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Background and Motivation

» What are the performance limits of control devices
when resources, such as DOFs (size), energy,
temperature, and time, are finite and small
(nonzero)?

Related work:

* How well — and what — can we actually implement
from a small collection of simple physical building
blocks? Related to network synthesis

[B.D.O. Anderson, S. Vongpanitlerd, 1973]
[M. Smith, 2002]

e Similar questions currently being asked in synthetic

biology [P. Varadarajan, D. Del Vecchio, 2009]
[J. Lavei, S. Sojoudi, R. Murray, 2010]




Two Problems from Control Theory

1. What is the optimal protocol for controlling a system’s
behavior?

- Often feedback policies (bonus: robust to noise and to
model uncertainty)

- Hamilton-Jacobi-Bellman equation, dynamic programming

2. When is it possible to "physically” implement the
optimal continuous-time controller exactly?

- Approximate implementation is “easy” using computers (at
least on the macro scale)

- Need to carefully select model class, and how to model
interconnection of systems




Feedback Loop and Transfer Functions

Block diagram: plant
(signal flows) 4>| P(s) I 30— reference
actuation
control error
_ + | + |
disturbance e | K (s)
controller

* Transfer function K(s) is Laplace transform of impulse
response of controller, i.e., x(w) = K(iw) is the Fourier
transform of its linear response function

e Typical optimal control design problem:
Given P(s) with possible uncertainty, solve

K* .= arg min |disturbance +— control error||,
stabilizing K (s)



Physical Implementations of Controllers

» Given a transfer function K*(s) of a controller. How do we
implement it using a fixed set of physical components?

input —»l K™*(s) I—» output

» Any rational K*(s) can be implemented
(impedance/admittance= K*(s)) using

- Resistors —\W\—

- Capacitors —||—
- Inductors YN N

- Transformers }ll[
- (Gyrators)
iff controller is passive

» Network synthesis in circuit theory (~1930-)
[B.D.O. Anderson, S. Vongpanitlerd, 1973]

t
(Passive @/ input(t’) - output(¢') dt’ > 0 < no internal energy source)



Why Lossless Components?

*» Here we strive to use /ossless (energy-conserving /
Hamiltonian) components such as:

- —\\W\-mm-

capacitors and inductors springs and masses

» Postulate from physics: “Everything” is lossless on the
microscopic scale

* How well can “arbitrary” controllers be built from finite number
of lossless components? = Hopefully control-relevant design
trade-offs

» What active/passive devices can we hope to build easily on a
microscopic level?
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Lossless Port-Hamiltonian System

OH (x,v)
ox

T =J(x,v)

+ g(z,v)u

the symplectic form J(z,v) is skew-symmetric (i.e., J+J1 = 0), invertible
and closed in z (i.e. satisfying 0; K + OpK;j + 0;Ky; =0 for K = J~1);

g(z,v) derives locally from a gradient in z, i.e. can be expressed as
g(x,v) = J(m,v)% for some scalar ‘potential’ G(x,v);

u(t) (called the linear input) and v(t) (called the nonlinear input) are
time-varying parameters representing the influence of the environment on
the dynamics of the system;

the linear output y is defined as y = g* (x, v)w; and

the nonlinear output z is defined as W.




Properties

e Energy is conserved: H = :
gy H uy + Uz

linear supply nonlinear supply

» Conditions on symplectic form ensures canonical
coordinates exists (by Darboux’s theorem):

¢=0H/0p, p=—0H/0q

* Under linear lossless interconnection (Kirchoff’'s laws)
up +y2 =0, w2 =y
the symplectic form of interconnected system is closed:
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Example: Time-Varying Capacitor

. OH d iy . _O(t) i(t)
= 5 +tgue - (p(t)ﬁc(tl) = i(t) & ic(t) = C(t)vc(t) + 0
To=q U
4 o Capacitance C(d) =€A/d
i(t)Y : 1 5
e Stored electrical energy H(vg,d) = §C(d)’Uc

d(tﬁ ﬂvc (t) o Force between plates F.=0H/0d = ¢*/2cA
/  Energy balance
N H(t) = F()d(t) + ve(t)i(t)
N—— N ~ / N ~ v
Change of stored energy nonlinear supply linear supply

[R. Brockett, J.C. Willems, Proc. IEEE CDC, 1978]
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Linear vs. Nonlinear Inputs/Outputs

* Nonlinear i/o are more independent of precise
physical implementation of interaction with
environment

* Example: Instead of

_ gt
o(t) =d(t), (1) = L7 (= )
choose (t)2
q
”U(t) — C(t)a Z(t) — _QC(t)Q

* Nonlinear i/o can be made linear i/o with special
implementation

e Linear i/o can be made nonlinear i/o with special
choice of Hamiltonian 1



Dissipative Port-Hamiltonian System

T = (J(x, v) — Z R;(z, U)) 8Hé§;;, v) + g(x,v)u+ Z V2R, (x,v)Tin;(t)

e v is a nonlinear input vector, u is a linear input vector;
e J and g satisty the conditions of a lossless port-Hamiltonian system;

e R;(x,v)is asymmetric nonnegative definite matrix, a square root of which
is denoted /R;; and

e T} is the temperature of R;, and n; are independent unit intensity Gaussian
white noises.

Models interconnection to macroscopic heat baths R;
(Interpret equation in Ito sense, and T' = kpTk)

13



Properties: Laws of Thermodynamics

e Internal energy U = E . H(z,v)

e Work rate w = —E ju’y — Ew@T%_Ig

e Heat rate ¢ = —Ex%—fTR%—g +TE,Tr R %2:5

e Entropy S = E ,(—1Inp) (Shannon differential entropy)
Dissipative port-Hamiltonian systems satisfy

e First law: U = q—w

e Second law: S > Do % (g; heat rate exchange with heat bath of tem-
perature 7;)

14
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Time-Varying Ideal Lossless
Transformer

e Time-varying transformer ratio N(t)
il N 7:2
\ (%) (t) — N(t)?)l (t)

_|_

|/_S
| +
\@
H
[
[\W]
N
S~
S’
|
=
[
SN—’
-~
—_
—
4~
SN’

* Mechanical analogue:

e’/ FRICTION CONTACT
g

Variable gear ratio transformer.

[B.D.O. Anderson et al., “The time-varying transformer”, Proc. IEEE, 1965]



Synthesis Using Time-Varying
Lossless Circuit

—& N o= i+ 0 ?
2C(t)" ' VC(t) U . Yy
C(t) == ;H\{ %c N(t) ~ K*(s) |—>
Vo = €,
| . V() (a, b, c) constant
= K*(s) = Sb_ca

Theorem: The linear system
p=a(t)p+bt)u, y=c(t)p, p(0)=0,

where a € C%, b,c € C!, can be exactly implemented using the lossless circuit
with 2(0) = 0 if and only if b(¢)c(t) > 0 for all t. Choose

linear _ linear
iﬂpllt Z(t) — U(t), Je; (t) — y(t)j Output

nonlinear C(t) p— [_2/(; aa(s)ds] b(t)C(O)C(O), N(t) = \/b(t)C(t)O(t):

inputs C(t)b(O)

with any C(0) > 0. 17



Exercise: To Synthesize a Resistor

e Usually a resistor is synthesized using many DOFs (a macro
system)

* With many DOFs and thermal uncertainty in initial conditions
comes undesired fluctuation (Nyquist noise, FD-theorem):

- “"W
-_T_JVW__- ~ ”Uc_<?» —_— m—— —_—

ve(t) = Ri(t) ve(t) = Ri(t) + V2T Rn(t)

(n white noise)

e Can we do better??

18



Synthesizing a Resistor without Noise

» Goal: To build a resistor without Nyquist noise

o If capacitance C is small, it holds

1

—\W— = % # Cv = ——mv+i

e G(s)=R/(st+ 1) ~ R for frequencies up to bandwidth
1/7=1/(RC)

» Choose time-varying lossless circuit with
a=-1/(RC)=-1/1, b=1/C, c=1 =

C(t) = 2/7C(0) (& d(t) = e 2/72(0)), N(t) = /C{)/C

19



C(t) = o2t/ C(0), N(t)=+/C(t)/C 1 _ i n 1
= R,C T 11 RC
T’ T’ 1
e Internal energy U(t) = 5 + (U(O) — ?) e 2t/T (U = 5(JE v%)
T

. g
» Effective temperature 7' = 1+ Ry/ Ry

» Mechanical work extracted (< energy dissipated in R;)

ty ty : /
W:/ wdt:—f Feddt:—fT’—(U(tf)—U(O))(1+R1/R2)
0 0 71
time X effective temp.

~ 20

compresssion time const.




Exercise: Synthesize a Negative Resistor

» Goal: To build simple active device
v=—Ri, R >0 without using op-amps

* Idea: Simply time-reverse the plate trajectory!

dt_e%/fdo . 1. [R.
—x + ?z

C(t) : ;N% e

e Circuit is unstable! Externally supplied mechanical
energy continuously converted into stored electrical

energy

21



A Lossless Heating Device

%Rg n
N(t) = /CH)/C

e Internal energy  U(t) = I + (U(O) _ Z) o 2t/7

ez e

___1' '1_J 1

2

2 2

T
1 — Ro/Ry

o Effective temperature 7' =
o Stability condition R > Ro

» Mechanical work injected (< energy extracted from —R;)

w= | i = LT - (U(ty) ~ U(0) (L + Ba/Ro) .
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A More Interesting Control Problem

R,
. ﬂ A ) =1
'??/ T J_ C %Rg 4) \/ 7o
T

\

» Assume we can control the injected current v = ¢ and
measure the voltage y continuously in time

* What is the maximum power w = —E ;uy we can extract?
(Moptimal” Maxwell’'s demon in continuous time?)

» Back-of-the-envelope calculation:
- Nyquist: frequency band Af carries power T'Af
- Bandwidth Af ~ 1/m =1/(R2C)
- Total available power ~ T'/7m (?)
e Is this the optimum, and can it be realized? 24



Apply Optimal Control Theory

» Solve the stochastic optimal control problem

ty ty
W* .= maxf w(t) dt = —minExf y(t)u(t)dt
0 0

u u

subject to RC-circuit dynamics

R . —
€ u=1 1 1 2T
- —\MW\— T=——r+ —u-+,/—n, E.x(0)=0
/ . 7, T2 vC T2
= —x+ R.u, E_ x(0)=T
. RV (0)

* A standard linear-quadratic optimal control problem

25



Solution

» Optimal solution is the time-varying feedback control

) = SOV ()

R C Ryt

where S solves the Riccati equation

.9 1 1\?
S=29+ (S—|—§> . S(tp) =0

T2 REC
» Optimal amount of extracted work
1 2t R,
W= (4L )T - Ve(1+ZL)T+0(k), k==2-=0
2 T T RQ

e Equivalent physical
realization:

26



Interpretation

» Feedback converges exponentially fast to the constant

Ry = /RoR. + R2

14p

e As R. — 0 we indeed it

——R,_=0.001

come arbitrarily close to —ost

1t m <ol

W* — (_ —|_ _f) T = wmax R 0.4k
2 T2 ) '

02 \

0 - - : —

0 0.02 0.04 0.06 0.08 0.1
t

* The synthesized positive resistor from Part 1 is an
optimal work extraction device (with proper choice
of Rl)

27

e How does this relate to Carnot’s theorem?
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Periodic Work Extraction

o Compression of capacitor (work extraction) cannot
go on forever (model breakdown etc.)

* How do we reset it to enable periodic operation and
its use as heat engine?

» Idea: Operate it in a finite-time Carnot cycle:
1. Extract work/compress cap. at temp. T < Thot
2. Lower temperature to 7. ,, adiabatically
3. Expand capacitor at temperature T.,4 > Tcold
4. Increase temp. to T} .adiabatically, and repeat

C' f f?:] = ?N{‘ % HQ 4) \f ﬁ;—ﬂ};;tﬂn Ro \; 2 T.c;]d n

29



Finite-Time Carnot Cycle

ROYAL INSTITUTE
OF TECHNOLOGY

Expansion time ty,; with time constant 7'°* = Rj°otC

4 Temperature
Th-ut — — — _a _____________ 7,5_/_____

o —\ o Tho
U 1+ Ry / RY
Tcold
T(;old —

cold
Teold

Compression time t.,q with time constant TfOld = RﬁOIdC’

Capacitance
C, Cq c, C, ’
Work extracted in isotherms:
W . _ thot W . . / teold
hot — Qhot — “hot Tlhota cold — Qcold - COldem 30



EfﬂCiency r:*{tj1= ?Nwé % 49\ ZenZ R, \@"gn

hot Rhot C TfOId Rcold C

e Efficiency
n = Whot + Wad + Wcold — Wa,d _ Qhot + Qcold
Qhot Qnot
_q_ 1io1a o Teord 1+ Ry /R
Tiot Thot 1 — Ra/R§°'

» Similar to Carnot heat engine efficiency, but...
- Heat bath temp. replaced by effective temp.
- Efficiency independent on time period

- Efficiency arbitrarily close to theoretical max by
choosing Ri°t, RS°M > R,

31



o= jﬂé, % (%)\Tn Ry (0 T=n

hot Rhot C ’TfOld Rcold C

. Whot + Wad + Wcold — Wad
thot + tcold

_ 1 ( Thot . Tcold )
C(R]ilot + R(lzold) 1+ RQ/R]ilOt 1 — RQ/Rclzold

* Power can be made arbitrarily large by choosing
a small C'. Assuming a lower bound on 7 = RxC
there is trade-off in efficiency vs. power

Ridd RlilOt oV Thot + V Tcold

- Optimal resistors =

RQ RQ B \V/ Thot — vV Tcold
- Max power (v/Thot — V/ Teold)? /470

- Recovers the Chambadal-Novikov-Curzon-Ahlborn
efficienc
Y 1 - \/Tcold/Thot 32




Summary

* Port-Hamiltonian systems a good class of models

- Satisfy laws of thermodynamics and Hamiltonian
mechanics

- Well-behaved under interconnection

e Simple electro-mechanical device (time-varying cap.)
introduced and used to synthesize simple active and
passive systems

- Iff characterization of possible implementations given

» An optimal control problem used to synthesize a
(sub)-optimal finite-time heat engine
- Arbitrarily close to Carnot efficiency
- Recovers standard finite-time thermodynamics

33
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