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The Consortium 

• Henrik Sandberg, Professor in Automatic Control (KTH) 

 

• Mads Dam, Professor in Teleinformatics (KTH) 

 

• György Dán, Lektor and Docent in Teletraffic Theory (KTH) 

 

• Ragnar Thobaben, Lektor and Docent in Communication 

Theory (KTH) 

 

• 4 PhD students and 1-2 post-docs 

 

• NCS3-team at FOI in Linköping 

 

 

 



Legacy Industrial Control Systems (ICSs) 

• Wired  

• Purpose-built 
computing platforms 

• Proprietary solutions 

• Security by obscurity 

• “Isolated infrastructure” 
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Some Cyber Security Statistics 
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[ICS-CERT, 2013] 

[S. Zonouz, 2014] 

Cyber incidents in critical infrastructures in the US, 

voluntarily reported to DHS Industrial Control Systems 

Cyber Emergency Response Team (ICS-CERT) 
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Key Challenges 

Critical infrastructure ICSs in transition from 

• closed proprietary solutions 

• rigid, non-updatable platforms 

• weak security guarantees 

to  

• open standard solutions (COTS) 

• flexible software architectures 

• runtime platform updates 

• strong security guarantees using formal methods 

 

 

 

 

 



CERCES Main Research Areas 

 

 

 

 

 

 

 

• Area 1: Embedded Software Platforms (Dam) 

• Area 2: Wireless Communication (Thobaben) 

• Area 3: Communication and Computation Infrastructure (Dán) 

• Area 4: Resilient Control of Cyber-Physical Systems (Sandberg) 

 



Example: The Smart Grid 
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A1: Embedded Software 
Platforms (Dam) 

Challenges 

• Closed, proprietary HW+SW stacks 

• Weak security guarantees 

• No runtime platform updates 

Goals 

• Demonstrate that SCADA field devices built on COTS 

hardware can be certifiably secured at high EAL (5+) 

Contributions 

• Experimental, formally verified, software components and 

platforms 

• Verified services for e.g. secure kernel updates 

 



A2: Wireless Communication  
(Thobaben)  

Challenge: Wireless SCADA infrastructures 

• New classes of attacks in the wireless domain: 
eavesdropping, jamming, impersonation, data injection,... 

• Low-complexity devices: standard security features are too 
complex; latency issues 

Goals 

• Reduce the overall security overhead by protecting wireless 
SCADA infrastructures directly at the wireless interface 
(physical-layer security) 

Contributions             

• Low-complexity, low-latency physical layer security 
algorithms and protocols: authentication, key distribution, 
jamming protection 

• Fundamental theory and experimental validation 

 

 

 

 

 



A3: Communication and 
Computation Infrastructures 
(Dán)  

Challenges 

• CIA under delay, computational, and scaling constraints 

• Virtualized and highly interconnected environments 

 

Goals 

• Secure and resilient algorithms and protocols for SCADA 
communication and computation in shared environments 

 

Contributions             

• Secure communication protocols and networked-based 
synchronization 

• DoS-resilient communication protocols/architectures 

• Composing secure services in shared environments 



A4: Resilient Control of 
Cyber-Physical Systems 
(Sandberg)    

Challenges 

• Critical infrastructures are cyber-physical systems 

• Physical components introduce safety and reliability 
requirements qualitatively different from those in general 
purpose computing 

Goals 

• Secure and resilient large-scale control systems 

• Exploit cyber-physical modeling 

Contributions             

• Critical infrastructure modeling tools for physical impact and 
vulnerability analysis 

• Model-based intrusion detection methods 

• Resilient control design methodology 
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CERCES and CRATE Testbeds 

 

Postdoc 1 (~50%) 

Postdoc 2 (~50%) 
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The Smart Grid and Its Cyber 
Threats 

Smart Grid 

 More smart devices and 
control loops  

 

 Large increase in 
communication and data 

 

 Leads to increasing 
vulnerability to cyber-
physical threats with many 
potential points of attacks 



Integrated Volt/VAR Control 

• Maintain voltage at end of line within limits and minimize losses 

(IEEE 13 Node Distribution System) 

Main feeder 
connected to  
transmission grid  



Integrated Volt/VAR Control 

• Maintain voltage at end of line within limits and minimize losses 

• Energy saving around 3 % [Roytelman and Landenberger, 2009] 

(IEEE 13 Node Distribution System) 

Integrated volt/VAR control 

voltage 
measurements capacitor  

configuration 



Integrated Volt/VAR Control 

• Maintain voltage at end of line within limits and minimize losses 

• Energy saving around 3 % [Roytelman and Landenberger, 2009] 

• Our scenario: Compromised measurements 

(IEEE 13 Node Distribution System) 

Integrated volt/VAR control 

voltage 
measurements capacitor  

configuration 



Distribution Grid Model (“the Physics”) 

• Kirchoff’s current law: 

 

• Kirchoff’s voltage law: 

 

• System state: 

 

• Control (capacitor configuration): 

 

 

 

 

and 



Consumer and Operator Models 
(“the Cyber Part”) 

1. Consumer model: 

- The state 𝐲 (current loads) and 𝑣0 (main feeder 
voltage) is independent on capacitor configuration 𝐶𝑘 

- Consumers report voltage violations 

 

2. Operator model: Integrated volt/VAR controller 
optimizes the capacitor configuration 

 

 

- minimize cost function (e.g., 𝑉 = total power injection) 

- subject to end-of-line voltage constraints 

- 𝐱 is estimated, possibly corrupted, system state 

 

 

 

 

 



3. Adversary’s goal: Increase operator’s cost (𝑉), while 

remaining undetected  

- The adversary may alter voltage measurements 𝐯, but not 
main feeder power injection and voltage 

 

 

 

 

 

 

- The adversary performs a one-shot attack 𝐯 → 𝐯 + 𝐚 

• Questions: 

- When can the volt/VAR controller detect the attacks 𝐚? 

- How can it limit the effects of the attacks? 

 

 

 

Adversary Model 



Example: Operators Control Actions 

• Control configurations: 



    𝒞-Stealth Attack Example 

• Basis of all 𝒞-stealth attacks:  

[Teixeira et al., ACC 2014] 



    𝒞-Stealth Attack Example 

• Basis of all 𝒞-stealth attacks:  

[Teixeira et al., ACC 2014] 



• Stealthy measurement attacks exist 

 

• Attacks may even be stealthy under arbitrary control 
actions 

 

• Use game theory and mixed strategies to limit 
impact 

- Pure strategy: use 

 

- Mixed strategy: use           with high probability  

 

• Example next 

 

 

 

  

 

The Operator vs the Adversary 



Operator vs Adversary Game 

 

MP=Mixed operator strategy BRP=Pure operator strategy  

[Teixeira et al., ACC 2014] 



Summary of Research Sample 

• Cyber attacks against the smart grid a great concern 

 

• Characterization of stealth attacks against volt/VAR 
control 

 

• Use game theory and mixed strategies: 

- Quantitative worst-case analysis 

- New control strategies 

 

• Future work:  

- More realistic consumer, operator, adversary models 

- Automatic detection system 

 

 



CERCES Contributions to a Resilient 
and Secure Society 

• Defense in depth: Provide new set of tools in several 
system layers (mobile systems, IoT, power systems, etc.). 
Tests in NSC3’s CRATE  testbed 

 

• Education and training: Raise awareness, new courses, 
industrial workshops (target groups: students, government 
agencies, industrial partners)   

 

• Scientific community: Cross-disciplinary contributions in 
security 

 

• New possible business opportunities: Analysis tools, 
secure platforms 
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