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The Consortium

* Henrik Sandberg, Professor in Automatic Control (KTH)
 Mads Dam, Professor in Teleinformatics (KTH)
« Gyorgy Dan, Lektor and Docent in Teletraffic Theory (KTH)

 Ragnar Thobaben, Lektor and Docent in Communication
Theory (KTH)

4 PhD students and 1-2 post-docs

« NCS3-team at FOI in Linkoping



Legacy Industrial Control Systems (ICSs)
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Some Cyber Security Statistics

Cyber incidents in critical infrastructures in the US,
voluntarily reported to DHS Industrial Control Systems
Cyber Emergency Response Team (ICS-CERT)
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Critical infrastructure ICSs in transition from

to

Key Challenges

Sensors
Actuators

closed proprietary solutions
rigid, non-updatable platforms

@
weak security guarantees o
Network
open standard solutions (COTS) @
flexible software architectures ’01 m
I’untime platform upda'[eS Distributed Controllers

strong security guarantees using formal methods




CERCES Main Research Areas

Resilient Control of
Cyber-Physical Systems (A4)

Communication and
Computation Infrastructures (A3)

Wireless
Communication (A2)

Area 1: Embedded Software Platforms (Dam)
Area 2: Wireless Communication (Thobaben)

Area 3. Communication and Computation Infrastructure (Dan)
Area 4: Resilient Control of Cyber-Physical Systems (Sandberg)




Example: The Smart Grid
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Resilient Control of
Cyber-Physical Systems (A4)

Al: Embedded Software
Platforms (Dam)

Communication and
Computation Infrastructures (A3)

Challenges

» Closed, proprietary HW+SW stacks
 Weak security guarantees

* No runtime platform updates

Goals

« Demonstrate that SCADA field devices built on COTS
hardware can be certifiably secured at high EAL (5+)

Contributions

« Experimental, formally verified, software components and
platforms

» Verified services for e.g. secure kernel updates




Resilient Control of
Cyber-Physical Systems (A4)

A2: Wireless Communication
(Thobaben)

Communication and
Computation Infrastructures (A3)

Wireless
Communication (A2)

Challenge: Wireless SCADA infrastructures

* New classes of attacks in the wireless domain:
eavesdropping, jamming, impersonation, data injection,...

« Low-complexity devices: standard security features are too
complex; latency issues

Goals

» Reduce the overall security overhead by protecting wireless
SCADA infrastructures directly at the wireless interface
(physical-layer security)

Contributions

* Low-complexity, low-latency physical layer security
algorithms and protocols: authentication, key distribution,
jamming protection

« Fundamental theory and experimental validation




Resilient Control of
Cyber-Physical Systems (A4)

A3: Communication and
Computation Infrastructures
(Dan)

Communication and
Computation Infrastructures (A3)

Communication (A2)
Challenges

« CIA under delay, computational, and scaling constraints
* Virtualized and highly interconnected environments

Goals

« Secure and resilient algorithms and protocols for SCADA
communication and computation in shared environments

Contributions

« Secure communication protocols and networked-based
synchronization

» DoS-resilient communication protocols/architectures
« Composing secure services in shared environments




A4: Resilient Control of
Cyber-Physical Systems
(Sandberg)

Resilient Control of
Cyber-Physical Systems (A4)

Communication and
Computation Infrastructures (A3)

Wireless
Communication (A2)

Challenges
» Ciritical infrastructures are cyber-physical systems

« Physical components introduce safety and reliability
requirements qualitatively different from those in general
purpose computing

Goals

« Secure and resilient large-scale control systems
» Exploit cyber-physical modeling

Contributions

« Critical infrastructure modeling tools for physical impact and
vulnerability analysis

 Model-based intrusion detection methods
* Resilient control design methodology




Al
Embedded
Software Platforms

Dam (10%)
PhD student (80%)

Organisation

A3 A4
Communication Resilient Control of
and Computation Cyber-Physical
Infrastructures Systems

CERCES and CRATE Testbeds

Postdoc 1 (~50%)
Postdoc 2 (~50%)

Dan (10%) Sandberg (15%)
PhD student (80%) PhD student (80%)
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 Cyber-physical defense in the smart grid



The Smart Grid and Its Cyber

Threats
Smart Grid a—
= More smart devices and 4
control loops PMU

» Large increase in
communication and data

= |eads to increasing
vulnerability to cyber-
physical threats with many
potential points of attacks




Integrated Volt/VAR Control

* Maintain voltage at end of line within limits and minimize losses

Main feeder
connected to
transmission grid
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Integrated Volt/VAR Control

* Maintain voltage at end of line within limits and minimize losses
* Energy saving around 3 % [Roytelman and Landenberger, 2009]
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Integrated Volt/VAR Control

* Maintain voltage at end of line within limits and minimize losses
* Energy saving around 3 % [Roytelman and Landenberger, 2009]
e Our scenario: Compromised measurements
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e Kirchoff’s current law:
» Kirchoff’s voltage law:

e System state:

T3

kENj\{i}
1 . .
U = U — sz. (QI” + Z Lik + Lj
kENj
y=In Lo ... )T € C" and vg

» Control (capacitor configuration): Cy = {o1,..., om}




Consumer and Operator Models
(“the Cyber Part”)

1. Consumer model:

- The state y (current loads) and v, (main feeder
voltage) is independent on capacitor configuration C;

- Consumers report voltage violations

2. Operator model: Integrated volt/VAR controller
optimizes the capacitor configuration

C*(x)=arg min V(x.C
(x) =arg _min V(x,C)
- minimize cost function (e.g., VV = total power injection)
- subject to end-of-line voltage constraints
- x is estimated, possibly corrupted, system state




Adversary Model

3. Adversary’s goal: Increase operator’s cost (V), while
remaining undetected

- The adversary may alter voltage measurements v, but not
main feeder power injection and voltage

- The adversary performs a one-shot attack v-ov+a

* Questions:
- When can the volt/VAR controller detect the attacks a?
- How can it limit the effects of the attacks?




» Control configurations:

Cli

z1 = —0.287 pu
21 = 00 pu
21 = —0.287 pu

21 = oo plu

23 = —1.667 pu
23 = —1.667 pu
23 = 00 pu
23 = 00 pu




e Basis of all ¢-stealth attacks:
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[Teixeira et al., ACC 2014]




e Basis of all ¢-stealth attacks:

H,(C1)Be =

(0.00

1.00
0.00
0.00

\0.25

0.00
0.00 \
0.00
1.00

~1.00)

[Teixeira et al., ACC 2014]




The Operator vs the Adversary

e Stealthy measurement attacks exist

o Attacks may even be stealthy under arbitrary control
actions

*» Use game theory and mixed strategies to limit
impact
- Pure strategy: use C*(x)=arg min V(x,C)
CeCF(x)

- Mixed strategy: use C*(x) with high probability

* Example next




[Teixeira et al., ACC 2014]

Operator vs Adversary Game
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Summary of Research Sample

* Cyber attacks against the smart grid a great concern

e Characterization of stealth attacks against volt/VAR
control

* Use game theory and mixed strategies:
- Quantitative worst-case analysis
- New control strategies

e Future work:
- More realistic consumer, operator, adversary models
- Automatic detection system




CERCES Contributions to a Resilient
and Secure Society

« Defense in depth: Provide new set of tools in several
system layers (mobile systems, IoT, power systems, etc.).
Tests in NSC3’s CRATE testbed

 Education and training: Raise awareness, new courses,
industrial workshops (target groups: students, government
agencies, industrial partners)

« Scientific community: Cross-disciplinary contributions in
security

 New possible business opportunities: Analysis tools,
secure platforms
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