fusion center.

a tree search is d_one to find the Iqwe_st sunngr“kHTl, A. Ultrasound-Based Sensor System
¢ =0,...,D (adding the communication cosateach time
a high-quality measurement is used). An example of such The ultrasound transmitter and receiver circuitry are con-
a tree search is shown in Fig. 5 for depth = 2. The nected to wireless sensor nodes of the type Tmote Sky [8]. In
scheduleTy, for the time intervalk, k + 1,...,k + D is order to perform the multilateration position computatian

the path that generates the minimum. The algorithm is rufethod based on the time-delay-of-arrival (TDOA) techeiqu
whenk = 0, D, 2D, . ... Another alternative is to optimize Was implemented. See [9] and [10] for further details on this
the schedule at everg in a receding horizon approach, method.

but that requires more computations. Based on the estimatesthe ultrasound system works as follows. A transmitter
of current and future position, it is also possible to let théircuitry placed on the mobile agent interact with the ul-
noise covariance matricés o, W, depend on position when trasound receivers connected to the wireless nodes in the

computingP,jJr.‘H. |, as mentioned in Section II-B. ceiling. With a 250ms period, the ultrasound transmitter
3 11— . . . .
node is simulatenously sending a wireless (IEEE 802.15.4)
IV. EXPERIMENTAL SETUP message and an ultrasound signal. The ultrasound receiver

The experimental setup is illustrated in Fig. 6. The systeffomputes the time of flight of the ultrasound signal, using
is composed of ultrasound sensors, web cameras, wireldé§ge calibration for the wireless message and the speed
network, fusion center, and a mobile agent to track. The wel sound. This gives the distances between each receiver
camera presents the high-quality sensor and is connected@®de and the transmitter node. The position calculation
a laptop enabling image processing and data exchange_igg\performed in the fusion center where all the distances
single camera was used in the tests described here. Tafchieved by the receiver nodes are collected and used in a
ultrasound sensors use wireless sensor nodes for sigfltilateration computation. Filtering and outlier rejea
processing and data exchange. Both types of sensors cofe used to improve information.
municate with a base-station placed in the same area which |
is used to perform the data fusion, filtering and estimatiorP" Vision-Based Sensor System
The base-station’s processing unit is connected to a wesele A vision-based system that is composed of a Logitech
node in order to communicate with the ultrasound nodeQuickcam Fusion web camera [11] connected to a process-
over IEEE 802.15.4 and an IEEE 802.11g wireless card fag unit was developed. The processing unit performs the
communicate with the vision system’s processing unit. Thenage acquisition, storage, and processing accordingeo th
ultrasound sensor network consists of 16 wireless nodés wischeduler in the sensor fusion center. The communication
ultrasound sensors placed in the ceiling of our corridoe Thwith the fusion center is over a IEEE 802.11g network. The
web camera is placed on the wall in the area where the teststput of the vision-based system is the 2D position of the
are performed. A radio-controlled car is used as the mobilmobile agent in the experimental area. It is computed thioug



: . : . TABLE |
a linear transformation between pixel coordinates andavorl
OPTIMAL PERIODIC HIGH-QUALITY SENSOR SWITCHINGN * FOR

coordinates.

The image acquisition and storage is performed using theMODEL 1 AND 2 CONSIDERING DIFFERENT COMMUNICATION COSTA.
OPENCYV library functions [12]. The image processing was X[ Model 17—, 5 | Model 2/_o.05
done in MATLAB. The time spent for these three tasks is 0 [ N*=9 N*=6,38, 12
about 1 s, which is more than the communicating delay. 2000 | N*=9, 14 N'= 0
An artificial delay was introduce to investigate the progbse
filtering schemes. In the experiments presented in Sectjon V
the artificial delay was set to 2's, so the total delay iwhere z,.q; is the actual robot position at timg and
took from requesting a vision-based position measurements:/rqw,i: 1S the measured or estimated position at time
to having it available in the sensor fusion center was 3 s. depending on what filter was used. The empirical dgst
should be compared with the cdgt in (16).

We expresd/r as roughly the average d&fz over several

C. Sensor Fusion Center

The sensor fusion center is respongible for reading Meferent identical experiments:
surements from both sensors and using them according to
the specified filter. It also has the task of triggering the 1
vision-based system measurements. The ultrasound measure Vr(k, M) = lim = Z Vi (k, M),
ments are received periodically. The sensor fusion center et i
implements the sensor fusion and scheduling algorithms of
Section llI. where Vg(k,M) denotes thej-th repeated experiment and
V. EXPERIMENTAL VALIDATION we assume the noise sequences in different experiments are

independent.

This section presents some experimental results performe(i ; first ider th iodi heduler i
on the testbed. First, we discuss how some model parameter et us Nirst consider the periodic schedu’er in an exper-
ent in which the communication cost was setXo= 0.

used in the filter were obtained, and then we compare t 7 sh th irical codt funci fth
periodic and the covariance-based scheduler for someehoi 9. 7 shows [he empirical costp as a function of the
the periodN. The upper plots are derived for the random

of tuning parameters. walk model and the lower plots for the integrated random
A. Model Parameter Estimation walk model. The cost for the estimated positions with the
The ultrasound sensors give on average an errgrash, periodic scheduler is shown together with the cost for the
with a variance ofl2 cm?. The vision-based system givesraw position measurements. The integrated random walk
more precise measurements with average errors less thaondel (lower plots) provides better position estimatesitha
2 cm, and with variance lower thahcm?. These values the random walk model, which is expected since the motion
were achieved by testing the system using fixed positioredf the mobile agent is closer to the integrated random walk
of the vehicle. Based on these measurements, we use for thedel. It is also clear that in this case, the periodic sclezdu
model (4)—(6)X = 12 for the ultrasound-based system andoresented in the paper gives much better estimates than
o = 1 for the vision-based system. the raw measurements. Fig. 7(a) indicates that the regultin
The mobile agent moves in the tests in thedirection:Y  performance for the proposed filter is for most values\of
is fixed andX is varying. The test trajectory is approximatelyworse than using the direct measurements.
4.5m long, and a single test takes abai®ts. Since the  Also the performance of the covariance-based scheduler
measurements given by the camera are very accurate ggtshown in Fig. 7. The optimal schedule obtained was to
taken at precise times, one can estimate the velocity fever use the high-quality sensor in the case of the random
V = (Xy — Xj—1)/At. The mobile agent starts up (firds) walk model and to usé/ = 12 for the integrated random
with a velocity approximately equal té1 cm/s, followed walk model. The parameter search depth parameter was
by an approximately constant velocity 66 cm/s. For the tuned toD = 4. It can be seen Fig. 7 that the covariance-
final 3 s it has a constant velocity dfl cm/s. Using these based scheduler does not give as good results as the periodic
velocities, the process noises of the model 3 in Section Il-Acheduler.
were set to/ = 0.5 andU = 0.05, respectively. The optimal periodN* for communication cost = 0
B. Sensor Fusion Tests and 2000 are given in Table I. It is natural that when the

Tests were made using the random walk and the integratEgmmunication cosh is large, the schedule periad™ is
random walk models in (3). The periodic schedules and tH@rge (since the vision sensor is then 00 expensive to use).
covariance-based schedule were evaluated. In each2gest, Fig. 8 shows a position trajectory. Both filtered and raw
samples were taken with the sampling perfoe= 1's. The Position measurements are compared to the real positions.

performance of each filter was evaluated through the costThe period for the high-quality sensor i§ = 6. We note
again the results using the integrated random walk model for

k
Ve(k, M) = (MA+ Z ‘Ireal,i _ xest/mw,i‘ ), the sensor fusion filter toggth(_ar with the p.er|od|c sc.:hed.ule
k+1 are good (lower plot). The initial transient in the estirpati
(18) error is due to the initial error in the estimator.

i=0
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(b) Empirical costVg for the integrated random walk model.

Fig. 7. Empirical costVg as a function of the the period/ computed
for the estimated positions with the periodic and the ceware-based
schedulers. The cost for the raw position measurements lsoesaown.
As expected, the integrated random walk model providesbg@sition

estimates than the random walk model.

VI. CONCLUSIONS

An implementation and evaluation of a localization system
based on a heterogeneous sensor network was presenteq.
The system is suitable for testing various networked cdntro
and estimation algorithms. A sensor fusion scheme with an
intelligent scheduler that takes communication cost atayde (4
into account was demonstrated with promising results. The
sensor network consisted of ultrasound proximity sensuds a 5]
web cameras. They were used to localize a mobile robot
under sensor communication constraints.

Our ongoing work is on integrating other applications
over the same wireless network and show how this typgz
of wireless sensor infrastructure can provide a multitude
of services with guaranteed quality. In doing so, it will be
important to handle a variety of imperfections in the senso
scheduling and sensor fusion, such as packet losses aid]
dynamic allocation of network resources
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