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Motivating Example and Problem Formulation
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1. Isthere a lower bound on external power supply to
a physical implementation of the filter?

2. What is a simple cheap exact physical
implementation of Kalman-Bucy filter?




More General Class of Systems to Measure
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Linear passive system
i = (J —GBBY)Mz + Bu + BV2kTGuw

y= BT Mz
Ymeas = BTMCC + Vmeaswmeas
(J=-J', G:=1/R, M=M">0)




More General Class of Systems to Measure
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Signal-to-noise ratio (SNR):
(process noise [V])? 2kT

(measurement noise [V])2 ~ GVineas =0



Kalman-Bucy Filter
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Lemma: Kalman gain is
K=(1+0-1GB=gxgB



Kalman-Bucy Filter is Passive

Assumption: Admit linear back action current

T a5 A .
Umeas = —U = gB' Mz, ¢g=gain € (0,00), free parameter
current voltage

Theorem: A realization of Kalman-Bucy filter is

by = (7 — ZB.BY)M#, + Butmens
Umeas = B;TM T
Ts = \9/9KxT
with effective resistance
vo+1 1
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Temperature of Kalman-Bucy Filter
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Fluctuation-dissipation theorem: 2k Tk Z = Vijeas

Effective filter temperature:
T g 1

Tir = < =
M Ato+19+gr+G 2
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Insight:
As back action tends to zero, filter temperature tends to zero



2"d Law:
Heat and Work Flows Wiet = (i - 1) Q
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(Back action heat flow)



No back action (BA — 0) ( kT
— X SNR (low SNR)

WrefZﬁT(l—|—O'—\/1—|—O')%< 2
| KT x SNR (high SNR)

Max back action (BA — 1) -
l+o—VI+o _ ; % x SNR, (low SNR)

Wref > KT ~
L+vIi+ao | 47 x VSNR (high SNR)




Power Supply Required by the 2"d Law
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Heat conductivity of system Normalized back action
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Max back action (BA — 1) -
l+o—VI+o _ ; % x SNR, (low SNR)

Wref > KT ~
L+vlit+o | 47 % VSNR (high SNR)




Trade-Off: Power Supply vs. Back Action
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Observations T T
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Large back action = lower power supply

« Explanation: Temperature ratio T /T, smaller
= 2"d [aw less restrictive

« Trade-off more significant for high SNRs

 No back action costs a factor vSNR more than
max back action in high SNR regime
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Exact Filter Circuit for Motivating Example
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Kalman Filter

* Implementation using passive components
* Txr < T (non-equilibrium thermodynamic system)



Landauer’s Principle and
(Directed) Information Flow
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« Landauer’s principle (1961): Need to spend at
least work kT In 2 to erase one bit of information

« Directed information flow (system to filter):

: d
I.:= d_I((woa 2(0)); (ymeaS)f))
KT [Sandberg et al.,
= —(1+o0-1) Phys. Rev. E, 2014]
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Absolute Lower Bound Compared to
Physical Implementations
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Observations

« “Passive” implementation at least a factor 2
more dissipation than required by lower bound

 Explanations:

« Landauer’s principle holds for infinitely slow
erasure. Here finite erasure rate, which costs
more

« Directed information rate is a lower bound on
entropy rate of memory in filter. Entropy rate
can be a factor 2 larger

[Sandberg et al., Phys. Rev. E, 2014]




Summary

« Class of systems with “passive” Kalman-Bucy filters
found. Passive but active cooling required (unless we
own a cold heat bath...)

 Trade-off identified: Allow for back action to reduce
required power supply

« Physical implementations are a factor 2 away from
absolute lower bound. In fact optimal?

* Possible applications: nonequilibrium
thermodynamics, synthetic biology, energy
harvesting...
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