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Abstract— A dynamical system can exhibit structure on
multiple levels. Different system representations can capture
different elements of a dynamical system’s structure. We
consider LTI input-output dynamical systems and present four
representations of structure: complete computational structure,
subsystem structure, signal structure, and input output sparsity
structure. We then explore some of the mathematical relation-
ships that relate these different representations of structure. In
particular, we show that signal and subsystem structure are
fundamentally different ways of representing system structure.
A signal structure does not always specify a unique subsystem
structure nor does subsystem structure always specify a unique
signal structure. We illustrate these concepts with a numerical
example.

I. INTRODUCTION

Interconnected dynamical systems are a pervasive compo-
nent in our modern world’s infrastructure. Much research has
been dedicated to understanding the relationships between
a system’s dynamics and a system’s structure, see [1], [2]
for example. At the same time, research in various avenues
has demonstrated that the structure of a dynamical system
can be represented in more than one way. For example,
[3] discusses system structure in terms of interconnected
subsystems. System structure in this context refers to the
sharing of variables or the linking of terminals and ports [4].
At the same time, [5], [6], [7], [8] describe system structure
in terms of the dependencies between manifest variables of
the system. Alternatively, system structure in the context of
decentralized control can refer to the location of zero entries
in a transfer function matrix.

These examples demonstrate how structure in a system can
be represented in different ways. The problem of representing
a system’s structure using four particular representations
within the LTI input-output framework is addressed in [9].
In this work, the authors demonstrate by example that a
single LTI input-output system can assume multiple forms
depending on the choice of structural representation.

The purpose of this paper is to discuss the relationships
between the four representations of structure defined and
illustrated in [9]. Instead of examining how the variation of
system structure (represented in a particular way) leads to
different dynamical behavior, we consider the relationships
between different representations of structure that yield the
same system behavior. Thus, this research is complementary
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to that of [1], [2], [3], [4], [5] and an extension of the research
initiated by [9], [5]. The scope of our analysis will be within
the framework of LTI input-output systems, a subset of the
class of behavioral systems described by [4].

The rest of this paper is organized as follows. In Section
II, we introduce and review four ways of representing a
system’s structure: complete computational, subsystem, sig-
nal, and input output sparsity structure. In Section III we
present the mathematical relationships that relate these four
definitions of structure. Specifically, we prove the general
relationship between signal and subsystem structure, showing
that information contained in one structural representation is
not necessarily captured by the other. We conclude with a
numerical example.

II. REPRESENTATIONS OF STRUCTURE

In this section we define four representations of system
structure: complete computational structure, subsystem struc-
ture, signal structure, and input output sparsity structure. Our
concept of system structure is built around an LTI input-
output system G mathematically described as the generalized
state-space realization

ẋ = f (x,w,u) = Ax+ Âw+Bu,
w = g(x,w,u) = Āx+ Ãw+ B̄u,
y = h(x,w,u) =Cx+C̄w+Du, .

(1)

with u∈Rm, x∈Rn, w∈Rl , y∈Rp, A∈Rn×n, Â∈Rn×l , Ā∈
Rl×n, Ã ∈ Rl×l , B ∈ Rn×m, B̄ ∈ Rl×m, C ∈ Rp×n , C̄ ∈ Rp×l ,
and D ∈ Rp×m. By ẋ we mean dx/dt and assume t ∈ R≥0.
We refer to x, w, y, and u as the state, auxiliary, output, and
input variables respectively. Moreover, here we restrict our
attention to linear time invariant functions f , g and h where
solutions exist for t ≥ 0. Note that this system is in the form
of a differential algebraic equation, although we will only
consider systems with differentiation index zero, requiring
that (I− Ã) is invertible. Thus, (1) is always equivalent to a
standard ordinary differential or difference equation of the
same order [10]. Nevertheless, we distinguish between a
generalized state-space realization with auxiliary variables
and a state-space realization without auxiliary variables with
the following definitions.

Definition 1: Given a system (1), we call the number
of auxiliary variables, l, the intricacy of the realization.
A state-space realization (Ao,Bo,Co,Do) obtained from (1)
by eliminating the auxiliary variables w (l = 0), we call a
minimal intricacy realization.

The presence of the auxiliary variables w are used to
characterize the intermediate computation in the composition
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of functions. Thus, for example, we distinguish between
f (x)= x and f (x)= 2(.5)x by computing the latter as f (w)=
2(w) and w = g(x) = .5x. In this way, the auxiliary variables
serve to identify stages in the computation of the state-
space realization (1). As we introduce subsystem structure,
it will be critical to use auxiliary variables to distinguish
between systems with equivalent state-space dynamics, yet
structurally distinct architectures. With these preliminaries in
order, we are ready to define four representations of structure.

A. Complete Computational Structure

The generalized state-space realization is a mathematical
representation of the actual processes a system uses to sense
its environment, represent and store variables internally, and
affect change externally. The complete computational struc-
ture is a graphical representation of these processes, high-
lighting the structural relationships between processes that
drive sensing, storage, computation, and actuation. Formally,
we define complete computational structure as follows.

Definition 2: Given a system G with realization (1), its
complete or computational structure is a weighted directed
graph C with vertex set V (C ), and edge set E(C ). The
vertex set contains m+ n+ l + p elements, one associated
with the mechanism that produces each input, state, auxiliary,
and output variable of the system, and we label the vertices
accordingly. In particular, the vertex associated with the ith

input is labeled ui, 1 ≤ i ≤ m, the vertex associated with
the jth state is labeled f j, 0 ≤ j ≤ n, the vertex associated
with the jth auxiliary variable is labeled g j, 0≤ j≤ l, and the
vertex associated with the kth output is labeled hk, 1≤ k≤ p.
The edge set contains an edge from node i to node j if the
function associated with the label of node j depends on the
variable produced by node i. Moreover, the edge (i, j) is then
labeled (weighted) with the variable produced by node i.

We refer to the elements of the vertex set of C as
fundamental units of computation. Thus, our definition of
structure is a deliberate choice to model system structure at
a certain level of abstraction: namely, the level that obscures
computational components required to perform linear alge-
braic operations ( f , g and h vertices), integrator operations
( f vertices), and the (often unknown) external computation
required to produce inputs for the system. We prefer to
condense these computational components as vertices, take
these as the fundamental units of computation, and model
the interconnection structure among these units. We do this
to create a 1-to-1 correspondence with the system (1) and
accordingly, define structure at the level of a generalized
state-space realization.

B. Subsystem Structure

Subsystem structure refers to the appropriate decomposi-
tion of a system into constituent subsystems and the inter-
connection structure between these subsystems. Abstractly,
it is the condensation graph of the complete computational
structure graph, C , taken with respect to a particular partition
of C that identifies subsystems in the system. The defining
property of this particular partition is admissibility:

Definition 3: Given a system G with realization (1) and
associated computational structure C , we say a partition
of V (C ) is admissible if every edge in E(C ) between
components of the partition represents a variable that is
manifest, not hidden.

Although sometimes any aggregation, or set of funda-
mental computational mechanisms represented by vertices
in C , may be considered a valid subsystem, in this work a
subsystem has a specific meaning. In particular, the variables
that interconnect subsystems must be manifest, and thus
subsystems are identified by the components of admissible
partitions of V (C ). We adopt this convention to 1) enable
the distinction between real subsystems vs. merely arbitrary
aggregations of the components of a system, and 2) ensure
that the actual subsystem architecture of a particular system
is adequately reflected in the system’s computational struc-
ture and associated realization, thereby ensuring that said
realization is complete.

Definition 4: Given a system G with realization (1) and
associated computational structure C , the system’s subsystem
structure is a condensation graph S of C with vertex set
V (S ) and edge set E(S ) given by:
• V (S ) = {S1, ...,Sq} are the elements of an admissible

partition of V (C ) of maximal cardinality, and
• E(S ) has an edge (Si,S j) if E(C ) has an edge from

some component of Si to some component of S j.
We label the nodes of V (S ) with the transfer function of
the associated subsystem, which we also denote Si, and the
edges of E(S ) with the associated variable from E(C ).

We note that the subsystem structure of a system G always
exists and is unique [9]. Traditionally, subsystem structure is
mathematically represented as a linear fractional transforma-
tion (LFT) F (N,S)(s) with a block diagonal “subsystem”
component S(s) and a static “interconnection” component L
(see [11] for background on the LFT). Specifically, the LFT
associated with S will have the form

N =

[
0 I
L K

]
, S(s) =


S1 0 ...

0
. . . 0

... 0 Sq

 (2)

where q is the number of distinct subsystems, and L and K
are each binary matrices of the appropriate dimension. To
explain, the L and K matrices map the vector

[
uT yT ]T to

a vector π consisting of components of y and u. The vector
π has dimension corresponding to the number of columns
in S, and contains the subsystem inputs for each subsystem
Si = 1, ...,q. Since a single manifest variable (y j in y or u j
in u) can act as a subsystem input to multiple subsystems,
π can contain repeated entries. Thus, the row dimension of[

L K
]

depends on the particular subsystem structure being
studied, but the column dimension is always m+ p. Note
that if additional output variables are present, besides the
manifest variables used to interconnect subsystems, then the
structure of N and S above extend naturally. In any event, N
is static and L and K are binary matrices with fixed column
dimension m+ p.

4349



C. Signal Structure

Another way to describe the structure of a system is to
characterize the direct causal dependence among each of its
manifest variables; we refer to this notion of system structure
as signal structure. The dynamical structure function (defined
in [5] and discussed in [7], [8], [6], [12], [9]) is a represen-
tation that describes the direct causal dependence among a
subset of state variables; it is the mathematical analogue of
signal structure.

For the scope of this work, it suffices to show how
dynamical structure functions describe direct causal depen-
dencies among manifest variables, see [9] for a derivation.
We distinguish between two kinds of causal dependencies,
dynamic and static, and partition the dependencies among
manifest variables accordingly in the following way:[

Y1
Y2

]
=

[
Q(s)
C21

]
Y1 +

[
P(s)+(I−Q(s))D1

D2−C21D1

]
U (3)

The matrix
[

Q(s)T CT
21
]T and the matrix[

(P(s)+(I−Q(s))D1)
T (D2−C21D1)

T ]T we refer to
as Q̄ and P̄ respectively and call the generalized dynamical
structure function. Note that C21 and D2−C21D1 describe
static direct causal dependencies among manifest variables
and Q(s), P+(I−Q(s))D1 describe dynamic direct causal
dependencies. The matrices (Q(s),P(s)) are called the
dynamical structure function of the system (1), and they
characterize a dependency graph among manifest variables
as indicated in Equation (3). We note a few characteristics
of (Q(s),P(s)) that give them the interpretation of system
structure, namely:
• Q(s) is a square matrix of strictly proper real rational

functions of the Laplace variable, s, with zeros on the
diagonal. Thus, if each entry of y1 were the node of a
graph, Qi j(s) would represent the weight of a directed
edge from node j to node i; the fact Qi j(s) is proper
preserves the meaning of the directed edge as a causal
dependency of yi on y j.

• Similarly, the entries of the matrix [P(s)+(I−Q(s))D1]
carry the interpretation of causal weights characterizing
the dependency of entires of y1 on the m inputs, u. Note
that when D1 = 0, this matrix reduces to P(s), which
has strictly proper entries.

This leads naturally to the definition of signal structure.
Definition 5: The signal structure of a system G, with

realization (1) and with dynamical structure function
(Q(s),P(s)) characterized by (3), is a graph W , with a vertex
set V (W ) and edge set E(W ) given by:
• V (W ) = {u1, ...,um,y11, ...,y1p1 ,y21, ...,y2p2}, each rep-

resenting a manifest signal of the system, and
• E(W ) has an edge from ui to y1 j, ui to y2 j, y1i to y1 j or

y1i to y2 j if the associated entry in [P(s)+(I−Q(s))D1],
D2, Q(s), or C21 (as given in Equation (3)) is nonzero,
respectively.

We label the nodes of V (W ) with the name of the associated
variable, and the edges of E(W ) with the associated transfer
function entry from Equation (3).

Signal structure is fundamentally a different type of graph
than either the computational or subsystem structure of a
system because, unlike these other graphs, vertices of a
system’s signal structure represent signals rather than sys-
tems. Likewise, the edges of W represent systems instead
of signals, as opposed to C or S . We highlight these
differences by using circular nodes in W , in contrast to using
square nodes for the vertices in C or S .

D. Input Output Sparsity Structure

Another notion of structure exhibited by a system is the
pattern of zeros portrayed in its transfer function matrix,
where “zero” refers to the value of the particular transfer
function element, not a transmission zero of the system.
Like signal structure, this type of structure is particularly
meaningful for multiple-input multiple-output systems, and,
like signal structure, the corresponding graphical represen-
tation reflects the dependance of system output variables on
system input variables. Thus, vertices of the graph will be
signals, represented by circular nodes, and the edges of the
graph will represent systems, labeled with the corresponding
transfer function element; a zero element thus corresponds to
the absence of an edge between the associated system input
and output. Formally, we have the following definition

Definition 6: The input output sparsity structure of the
transfer function of a system G is a graph Z , with a vertex
set V (Z ) and edge set E(Z ) given by:
• V (Z ) = {u1, ...,um,y1, ...,yp}, each representing a man-

ifest signal of the system, and
• E(Z ) has an edge from ui to y j if G ji is nonzero.

We label the nodes of V (Z ) with the name of the associated
variable, and the edges of E(Z ) with the associated element
from the transfer function G(s).

Unlike signal structure, note that the sparsity structure
of the transfer function matrix describes the closed-loop
dependency of an output variable on a particular input
variable, not its direct dependence. As a result, the graph
is necessarily bipartite, and all edges will begin at an input
node and terminate at an output node; no edges will illustrate
dependencies between output variables.

III. RELATIONSHIPS BETWEEN REPRESENTATIONS OF
STRUCTURE

In this section, we explore the relationships between
the four representations of structure defined above. What
we find is that some representations of structure are more
informative than others. We also explore how signal and
subsystem structure encode fundamentally different types of
structural information. We illustrate these differences with
an examples.

Different system representations portray different aspects
of system structure. For example, the complete computa-
tional structure details the structural dependencies among
fundamental units of computation (components of the man-
ifest variables u,y or the LTI vector functions f ,g,h in (1)).
Using complete computational structure to model system
structure requires knowledge of the parameters associated

4350



with each fundamental unit of computation. Signal and
subsystem structure do not require knowledge of such de-
tails in their description. As a condensation graph, sub-
system structure essentially condenses fundamental units of
computation to form subsystems and models the closed-
loop transfer function of each subsystem. Signal structure
models the SISO transfer functions describing direct causal
dependencies between some of the outputs and inputs of
the fundamental units of computation, namely those that are
manifest variables. Sparsity structure models the closed-loop
dependencies of system outputs on inputs. Thus, complete
computational structure appears to be the most demanding
or information-rich description of system structure. This
intuition is made precise with the following result (see [13]
for proof):

Theorem 1: Suppose a complete computational structure
has minimal intricacy realization (Ao,Bo,Co,Do) with

C0 =

[
C11 C12
C21 C22

]
and C11 invertible. Then the complete computational struc-
ture specifies a unique subsystem, signal, and sparsity struc-
ture.

It is well known that a transfer function G(s) can be
realized using an infinite number of state-space realizations.
Without additional assumptions, e.g. full state feedback,
it is impossible to uniquely associate a single state-space
realization with a given transfer function. On the other hand,
a state space realization specifies a unique transfer function.
In this sense, a transfer function contains less information
than the state space realization.

Similarly, subsystem, signal, and sparsity structure can be
realized using multiple complete computational structures.
Without additional assumptions, it is impossible to associate
a unique complete computational structure with a given
subsystem, signal, or sparsity structure. Theorem 1 shows
that a complete computational structure specifies a unique
subsystem, signal, and sparsity structure. In this sense,
a complete computational structure is a more informative
description of system structure than subsystem, signal and
sparsity structure. The next result is similar and follows
directly from the one-to-one correspondence of a system’s
transfer function with its sparsity structure.

Theorem 2: Every subsystem structure or signal structure
specifies a unique sparsity structure.

Subsystem structure and signal structure are fundamentally
different descriptions of system structure. In general, subsys-
tem structure does not encapsulate the information contained
in signal structure. Signal structure describes direct causal
dependencies between manifest variables of the system. Sub-
system structure describes closed loop dependencies between
manifest variables involved in the interconnection of subsys-
tems. Both representations reveal different perspectives of a
system’s structure. The next result makes this relationship
between subsystem and signal structure precise.

Theorem 3: Given a system G, let F (N,S) be the LFT
representation of a subsystem structure S . In addition, let
the signal structure of the system G be denoted as in equation

(3). Let Y (Si) denote the outputs associated with subsystem

Si. Define [Qint(s)]i j ≡

{
Q̄i j(s) yi,y j ∈ Y (Sk), Sk ∈V (S )

0 otherwise,

and Qext ≡ Q̄(s)−Qint(s). Then the signal structure and
subsystem structure are related in the following way:

S
[

L K
]
= (I−Qint)

−1 [ P̄ Qext
]

(4)
Proof: Examining relation (4), observe that the i jth

entry of the left hand side describes the closed loop causal
dependency from the jth entry of

[
UT Y T ]T to Yi. By

closed loop, we mean that they do not describe the internal
dynamics of each subsystem, e.g. the direct causal depen-
dencies among outputs of a single subsystem. Thus, these
closed loop causal dependencies are obtained by solving out
the intermediate direct causal relationships, i.e. the entries in
Qint . Notice that the right hand side of (4) also describes the
closed loop map from

[
UT Y T ]T to Y, and in particular the

i jth entry of (I−Qint)
−1
[

P̄ Qext
]

describes the closed loop
causal dependency from the jth entry of

[
U Y

]T to Yi.
As a special case, notice that for single output subsystem
structures, Qint becomes the zero matrix and that for subsys-
tem structures with a single subsystem, S becomes the system
transfer function, L becomes the identity matrix, Qint = Q̄,
and Qext and K are both zero matrices, thus specializing to
Lemma 1 in [5] . The primary import of this result is that
a single subsystem structure can be consistent with two or
more signal structures and that a single signal structure can
be consistent with two or more subsystem structures. We
illustrate the latter scenario here with a simple example, a
more intricate example of the former scenario is found in
[13].

Example 1: A Signal Structure consistent with two Sub-
system Structures
In this example, we will show how a signal structure can
be consistent with two subsystem structures. To do this we
construct two different generalized state-space realizations
that yield the same minimal intricacy realization but different
admissible partitions. The result is two different subsystem
structures that are consistent with the same signal structure.
First, we consider the complete computational structure C1
with generalized state-space realization([

A1 Â1
Ā1 Ã1

]
,

[
B1
B̄1

]
,
[

C1 C̄1
]
,D1

)
(5)

where

A1 =


−4 1 0 0 1
1 −7 0 0 3
0 0 −6 0 0
0 0 0 −6 0
1 2 0 0 −10

 , Â1 =


0 0 2 1
0 0 2 1
2 1 0 1
1 2 2 0
0 0 0 0

 ,

Ā1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , Ã1 = 04x4,
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B1 =
[

1 1 1 1 1
]T

, B̄1 =
[

0 0 0 0
]T

,

C1 = 04x5, C̄1 = I4,

and D1 = 04×1. Next consider the complete computational
structure C2 with generalized state-space realization([

A2 Â2
Ā2 Ã2

]
,

[
B2
B̄2

]
,
[

C2 C̄2
]
,D2

)
(6)

where

A2 =


−4 1 0 0 1
1 −7 0 0 3
0 0 −6 1 0
0 0 2 −6 0
1 2 0 0 −10

 Â2 =


0 0 2 1
0 0 2 1
2 1 0 0
1 2 0 0
0 0 0 0


Ā2 = Ā1 Ã2 = [0]4 ,

B2 = B1 = 15x1, B̄2 = B̄1 = 04x1,

C2 =C1, C̄2 = C̄1,

and D2 = D1. The difference between these two computa-
tional structures is evident more in the subsystem structure
representation of the system - note how replacing A1 with
A2, essentially internalizes manifest dynamics. The result is
that C2 admits a subsystem structure S2 which condenses
two of the subsystems of S1 into a single subsystem.

We draw S1 and S2 in Figures 1(a) and 1(b) respectively.
The LFT representation of S1 is given by F (N1,S1) with

N1 =



04x1 I4
0
0
1
0
0
0
1
0
0
0
1

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



S1 =

S11 0 0
0 S12 0
0 0 S13

 ,

with S11,S12,S13 given by[
2(s2+18s+76)

s3+21s+130s+234
s2+18s+76

s3+21s+130s+234
s2+19s+86

s3+21s2+130s+234
2(s2+15s+52)

s3+21s2+130s+234
s2+15s+52

s3+21s2+130s+234
(13+s)(s+5)

s3+21s2+130s+234

]
,

[ 2
s+6

1
s+6

1
s+6

1
s+6

]
,[ 1

s+6
2

s+6
2

s+6
1

s+6

]
respectively. The LFT representation of S2 is represented as
the LFT F (N2,S2) where

N2 =



04×1 I4
0
0
1
0
0
1

0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0


, S2 =

[
S21 0
0 S22

]
, and

(a) The subsystem structure S1 of system (5) with complete computational
structure C1. The vertices of subsystem and complete computational structure
always represent systems while edges represent system variables.

(b) The subsystem structure S2 of system (6) with complete computational
structure C2. Notice the feedback loop between subsystem S22(s) and S21(s).

Fig. 1. The subsystem structures S1 and S2 are generated from almost
identical systems (5) and (6). Specifically, the feedback between S12 and
S13 is a manifest interconnection involving the manifest variables w3 and
w4; thus it is included in S1 (Figure 1(a)). The same feedback dynamics
are internalized in (6) so that the corresponding subsystem structure S2
(Figure 1(b)) only models the interconnection between two subsystems.

S21 =

[
2(s2+18s+76)

s3+21s2+130s+234
s2+18s+76

s3+21s2+130s+234
s2+19s+86

s3+21s2+130s+234
2(s2+15s+52)

s3+21s2+130s+234
s2+15s+52

s3+21s2+130s+234
(13+s)(s+5)

s3+21s2+130s+234

]
,

S22 =

[
2s+13

s2+12s+34
s+8

s2+12s+34
7+s

s2+12s+34
s+10

s2+12s+34
2(7+s)

s2+12s+34
s+8

s2+12s+34

]
.

However, if we consider the minimal intricacy realiza-
tions of C1,C2 we get the same state-space realization
(Ao,Bo,Co,Do) with

Ao =


−4 1 2 1 1
1 −7 2 1 3
2 1 −6 1 0
1 2 2 −6 0
1 2 0 0 −10

 , Bo =


1
1
1
1
1
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and Co =
[
I4 04×1

]
. The signal structure (see Figure III)

of the system is thus specified by the dynamical structure
function (Q,P)(s), with

Q(s) =


0 12+s

s2+14s+39
2(s+10)

s2+14s+39
s+10

s2+14s+39
13+s

s2+17s+64 0 2(s+10)
s2+17s+64

s+10
s2+17s+64

2
s+6

1
s+6 0 1

s+6
1

s+6
2

s+6
2

s+6 0



P(s) =


11+s

s2+14s+39
13+s

s2+17s+64
1

s+6
1

s+6



Fig. 2. The signal structure of both system (5) and (6). S1 and S2 are
distinct subsystem structures generated from these two distinct generalized
state-space realizations but they are consistent with same signal structure.

IV. CONCLUSION AND FUTURE WORK

We have briefly defined four definitions of structure: com-
plete computational, subsystem, signal, and sparsity struc-
ture. Each definition is a graphical representation of an LTI
input-output system’s structure. We also reviewed some ways
of mathematically describing these representations of struc-
ture. Using these mathematical representations, we derived
some of the relationships between these different notions
of structure. Our results elucidate the type of information
present in each representation of structure and in the case
of systems with single output structure (see [13] for discus-
sion), specify a ranking of information content from most
informative to least informative. For example, we found that
complete computational structure, subsystem structure, and
signal structure specify a unique sparsity structure.

These kinds of results opens the door for new research
problems. For example, we pose the question of realizing a
subsystem structure from a sparsity structure, or a complete
computational structure from a given sparsity structure. From
this point, we can proceed to consider the question of

minimal realization which requires an appropriate definition
of structural complexity. Exploring how to appropriately
define the complexity of a subsystem or signal structure is
in itself an open research problem. Thus, future work [13]
will explore the resulting research problems that arise from
the results in this paper, [7], [6] and the framework provided
in [9]. At a more general level, future research will also
investigate different representations of structure and their
relationships within the behavioral framework provided in
[4].
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