Structured Model Reduction of Networks of Passive Systems

Henrik Sandberg
Department of Automatic Control
KTH, Stockholm, Sweden
Joint Work With…

Bart Besselink
Univ. of Groningen

Karl Henrik Johansson
Christopher Sturk
KTH Automatic Control

Luigi Vanfretti
Yuwa Chompoobutrgool
KTH Power Systems
Outline

• Introduction

• Part I: Clustering-based model reduction of networked passive systems

• Part II: Coherency-independent structured model reduction of power systems

• Summary
Motivation: Networked Systems

Challenges

• Dynamics dependent on subsystems and interconnection
• Large-scale interconnection complicates analysis, simulation, and synthesis

Goal. Model reduction of large-scale networked systems
Related Work

General methods
• Balanced truncation (Moore, Glover,…)
• Hankel-norm approximation (Glover,…)
• Moment matching/Krylov-subspace methods (Antoulas, Astolfi, Benner,…)

[Diagram of network and reduction process]
Related Work

Reduction of subsystems, i.e., structured reduction

• Controller reduction/closed-loop model reduction (Anderson, Zhou, De Moor, …)
• Structured balanced truncation (Beck, Van Dooren, Sandberg, …)

• Example in Part II
Related Work

Clustering-based model reduction
- Time-scale separation (Chow, Kokotovic,…)
- Graph-based clustering (Ishizaki, Monshizadeh, Trentelman…)
- Structured balanced truncation (Besselink,…)
- Example in Part I and II
Part I: Clustering-based model reduction of networked passive systems

Problem and results
• Subsystems with identical higher-order dynamics
• Controllability/observability-based cluster selection
• A priori H_∞-error bound and preserved synchronization (cf. balanced truncation)

Modeling

1. *Identical* subsystem dynamics
\[\Sigma_i : \dot{x}_i = A x_i + B v_i, \quad z_i = C x_i, \quad x_i \in \mathbb{R}^n, \quad v_i, z_i \in \mathbb{R}^m \]

2. Interconnection topology with \(w_{ij} \geq 0 \)
\[v_i = \sum_{j=1, j \neq i}^{\bar{n}} w_{ij} (z_j - z_i) + \sum_{j=1}^{\bar{m}} g_{ij} u_j \]

3. External outputs
\[y_i = \sum_{j=1}^{\bar{n}} h_{ij} z_j \]
Assumptions

A1. The subsystems Σ_i are passive with storage function $V_i(x_i) = \frac{1}{2} x_i^T Q x_i$ (supply $i = v_i^T z_i$)

A2. The graph $G = (V, E)$ with graph Laplacian L is such that
 a) The underlying undirected graph is a tree
 b) G contains a directed rooted spanning tree

\[
(L)_{ij} = \begin{cases}
- w_{ij}, & i \neq j \\
\sum_{j=1,j\neq i}^{n} w_{ij}, & i = j
\end{cases}
\]
Lemma. Under A1 and A2, the subsystems of Σ synchronize for $u = 0$, i.e., for all $(i, j) \in \mathcal{V} \times \mathcal{V}$,

$$\lim_{t \to \infty} (x_i(t) - x_j(t)) = 0$$
Problem and Approach

Goal. Approximate the input-output behavior of Σ by a clustering-based reduced-order system $\hat{\Sigma}$

$$\Sigma : \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u \\ y = (H \otimes C)x \end{cases}$$

$$\hat{\Sigma} : \begin{cases} \dot{\xi} = (I \otimes A - \hat{L} \otimes BC)\xi + (\hat{G} \otimes B)u \\ \hat{y} = (\hat{H} \otimes C)\xi \end{cases}$$
Problem and Approach

Wish list for approximation method
1. Preserve synchronization and passivity
2. Identify suitable clusters
3. Provide a priori bound on $\|y - \hat{y}\|
4. Be scalable in system size ($\#\text{nodes} = \bar{n}$, state dim. $\Sigma = n \times \bar{n}$)

$\Sigma : \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u \\ y = (H \otimes C)x \end{cases}$
Problem and Approach

Idea. Find neighboring subsystems Σ_i that are

- hard to steer individually from the inputs
- hard to distinguish from the outputs

Mathematically, the system is described by:

$$\Sigma : \begin{cases} \dot{x} = (I \otimes A - L \otimes BC)x + (G \otimes B)u \\ y = (H \otimes C)x \end{cases}$$
Edge Laplacian L_e

Lemma. Consider L and let E be an oriented incidence matrix of the underlying undirected graph. Then,

$$L = FE^T \in \mathbb{R}^{\tilde{n} \times \tilde{n}}$$

Lemma. Under A2, the edge Laplacian

$$L_e = E^T F \in \mathbb{R}^{(\tilde{n}-1) \times (\tilde{n}-1)}$$

has all eigenvalues in the open right-half complex plane

$$E = [\ast e_i - e_j \ast], \quad F = [\ast w_{ij} e_i - w_{ji} e_j \ast]$$

nodes = \tilde{n}
Edge Dynamics and Controllability

\[
\begin{align*}
\dot{x}_i &= x_j - x_j \\
\Sigma_i &\quad \rightarrow \\
\Sigma_j \\
\end{align*}
\]

Edge system in coordinates
\[x_e = (E^T \otimes I)x\]

\[\Sigma_e: \quad \dot{x}_e = (I \otimes A - L_e \otimes BC)x_e + (E^T G \otimes B)u, \quad y_e = (H_e \otimes C)x_e\]

\(\Sigma_i\) and \(\Sigma_j\) are hard to steer individually \(\longleftrightarrow\) weakly controllable coordinate in \(\Sigma_e\)

Edge controllability gramian \(P_e\) characterizes controllability

\[x_e^T P_e^{-1} x_e = \inf_{\{u \mid 0 \sim x_e\}} \int_{-\infty}^{0} |u(t)|^2 dt\]

Challenges

- \(P_e\) dependent on subsystems and interconnection topology
- Role of individual edges not apparent from \(P_e\)
Edge Dynamics and Controllability

Theorem. The edge controllability Gramian P_e can be bounded as

$$P_e \preceq \Pi^c \otimes Q^{-1}$$

if there exists $\Pi^c = \text{diag}\{\pi^c_1, \ldots, \pi^c_{\bar{n}-1}\} \succeq 0$ such that

$$L_e \Pi^c + \Pi^c L_e^T - E^T GG^T E \succeq 0$$

Properties

- Gramian can be defined as Σ_e is asymptotically stable
- $\Pi_c \in \mathbb{R}^{(\bar{n}-1) \times (\bar{n}-1)}$ only dependent on interconnection properties
- Measure of controllability for each individual edge

Lemma. $\Pi^c \succeq 0$ exists if $w_{ij} > 0 \iff w_{ji} > 0$
Edge Singular values

Generalized edge controllability Gramian
\[\Pi^c = \text{diag}\{\pi_1^c, \ldots, \pi_{\bar{n}-1}^c\}, \quad L_e \Pi^c + \Pi^c L_e^T - E^T GG^T E \succeq 0 \]

Generalized edge observability Gramian
\[\Pi^o = \text{diag}\{\pi_1^o, \ldots, \pi_{\bar{n}-1}^o\}, \quad L_e^T \Pi^o + \Pi^o L_e - F^T H^T HF \succeq 0 \]

Generalized squared edge singular values
\[(L_e^{-1})_{ii}^2 \pi_i^c \pi_i^o \geq (L_e^{-1})_{i+1,i+1}^2 \pi_{i+1}^c \pi_{i+1}^o \geq 0, \quad i = 1, \ldots, \bar{n} - 1 \]

Note. Minimize trace of \(\Pi_c \) and \(\Pi_o \) to obtain unique Gramians and small singular values
One-step Clustering

\[\Sigma_i \xrightarrow{W_{ji}} \Sigma_j \xleftarrow{W_{ij}} \Sigma_{i,j} \]

\[V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad W = \begin{bmatrix} 1 & 0 & w_{ji} \\ 0 & w_{ij} + w_{ji} \end{bmatrix} \]

Reduced-order system

Petrov-Galerkin projection of graph Laplacian

\[\hat{\Sigma}_{n-1} : \dot{\xi} = (I \otimes A - \hat{L} \otimes BC)\xi + (\hat{G} \otimes B)u, \quad \hat{y} = (\hat{H} \otimes C)\xi \]

with \(\hat{L} = W^T L V \), \(\hat{G} = W^T G \), \(\hat{H} = HV \)
One-step Clustering

\[V = \begin{bmatrix} I & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad W = \begin{bmatrix} I & 0 \\ 0 & \frac{w_{ji}}{w_{ij} + w_{ji}} \\ 0 & \frac{w_{ij}}{w_{ij} + w_{ji}} \end{bmatrix} \]

Theorem. Consider \(\Sigma \) and the one-step clustered \(\hat{\Sigma}_{\bar{n}-1} \). Then,

1. The edge controllability Gramian of \(\hat{\Sigma}_{\bar{n}-1} \) satisfies
 \[\hat{P}_e \preceq \hat{\Pi}^c \otimes Q^{-1}, \quad \hat{\Pi}^c = \text{diag}\{\pi_1^c, \ldots, \pi_{\bar{n}-2}^c\} \]

2. The edge observability Gramian of \(\hat{\Sigma}_{\bar{n}-1} \) satisfies
 \[\hat{Q}_e \preceq \hat{\Pi}^o \otimes Q, \quad \hat{\Pi}^o = \text{diag}\{\pi_1^o, \ldots, \pi_{\bar{n}-2}^o\} \]

Opens up for repeated one-step clustering!
Performance Guarantees

Theorem. The subsystems of $\hat{\Sigma}_k$ synchronize for $u = 0$, i.e.,

$$\lim_{t \to \infty} (\xi_i(t) - \xi_j(t)) = 0, \quad (i, j) \in \hat{\nu} \times \hat{\nu}$$

Theorem. For trajectories $x(\cdot)$ of Σ and $\xi(\cdot)$ of $\hat{\Sigma}_k$ for the same input $u(\cdot)$ and $x(0) = 0$, $\xi(0) = 0$, the output error is bounded as

$$\|y - \hat{y}\|_2 \leq 2 \left(\sum_{l=\vec{k}}^{\vec{n}-1} (L_{\vec{l}}^{-1})_{\|\|} \sqrt{\pi_l^c \pi_l^0} \right) \|u\|_2$$

Generalized edge singular values
Summary So Far

Wish list for approximation method
1. Preserve synchronization and passivity
 • OK
2. Identify suitable clusters
 • Use generalized edge singular values
3. Provide a priori bound on $\|y - \hat{y}\|$
 • Generalized edge singular values provide bounds
4. Be scalable in system size ($\#$nodes = \tilde{n}, state dim. $\Sigma = n \times \tilde{n}$)
 • Solve two LMIs of size \tilde{n} (independent of subsystem size n) [and possibly one Riccati equation of size n to verify passivity]
Example: Thermal Model of a Corridor of Six Rooms

\[T_{\text{env}} \]

\[\Sigma_1 \quad \Sigma_2 \quad \Sigma_3 \quad \Sigma_4 \quad \Sigma_5 \quad \Sigma_6 \]

\[P_h \quad T_1^3 \]

Subsystems: thermal dynamics within a room

\[C_1 \dot{T}_1^i = R_{\text{int}}^{-1} (T_2^i - T_1^i) - R_{\text{out}}^{-1} T_1^i + P_i \]

\[C_2 \dot{T}_2^i = R_{\text{int}}^{-1} (T_1^i - T_2^i) \]

Edges: thermal resistances of walls, \(u_j = [P_h \ T_{\text{env}}]^T \)

\[P_i = \sum_{j=1, j \neq i}^{\tilde{n}} R_{\text{wall}}^{-1} (T_1^j - T_1^i) + \sum_{j=1}^{\tilde{m}} g_{ij} u_j \]

Reduction from \(\tilde{n} = 6 \) to \(\tilde{k} = 3 \)
Example: Thermal Model of a Corridor of Six Rooms

Edge singular values: \(\tilde{\pi}_l := (L^{-1}_e)_{ll} \sqrt{\pi^c_l \pi^o_l} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2 \tilde{\pi}_l)</td>
<td>0.145</td>
<td>0.951</td>
<td>1.267</td>
<td>0.337</td>
<td>0.092</td>
</tr>
</tbody>
</table>

\[T_{env} \]

\[\Sigma_1 \rightarrow \Sigma_2 \rightarrow \Sigma_3 \rightarrow \Sigma_4 \rightarrow \Sigma_5 \rightarrow \Sigma_6 \]

\(P_h \rightarrow T_1^3 \)

75% reduction of wall 3 resistance

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^2 \tilde{\pi}_l)</td>
<td>0.146</td>
<td>0.999</td>
<td>0.308</td>
<td>0.373</td>
<td>0.109</td>
</tr>
</tbody>
</table>

\[T_{env} \]

\[\Sigma_1 \rightarrow \Sigma_2 \rightarrow \Sigma_3 \rightarrow 0.25 \rightarrow \Sigma_4 \rightarrow \Sigma_5 \rightarrow \Sigma_6 \]

\(P_h \rightarrow T_1^3 \)
Example: Thermal Model of a Corridor of Six Rooms

Frequency response function from input P_h to output T_{1}^{3}

Error bound: $2 \sum_{i=3}^{5} (L_e^{-1})_{ii} \sqrt{\pi_i \pi'_i} = 11.4 \cdot 10^{-3}$

Actual error: $0.849 \cdot 10^{-3}$
Summary Part I

- Clustering-based reduction procedure
- Edge controllability and observability properties
- Preservation of synchronization and error bound

Possible extensions
- Arbitrary network topology
- Non-identical subsystems
- Nonlinear networked systems
- Lower bounds

Part II: Coherency-independent structured model reduction of power systems

Problem and results

- Model reduction of nonlinear large-scale power system
- Clustering, linearization, and reduction of external area
- Application of structured balanced truncation

Background

- Increasingly interconnected power systems
- New challenges for dynamic simulation, operation, and control of large-scale power systems
- Coherency-based power system model reduction not always suitable
Approach

Divide system into a study area and an external area

Objective: Reduce the external area so that the effect of the approximation error in the study area is as small as possible
Approach

Divide system into a study area and an external area

- Study area N often set by utility ownership or market area. Nonlinear model will be retained here
- External area G denotes other utilities. Will be linearized and reduced here
- Insight from structured/closed-loop model reduction: Reduction of G should depend on N!
Four-Step Procedure

1. Define the model (DAE)

\[
\begin{align*}
\dot{x} &= f(x, x_{\text{alg}}, u) \\
0 &= g(x, x_{\text{alg}}, u).
\end{align*}
\]

\[
\begin{align*}
\dot{x}^G &= f^G (x^G, x_{\text{alg}}^G, u^G) \\
0 &= g^G (x^G, x_{\text{alg}}^G, u^G) \\
\dot{x}^N &= f^N (x^N, x_{\text{alg}}^N, u_1^N, u_2^N) \\
0 &= g^N (x^N, x_{\text{alg}}^N, u_1^N, u_2^N)
\end{align*}
\]

2. Linearizing

\[
\begin{align*}
\begin{pmatrix}
\dot{x}^G \\
0
\end{pmatrix}
&= \begin{pmatrix}
A_{11}^G & A_{12}^G \\
A_{21}^G & A_{22}^G
\end{pmatrix}
\begin{pmatrix}
x^G \\
x_{\text{alg}}^G
\end{pmatrix}
+ \begin{pmatrix}
B_{11}^G \\
B_{21}^G
\end{pmatrix} u^G \\
\begin{pmatrix}
\dot{x}^N \\
0
\end{pmatrix}
&= \begin{pmatrix}
A_{11}^N & A_{12}^N \\
A_{21}^N & A_{22}^N
\end{pmatrix}
\begin{pmatrix}
x^N \\
x_{\text{alg}}^N
\end{pmatrix}
+ \begin{pmatrix}
B_{11}^N \\
B_{21}^N
\end{pmatrix} u_1^N \\
+ \begin{pmatrix}
B_{12}^N \\
B_{22}^N
\end{pmatrix} u_2^N.
\end{align*}
\]

\[
x_{\text{alg}}^G = -A_{22}^{G-1} (A_{21}^G x^G + B_2^G u^G) \\
x_{\text{alg}}^N = -A_{22}^{N-1} (A_{21}^N x^N + B_{21}^N u_1^N + B_{22}^N u_2^N)
\]
Four-Step Procedure

3. Structured/closed-loop model reduction of external area model, $G \rightarrow \hat{G}$ (details next)

4. Nonlinear complete reduced model

\[
\begin{align*}
\dot{x}^G &= A^G x^G + B^G u^G \\
u_2^N &= y^G = C^G x^G + D^G u^G \\
\dot{x}^N &= f^N (x^N, x_{\text{alg}}^N, u_1^N, u_2^N) \\
0 &= g^N (x^N, x_{\text{alg}}^N, u_1^N, u_2^N) \\
u^G &= y_2^N = M^N x_{\text{alg}}^N.
\end{align*}
\]

Reduced linear external area

Unreduced nonlinear study area
Structured Model Reduction of G

(Following Schelfhout/De Moor, Vandendorpe/Van Dooren, Sandberg/Murray): $(N, G) = \Sigma(A, B, C, D)$

$$AP + PA^T + BB^T = 0, \quad A^TQ + QA + C^TC = 0$$

$$P = \begin{bmatrix} P_N & P_{NG} \\ P_{NG}^T & P_G \end{bmatrix}, \quad Q = \begin{bmatrix} Q_N & Q_{NG} \\ Q_{NG}^T & Q_G \end{bmatrix}$$

Local balancing of G only:

$$\Sigma_G = T_{G}^{-1}P_GT_{G}^{-T} = T_{G}^TQ_GT_G$$

Structured (Hankel) singular values of G:

$$\Sigma_G = \text{diag}\{\sigma_{G,1}, \sigma_{G,2}, \ldots, \sigma_{G,n}\}$$

Truncation or singular perturbation of G yields \hat{G}

Note 1. \hat{G} depends on study area N
Note 2. Error bound and stability guarantee require generalized Gramians (LMIs) [Sandberg/Murray]
Model Reduction of Non-Coherent Areas: KTH-Nordic32 System

Study area: Southern Sweden. Keep detailed model

External area: Simplify as much as possible

Model info:
- 52 buses
- 52 lines
- 28 transformers
- 20 generators (12 hydro gen.)
Model Reduction of Non-Coherent Areas: KTH-Nordic32 System

- External area G has 246 dynamic states.
- Reduced external area \hat{G} has 17 dynamic states.

Fig. 8. Responses of $\theta_{49} - \theta_{50}$ after a 2% perturbation to $V_{\text{ref},18}$.

Fig. 9. Responses of $\theta_{49} - \theta_{50}$ after a 5% perturbation to $V_{\text{ref},18}$.
Model Reduction of Non-Coherent Areas: KTH-Nordic32 System

- External area G has 246 dynamic states.
- *Reduced* external area \hat{G} has 17 dynamic states.

Fig. 12. Responses of $\theta_{49} - \theta_{50}$ after opening a line for 80 ms.

Fig. 13. Responses of $\theta_{49} - \theta_{50}$ after opening a line for 200 ms.
What If Open-Loop Reduction Used to Simplify External Area G?

Fig. 3. The WSCC 3-machine, 9-bus system with an infinite bus.

Fig. 5. Transients of V_7 at the tie-line bus with a third order system \hat{G}.

Fig. 6. Transients of θ_7 at the tie-line bus with a third order system \hat{G}. Structured model reduction and ordinary balanced truncation are compared with the full system.
Summary Part II

• Clustering, linearization, and reduction of external power system area
• Application of structured balanced truncation: Closed-loop behavior matters!
• Verification on a model of the Nordic grid

Possible extensions
• Nonlinear model reduction with error bounds and stability guarantees

Concluding Remarks

• Model reduction of networked systems. Dynamics dependent on subsystems and interconnection. Many applications!

• Model reduction methods could reduce topology and/or dynamics

Challenge. Many heuristics possible. We want rigorous scalable methods with performance guarantees.
• Balanced truncation and Hankel-norm approximation do not preserve network structures very well
• LMIs are very expensive to solve [$\sim O(n^{5.5})$]

Thank You!

Sponsors

Contact
Henrik Sandberg
KTH Department of Automatic Control
hsan@kth.se
people.kth.se/~hsan/