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Introduction

« Part I: Clustering-based model reduction of networked
passive systems

« Part ll: Coherency-independent structured model
reduction of power systems

 Summary




Motivation: Networked Systems

Sensors

Communication
Network

Distributed Controllers

Challenges
« Dynamics dependent on subsystems and interconnection

« Large-scale interconnection complicates analysis,
simulation, and synthesis

Goal. Model reduction of large-scale networked systems




Related Work

- -

General methods
« Balanced truncation (Moore, Glover,...)
« Hankel-norm approximation (Glover,...)

« Moment matching/Krylov-subspace methods (Antoulas,
Astolfi, Benner,...)




Related Work

NN d

Reduction of subsystems, i.e., structured reduction

Controller reduction/closed-loop model reduction
(Anderson, Zhou, De Moor, ...)

Structured balanced truncation (Beck, Van Dooren,
Sandberg,...)

Example in Part I




Related Work

MY

Clustering-based model reduction
« Time-scale separation (Chow, Kokotovic,...)

« Graph-based clustering (Ishizaki, Monshizadeh,
Trentelman...)

« Structured balanced truncation (Besselink,...)

« Example in Part|and Il



Part I. Clustering-based model reduction of
networked passive systems

MY

Problem and results
« Subsystems with identical higher-order dynamics
« Controllability/observability-based cluster selection

« A priori Hy-error bound and preserved synchronization (cf.
balanced truncation)

Reference. Besselink, Sandberg, Johansson: "Clustering-Based
Model Reduction of Networked Passive Systems". IEEE Trans. on
Automatic Control, 61:10, pp. 2958--2973, October 2016.




Modeling
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1. Identical subsystem dynamics
i xi=Ax;+Bvj, zi=Cx;, x;€R" vj,zi € R™

2. Interconnection topology with w;; = 0
Vi =2 i1 i Wiz — i) + 2270 &y

3. Externaloutputs yi =7 hjz




Assumptions
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Al. The subsystems X; are passive with storage function
Vi(x;) = %x;TQxi (supply; = v{ z)
A2. The graph G = (V, £) with graph Laplacian L is such that
a) The underlying undirected graph is a tree
b) G contains a directed rooted spanning tree

—W;j. 1 )
(L)ij — i ! _ % j 10
2 j=1,jzi Wigs 1=



Network Synchronization
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Lemma. Under Al and A2, the subsystems of 3 synchronize for
u=20,ie., forall (i,j) eV xV,

lime—yoo (xi(t) — xj(£)) =0



Problem and Approach

éi s %6

[ x={®A-LRBC)x+ (G® B)u
2]'{y:(H@)C)X

Goal. Approximate the input-output behavior of X by a
clustering-based reduced-order system £

2{5 (/®A—L®BC)E+ (6@ B)u
Ly =(H® )



Problem and Approach
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[ x={®A-LRBC)x+ (G® B)u
2]'{y:(H@)C)X

Wish list for approximation method

1. Preserve synchronization and passivity

2. ldentify suitable clusters

3. Provide a priori bound on ||y — ¥||

4. Be scalable in system size (#nodes = n, state dim. £ =n X n)



Problem and Approach
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Z_{XZ(I®A—L®BC)><+(G®B)U

y =(H® C)x

ldea. Find neighboring subsystems %; that are
« hard to steer individually from the inputs
« hard to distinguish from the outputs



Lemma. Consider L and let E be an oriented incidence matrix of
the underlying undirected graph. Then,

L=FE" € R

Lemma. Under A2, the edge Laplacian
Le _ ETF c R(’ﬁ—l))(('ﬁ—].)

has all eigenvalues in the open right-half complex plane




Edge Dynamics and Controllability

X" Xj - )<J XJ

Edge system in coordinates x. = (E1 ® /)x

Ye: %=(I2A-Le@BO)xe+(E'G2B)u, ye=(He® C)xe

¥ and X; are hard — weakly controllable
to steer individually coordinate in X,

Edge controllability gramian P characterizes controllability

-0

Tp-1 - 2
X, P, "xe = inf u(t)|” de
k= b [ (o)
Challenges
» P, dependent on subsystems and interconnection topology

» Role of individual edges not apparent from P. 16



Edge Dynamics and Controllability

Theorem. The edge controllability Gramian Pe can be bounded as

Pex M@ Q!
if there exists MN° = diag{n{,..., 75 1} = 0 such that

LN+nNLl —EYGGYE =0

Properties

« Gramian can be defined as X, is asymptotically stable

.« I, € RA~DX@-1 only dependent on interconnection properties
« Measure of controllability for each individual edge

Lemma. I1° = 0 exists if wjj >0 < w;; >0




Edge Singular values

Generalized edge controllability Gramian
¢ =diag{n{,.... 75 ;1. LN+ nLl —E'GGYE =0

Generalized edge observability Gramian
N° = diag{#$..... 72}, LIm°e+n°L.— F*H'HF =0

Generalized squared edge singular values

(L )% :: 0> (L )1+1 J'—I—].ﬂ-f—|—1ﬂ-f—|—1 >0 1= 17"'77_7’_ 1

Note. Minimize trace of II. and I1, to obtain unique Gramians
and small singular values




One-step Clustering

Wi
10 /0
V=101|, W=|0v7g
01 0 s
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Reduced-order system
Petrov-Galerkin projection of graph Laplacian

Yr1: E=(I0A-L@BCO)E+(G@B)u, y=(H®C)E

FaN

with [=WTLV, G=WTG, H=HV




One-step Clustering
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Theorem. Consider X and the one-step clustered - 1. Then,

1. The edge controllability Gramian of 3;_; satisfies
P.<xNc®@ Q@ L, N =diag{rf,....7<_,}
2. The edge observability Gramian of 3;_1 satisfies
Qe xMP®Q, M°=dag{nS..... 72 ,}

Opens up for repeated one-step clustering!




Performance Guarantees

Theorem. The subsystems of f],; synchronize for v =0, i.e.,

lim (&(t) = &(t)) =0,  (i,j)eVxV

t—oo

Theorem. For trajectories x(-) of ¥ and £(-) of £ for the same
input u(-) and x(0) =0, £(0) = 0, the output error is bounded as

n—1
ly — 9l <2 (Z (Le_l)u\/ "T}:"T?) [ ull2

[=k

Generalized edge singular values



Summary So Far

Wish list for approximation method
1. Preserve synchronization and passivity
« OK
2. ldentify suitable clusters
 Use generalized edge singular values
3. Provide a priori bound on ||y — ¥||
 Generalized edge singular values provide bounds
4. Be scalable in system size (#nodes = n, state dim. X =
n xn)
« Solve two LMIs of size n (independent of subsystem

size n) [and possibly one Riccati equation of size n to
verify passivity]




Example: Thermal Model of a Corridor of
Six Rooms

Subsystems: thermal dynamics within a room
GT{=RMNTi— T - RIT{ + P,

int out

GT =R (T1 = T3)

Edges: thermal resistances of walls, u; = [ P, Teny |t

Pr =311 i Real(TL = 1) + X7 gijus

Reduction from 7 =6 to k = 3




Example: Thermal Model of a Corridor of
Six Rooms

Edge singular values: 7 := (L2 1)y \/7ém?

! 1 2 3 4 5
10°7; | 0.145 0.951 1.267 0.337 0.092

Tenv * l * 1
CI) o )
N

75% reduction of wall 3 resistance

! 1 2 3 4 5
10%7; | 0.146  0.999 0.308 0.373  0.109

Tenv <J. f\o 25

P




Example: Thermal Model of a Corridor of
Six Rooms

Frequency response function from input Py, to output T7

1072

FRF P, — T7

-4
10 — |_ 1
107" 107 10" 10°

f [Hz]

Error bound: 2377 5 (Lg1),\/75ms = 11.4-1073
Actual error: 0.849 - 1073




Summary Part |

« Clustering-based reduction procedure
« Edge controllability and observability properties
* Preservation of synchronization and error bound

Possible extensions

» Arbitrary network topology

* Non-identical subsystems

* Nonlinear networked systems
 Lower bounds

Reference. Besselink, Sandberg, Johansson: "Clustering-Based
Model Reduction of Networked Passive Systems". IEEE Trans. on
Automatic Control, 61:10, pp. 2958--2973, October 2016




Part Il: Coherency-independent structured
model reduction of power systems

I E v R A

Problem and results

» Model reduction of nonlinear large-scale power system
« Clustering, linearization, and reduction of external area
« Application of structured balanced truncation

Reference. Sturk, Vanfretti, Chompoobutrgool, Sandberg: "Coherency-
Independent Structured Model Reduction of Power Systems". IEEE
Trans. on Power Systems, 29:5, pp. 2418--2426, September 2014.




Background

Increasingly interconnected power
systems

New challenges for dynamic

simulation, operation, and control of

large-scale power systems

Coherency-based power system

model reduction not always suitable

s 1w

The electricity transmission grid
in the Baltic Sea Region 2007
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Approach

Divide system into a study area and an external area

Study area = N External area = (&

1 51 6 0 11 3

/ 7 9
o L . @—Iﬁﬂ
=W .’
~—ﬁ_}_i|_,»" 2 4 V
" ref.3
|§[VR® (D _l l— —(D :AE|

Objective: Reduce the external area so that the effect of the
approximation error in the study area is as small as possible




Approach

Divide system into a study area and an external area

Study area = N External area = (&
1 ) ! 6 10 11 3
/ 7 9

Vi 7z | 8 CD—I_EFE

Joo= L
~—ﬁ_}_?"€fl,»/2 4 V

" ref.3
|§[VR® (D _l l— —(D :AE|

« Study area N often set by utility ownership or market area.
Nonlinear model will be retained here

 External area G denotes other utilities. Will be linearized and
reduced here

* Insight from structured/closed-loop model reduction: Reduction
of ¢ should depend on N!




Study area = N External area = (7

Four-Step Procedure e [N I O e e =
P =t 7 el

1. Define the model (DAE)

G G (.G .G ,G
7 =f (:1: s Talgs U )
G (.G .G ,G
f‘ — ' s 0 :'q (m !Ialg: u )
i = f(z, Talg, u) -
0 = ( , .N _ N (N N N N
=g ‘H:-Ha,lg;u) e = (3'3 1$alg:ulau2)
N(N N _N N
029 (‘EJ "L'a,lgiul ’U,2)
2. Linearizing
G G e e G ; ;—l 2
(Y- (1 15 (20)+ (I) v #m 45" (60
; A Ay Falg b2 N = AN (A3 ™ + B uy + Bayuy )
(j;f\): (Ai:l A}:;) (xj:') Lalg 21 21 1 22 D)
0 Ay A -’I"Za,lg
N N N
B3y Bay Us




Study area= N External area = (¢
1 5 f' 6 10 11 3

Four-Step Procedure Lo T
e N T

3. Structured/closed-loop model reduction of external area
model, G = G (details next)

4. Nonlinear complete reduced model

#¢ = A%2C 4 BGy©  Reduced linear

ud = yé — 066 1 pGLG ) external area

i =" (¢, 25, u1 45 ) | Unreduced nonlinear
_ N (a:N,z:ﬁg?uiV,uév) | study area




Structured Model Reduction of G

(Following Schelfhout/De Moor, Vandendorpe/Van Dooren,
Sandberg/Murray): (N,G) = 2(4,B,C, D)

AP + PAT + BB =0, ATQ+0QA+CTC =0
P:[PN PNG}. Q:[QN QNG]

T T
P NG Pg NG QG

Local balancing of G only:

Yo =T 'PeT;" =TEQcTg
Structured (Hankel) singular values of G-

ZG = diag{aG,l, O-G’27 c . 7JG,n}
Truncation or singular perturbation of G yields G

Note 1. G depends on study area N
Note 2. Error bound and stability guarantee require

generalized Gramians (LMIs) [Sandberg/Murray]




Model Reduction of Non-Coherent Areas:
KTH- Nord|032 System

G Ln f \ QG::

Model info:

« 52 buses

1§ « 52lines

| 2\ « 28 transformers
DG, « 20 generators

G NORTA (12 hydro gen.)

\
|
I
’ .
External area:
II Simplify as much
Study area: I/ / as possible
Southern ' ‘ | ma
Sweden. | v 11
Keep -, N T _ /_
detailed modeT‘\ | -=" |=Z% 34

-_y e !



Model Reduction of Non-Coherent Areas:
KTH-Nordic32 System

« External area ¢ has 246 dynamic states.
« Reduced external area G has 17 dynamic states

2% Perturbation at Vref,18

-0.077 5% Perturbation at Vref,18
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Fig. 8. Responses of 849 — 850 after a 2% perturbation to V.. 7 15. Fig. 9. Responses of 849 — 050 after a 5% perturbation to V... ¢ 15.




Model Reduction of Non-Coherent Areas:
KTH-Nordic32 System

« External area ¢ has 246 dynamic states.
« Reduced external area G has 17 dynamic states

Breaker 80 ms Breaker 200 ms
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Fig. 12. Responses of 49 — 650 after opening a line for 80 ms.  Fig. 13. Responses of 8,9 — 65, after opening a line for 200 ms.




What If Open-Loop Reduction Used to

S0 )
% VETENSKAP Q}

ey Simplify External Area G?

1.0258 —Structured reduction
| —Balanced truncation
10 1.0257F | —Full system
— ~r 7 | E 9 ~, — :'
(o oC | 8 |~ 0C | /) 102560 |
/I DC L *I DI Y, S '
Gen 2 2 _'L G 3 Gen 3 1.0255} I
e N 6 T 1.0254t
N 3¢ 1.0255 5 10 15 20 25 30
Genl ("o ] < time [s]
N 1 /(_ 4

Fig. 5. Transients of V% at the tie-line bus with a third order system el
Fig. 3. The WSCC 3-machine, 9-bus system with an infinite bus.

0.067f
—Structured reduction

—Balanced truncation

[Sturk et al.: 0.066F —Full system
“Structured Model Reduction |

of Power Systems”, ACC 2012]

O'0620 5 1ID

15 20 25 30
time [s]
Fig. 6. Transients of @~ at the tie-line bus with a third order system .

Structured model reduction and ordinary balanced truncation are compared
with the full system.



Summary Part I

* Clustering, linearization, and reduction of external power
system area

« Application of structured balanced truncation: Closed-loop
behavior matters!

« Verification on a model of the Nordic grid

Possible extensions

« Nonlinear model reduction with error bounds and stability
guarantees

Reference. Sturk, Vanfretti, Chompoobutrgool, Sandberg: "Coherency-
Independent Structured Model Reduction of Power Systems". IEEE
Trans. on Power Systems, 29:5, pp. 2418--2426, September 2014.




Concluding Remarks

« Model reduction of networked systems. Dynamics dependent
on subsystems and interconnection. Many applications!

* Model reduction methods could reduce topology and/or
dynamics

Yo Ye N1

Challenge. Many heuristics possible. We want rigorous scalable
methods with performance guarantees.

« Balanced truncation and Hankel-norm approximation do not
preserve network structures very well

- LMlIs are very expensive to solve [~ 0 (n>>)]
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