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Observer Effect - Example

Voltage perturbation in passive circuit S — Ay(t)
Uncertainty in optimal voltage estimate — A4(¢)

+o(t) — 0,4
S ‘ — "

um(t)

R

With or without active compensation, a trade-off exists:

| Av(t)||Av(t)| > 2kgTm/C  small t

Sandberg, Delvenne, Doyle, IEEE TAC 2010

How general is this trade-off?



Observer Effect - Example

Voltage perturbation in passive circuit S — Au(¢)

Uncertainty in optimal voltage estimate — A4(¢)

+o(t) — 0,4
S

o

m@
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Independent of i,

Capacitance
C1 =lim,_,o s[Z(5)]+

With or without active compensation, a trade-off exists:

| Av(t)||Av(t)| > 2kgTm/C  small t

Sandberg, Delvenne, Doyle, IEEE TAC 2010

How general is this trade-off?



Motivation

The observer effect has been extensively studied in
guantum mechanics, but seems overlooked in a classical
mechanics setting

We want to know the performance limits of devices
when resources, such as DOFs, energy, temperature, and
time, are finite or limited

How well — and what — can we actually implement from
a small collection of physical building blocks? Related to
circuit synthesis (M. Smith, B.D.O. Anderson, et al.)

Similar questions currently being asked in synthetic
biology (R. Murray, D. Del Vecchio, et al.)



Measurement Model

* A physical system S with a property y(t) we want to
measure. Together with conjugate variable u(t) it
forms a port [external work rate = u(t)"y(t)]

Example:

S

)y(t)

€
u(t)

y(t) = velocity, voltage,...

u(t) = force, current,...

* Treat w as a small perturbation u,, from measurement

S

N\

[ 2(t) = f(=(t), um(?))

ym(t) = g(x(t))

| z(0) = xg

[ z2(t) = A(®)=z(t) + B(H)um(t)
~ < ym(t) = C(t)z(t)
x(0) = xq

\



Measurement Model

Interconnect S to a measurement device M through a
communication medium /, during a short time [0,{]

(!?T?.(i_) A
e}

“ _"'H,\ _ 3
S TN —= ! M
yﬂl(f)

Problems: !
— What is the best estimate of y(¢) we can get?

— How much must S simultaneously be perturbed?
(=back action, retroactivity,...)

Assumption: Medium / is well modeled by a lossless
wave equation, in thermal equilibrium at time ¢=0



Why Lossless Wave Equation?

* Mechanics: —\\\V—-mm\\W-mmAN\\\ .-
tm(t); Ym (1)

, Ym
e Circuits: W
m(t), ym(t)' - - -

2
* Electromagnetic fields: <V2 — eu%> E(xz,t) =0

e At the terminals fortimes0<t < [/v:
um(t) = —Zym(t) — \/2kpTz 2wz (1)

(Z>0 [acoustic/characteristic] impedance, T, temperature, v wave
velocity, [ medium length, and white noise w,(t) due to FD-theorem.

Transmission line Z = /Z<l — /L w~ 1/t — 0.)



Where Does the Noise Come From?

Mechanics: —\\\V—-mm\\W-mmAN\\\ .-
tm(t); Ym (1)

» Ym

CIrCUItS um(}f)j ym(t)._fmrNY\I_f'W\I

® 1T 1 1

2
Electromagnetic fields: <V2 — eu({%) E(xz,t) =0

Assume exact initial state of wave equation unknown

In thermal equilibrium: Assign the expected energy
%2k 51, to each mode

Total effect at the terminal sums up to white noise, see
Nyquist, 1928 (or Sandberg, Delvenne, Doyle, 2010)



Unmeasured vs. Measured System

 Unmeasured system

y(t)
S >
@(t) = Ax(t) x(0) = z0,
y(t) = Ca(t)  yo:= Cxo

e For small ¢:

y(t) = Cettlag
= yo + C Azt + O(t?)

* Measured system

um (1) 7
S 1 N~ —= U 1 M
Ym (t)
im(t) = (A — BZC)xm(t) — BN/ 2kpTz Zwz (1),
Y (1) = C2p (1),  2,,(0) = 20,
U (1) = = Zym(t) — V/2kpTz Zwy (1),

e For small ¢:

ym.(t) = (e AiBZC)t-TO

/ CeA=BZON=TI B\ /ok s Ty Zw (T

= Yo + C(A BZO)ZEOt

_ CB\2kpToZ / wy (T)dr + O(tV3),
0



Measurement Back Action

e Difference between un-measured and measured output
=: back action of measurement

y(t) P
S — — S 1 — v M

e Deterministic back action:
y(t) — Eym (t) = M~ Zyot + O(t?)
(Present even when T, =0. M := C'Bis the “inverse inertia” of S)

e Stochastic back action:
Var[ym(t)] = 2kgTzM 1 ZM =1t + O(t?)



ldealized Measurement Device M’

* The measurement device M produces an estimate Y, of y.,

U () T
-

G (t)

[ — s
- H\._,f — 1 M :
-

y?fll::f]l

* |In best case, M has exact models of S and /, and knows
the temperature I (but not exact state of /) = Kalman
filter M™ optimal:

S (t) = (A — BZC)2p (t) + K () (um (t) — g (1))
U (1) = —ZCT,, (1),
§i, (1) = Citn (1),

* Any M with less or equal knowledge is no better than M”



Lower Bounds on Accuracy

e Accuracy of M” determined from differential filter Riccati
equation:
P=(A—-BzZC)P+ P(A—- BzC)t
—(PCtZ — 2kgT,BZ)(2kgT,2) Y (PCTZ — 2kgT,BZ)'
+ 2kgT,BZB!

* Assume zero knowledge at ¢t = 0: P(0) = E[2,,(0) — zo]* = o0

* Series expansion of P (t) gives
P(t) = P_1t~' 4+ Py + Pit + O(t?) P_y=P_C"ZCP_,/2kpT,

e Optimal measurement accuracy:
Var[s, (t) — ym(t)] = 2kpTzZ~ 't~ + O(1)



Back Action and Accuracy Trade-Off

> y(t) m (t) T X
8 s — A~ —= U “ _>ym (t)
Ym “:' Z7 TZ =

* Back action: y(t) — Ey,.(t) = M~ Zyot + O(t*).
Var[y,, (t)] = 2kpT7 M ' ZM "t + O(t?)

* Measurement accuracy: Var[j,, (t) — v, (t)] = Var[i* (t) — iy, (t)]
= 2%kpTzZ "t 1 +0(1)

* Trade-off: /Tr Var[y,,(t)] /Tt Var[,, (t) — yum(t)]
> 2kpT7Tr M~1 +O(t)

Trade-off independent on small t and medium impedance Z!



Back Action and Accuracy Trade-Off

S

5 ¥(t)

Um (1)

T

i
-
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/-_\\__,f — U

y.‘!’l r:fjl

Z, Ty

 Back action: y(t) —Ey,.(t) = M~ Zyst + O(t?),

Var[y,, (t)] = 2kpTz M ' ZM "t + O(t?)

—

Gm(t)

* Measurement accuracy: Var[j,, (t) — v, (t)] = Var[i* (t) — ym (t)]
= 2kpTzZ 't~ +0(1)

 Trade-off:

pback action x accuracy

VIt Var[y,, (t)] v/ Tr Var(fu () — yum(t)]

> 2kpTzTr M1 + O(t)

Trade-off independent on small t and medium impedance Z!



Mechanical Example

0 1 0 0 0
| —k/my —di/m1 k/my 0 B 0
A=1 0 0 0 | E=1 o0
k/mia 0 —k/mo —da/ms 1/ms
C=(0001),

Inverse inertia M1:=C'B=1/m,
Det. back action Zu, ot/m- , stoch. back action 2k 77, Zt /m3
Measurement accuracy 2kp1/Zt

Trade-off: back action x accuracy > 2kgTy/mo



Mechanical Example

up = Fj Hml’ o A ”k” "mQ’ d ur = Fo
1 T )x
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Outline

* Measurement model
* Measuring deterministic systems

 Measuring port-Hamiltonian systems in
thermal equilibrium (details in paper)



System S in Thermal Equilibrium

27T
back action > N Aaccuracy
Is
Only ratio 15/ determines trade-off. Is this result
essentially different from before?

back action x accuracy > 2kgTy/m

Not really, as system temperature I, — oo we obtain
earlier result since rate of learning also goes to infinity

System inertia disappeared and was replaced by
system temperature 1

When 1 is really small, only small improvement in
accuracy since we already know a lot about the system



Summary

There are general trade-offs between measurement
accuracy and back action for classical measurements

Holds not only for passive system S and particular M
(compare Sandberg, Delvenne, Doyle, IEEE TAC 2010)

Lossless measurement medium of temperature I,

System with “inverse inertia” M= CB (first Markov
parameter) and completely unknown initial state

back action x accuracy > 2kgT, TrM 1

System of temperature 1«

2T
pback action > 7 Aaccuracy

Ts



