

Information-Regularized Optimal LQG Control

Takashi Tanaka

Laboratory for Information and Decision Systems MIT

Henrik Sandberg

Department of Automatic Control KTH

Optimal sensing (A) and controller (B) design in hostile or constrained networked environments

Problem Formulation

• Linear stochastic plant (given):

$$\mathbf{x}_{t+1} = A_t \mathbf{x}_t + B_t \mathbf{u}_t + \mathbf{w}_t, \ t = 1, \cdots, T$$
$$\mathbf{x}_1 \sim \mathcal{N}(0, P_{1|0})$$
$$\mathbf{w}_t \sim \mathcal{N}(0, W_t)$$

- Linear sensing policy in set Π_s^{lin} (to be determined): $\mathbf{y}_t = C_t \mathbf{x}_t + \mathbf{v}_t, \ \mathbf{v}_t \sim \mathcal{N}(0, V_t)$
- Control policy in set Π_c (to be determined): $\{q(du_t|y^t, u^{t-1})\}_{t=1}^T$ $y^t \triangleq (y_1, y_2, \dots, y_t), \text{ etc.}$

Performance Criteria

• Overall control objective:

 $\min_{\pi_s^{\rm lin} \times \pi_c} J_{\rm cont} + J_{\rm info}$

• Control performance:

$$J_{\text{cont}} \triangleq \sum_{t=1}^{T} \frac{1}{2} \mathbb{E} \left(\|\mathbf{x}_{t+1}\|_{Q_t}^2 + \|\mathbf{u}_t\|_{R_t}^2 \right)$$

• Price of communication (\propto transmitted "bits" A \rightarrow B):

$$J_{\text{info}} \triangleq \sum_{t=1}^{T} \gamma_t I(\mathbf{x}_t; \mathbf{y}_t | \mathbf{y}^{t-1}, \mathbf{u}^{t-1})$$

Comparison to Regular LQG Control

• In regular LQG control, sensing policy is given:

$$\mathbf{y}_t = C_t \mathbf{x}_t + \mathbf{v}_t, \ \mathbf{v}_t \sim \mathcal{N}(0, V_t)$$

• Control performance alone $J_{\text{cont}} \triangleq \sum_{t=1}^{T} \frac{1}{2} \mathbb{E} \left(\|\mathbf{x}_{t+1}\|_{Q_t}^2 + \|\mathbf{u}_t\|_{R_t}^2 \right)$

is optimized with LQR, i.e., $\mathbf{y}_t = \mathbf{x}_t$

• ...but leads to infinite number of transmitted bits: $J_{\text{info}} \triangleq \sum_{t=1}^{T} \gamma_t I(\mathbf{x}_t; \mathbf{y}_t | \mathbf{y}^{t-1}, \mathbf{u}^{t-1}) \to \infty$

Contributions and Related Work

- Jointly optimal control and (linear) sensing policies by means of a semi-definite program
- → trade-offs between control performance and information loss
- Large body of literature on optimal quantization and encoding for the LQG problem [Lewis and Tou, 1965; Curry, 1969; Borkar, 1993; Borkar and Mitter, 1997; Nair *et al.*, 2007; Bao *et al.*, 2011; Yüksel and Basar, 2013; Yüksel, 2014,...]
- Here: Focus on the optimal "test channel" design (channel is not given), and *quantization is not considered*

Step-by-Step Solution

Separation principle:

- 1. Optimal state feedback $\rightarrow \mathbf{u}_t = K_t \mathbf{x}_t$
- 2. Covariance scheduling $\rightarrow P_{t|t}$
- 3. Sensor design $\rightarrow \{C_t, V_t\}$ (incl. dimension)
- 4. Filter design \rightarrow Kalman gain L_t
- 5. Policy construction

$$\hat{\mathbf{x}}_{t+1|t} = A_t \hat{\mathbf{x}}_t + B_t \mathbf{u}_t$$
$$\hat{\mathbf{x}}_t = \hat{\mathbf{x}}_{t|t-1} + L_t (\mathbf{y}_t - C_t \hat{\mathbf{x}}_{t|t-1})$$
$$\mathbf{u}_t = K_t \hat{\mathbf{x}}_t$$

Proof Idea (1)

• For fixed sensor-controller policy in $\Pi_s^{\text{lin}} \times \Pi_c$:

$$p(dx_t|y^{t-1}, u^{t-1}) \sim \mathcal{N}(\hat{\mathbf{x}}_{t|t-1}, P_{t|t-1})$$
$$p(dx_t|y^t, u^{t-1}) \sim \mathcal{N}(\hat{\mathbf{x}}_t, P_{t|t})$$

• Transmitted information independent of \mathbf{u}_t :

$$I(\mathbf{x}_t; \mathbf{y}_t | \mathbf{y}^{t-1}, \mathbf{u}^{t-1}) = h(\mathbf{x}_t | \mathbf{y}^{t-1}, \mathbf{u}^{t-1}) - h(\mathbf{x}_t | \mathbf{y}^t, \mathbf{u}^{t-1})$$
$$= \frac{1}{2} \log \det P_{t|t-1} - \frac{1}{2} \log \det P_{t|t}.$$

 Two-player Stackelberg game between sensor agent A (leader) and controller agent B (follower):

$$\min_{\pi_s^{\rm lin} \times \pi_c} J_{\rm cont} + J_{\rm info} = \min_{\pi_s^{\rm lin}} \left(J_{\rm info} + \min_{\pi_c} J_{\rm cont} \right)$$

Proof Idea (2)

Lemma 1: For every fixed $\{q_{\mathbf{y}_t|\mathbf{x}_t}\}_{t=1}^T \in \pi_s^{\text{lin}}$, the certainty equivalence controller $\mathbf{u}_t = K_t \hat{\mathbf{x}}_t$ where $\hat{\mathbf{x}}_t = \mathbb{E}(\mathbf{x}_t|\mathbf{y}^t,\mathbf{u}^{t-1})$ is an optimizer of $\min_{\pi_c} J_{\text{cont}}$. Moreover,

$$\min_{\pi_c} J_{\text{cont}} = \frac{1}{2} \text{Tr}(N_1 P_{1|0}) + \frac{1}{2} \sum_{k=1}^{T} (\text{Tr}(W_k S_k) + \text{Tr}(\Theta_k P_{k|k})).$$

Standard backward Riccati recursion for optimal LQR:

$$\begin{split} S_t &= \begin{cases} Q_t & \text{if } t = T \\ Q_t + N_{t+1} & \text{if } t = 1, \cdots, T-1 \end{cases} \\ M_t &= B_t^\top S_t B_t + R_t \\ N_t &= A_t^\top (S_t - S_t B_t M_t^{-1} B_t^\top S_t) A_t \\ K_t &= -M_t^{-1} B_t^\top S_t A_t \\ \Theta_t &= K_t^\top M_t K_t \end{split}$$

Proof Idea (3)

$$J_{\text{info}} + \min_{\pi_c} J_{\text{cont}} = \sum_{t=1}^{T-1} \left(\frac{1}{2} \operatorname{Tr}(\Theta_t P_{t|t}) + \frac{\gamma_{t+1}}{2} \log \det P_{t+1|t} - \frac{\gamma_t}{2} \log \det P_{t|t} \right) \\ + \frac{1}{2} \operatorname{Tr}(\Theta_T P_{T|T}) - \frac{\gamma_T}{2} \log \det P_{T|T} + c$$

Optimize the estimation covariance $\{P_{t|t}\}, \{P_{t|t-1}\} \Rightarrow$ Semi-definite program:

$$\min \sum_{t=1}^{T} \left(\frac{1}{2} \operatorname{Tr}(\Theta_{t} P_{t|t}) - \frac{\gamma_{t}}{2} \log \det \Pi_{t} \right) + C$$
s.t. $\Pi_{t} \succ 0, \quad t = 1, \cdots, T$

$$P_{t+1|t+1} \preceq A_{t} P_{t|t} A_{t}^{\top} + W_{t}, \quad t = 1, \cdots, T-1$$

$$P_{1|1} \preceq P_{1|0}, P_{T|T} = \Pi_{T}$$

$$\left[\begin{array}{cc} P_{t|t} - \Pi_{t} & P_{t|t} A_{t}^{\top} \\ A_{t} P_{t|t} & W_{t} + A_{t} P_{t|t} A_{t}^{\top} \end{array} \right] \succeq 0, \quad t = 1, \cdots, T-1$$

Proof Idea (4)

Sensor policy:

1. Set $r_t = \operatorname{rank}(P_{t|t}^{-1} - P_{t|t-1}^{-1})$ where

 $P_{t|t-1} \triangleq A_{t-1}P_{t-1|t-1}A_{t-1}^{\top} + W_{t-1}, t = 2, \cdots, T$

2. Choose $C_t \in \mathbb{R}^{r_t \times n_t}$ and $V_t \in \mathbb{S}_{++}^{r_t}$ such that $C_t^\top V_t^{-1} C_t = P_{t|t}^{-1} - P_{t|t-1}^{-1}$

(use singular value decomposition, for example)

Done! We have determined $\{K_t, C_t, V_t, L_t\}!$

Example: Satellite Control with Limited Communication

Optimal Joint Control and Sensing

Deviations from Desired Trajectory

Observations

• Optimal to acquire lots of information initially, and then demand drops rapidly

- Very little loss in control performance by penalizing information transfer in this example
- Due to small process noise in space...

Summary

- Characterization of optimal joint sensor and controller design for LQG control
- Need to solve a semi-definite program
- Close connection to the sequential rate-distortion problem [Tatikonda, 2000]
- Future work:
 - Nonlinear sensing, quantization, and encoding
 - Applications in security and privacy

To appear at IEEE CDC 2015 (preprint arXiv:1503.01848)

- Slides will be made available on the workshop webpage
- Group work: Follow-up meeting at KTH in February 2016 (TBA)
 - Activities until then: Continued group discussions, writing white papers, MSc theses, etc.
- Upcoming ACCESS Industrial Workshop in May 2016
 - Contact: James Gross (jamesgr@kth.se)
- Thank you all for attending and for making the workshop a success!
- Feedback or remaining questions? <u>hsan@kth.se</u>