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Cyber-Secure Control of CPS

~ Sensors
Actuators N
51

Networked control systems

* are being integrated with
business/corporate networks

* have many potential points of cyber-
physical attack
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- Communication
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Network

Need tools and strategies to understand
and mitigate attacks:

- Which threats should we care about? |Cl % €2 % “3
- What impact can we expect from attacks? Distributed Controllers
- Which resources should we protect

(more)?

* Need for quantification!

12/17/2014 Sandberg: “"Quantifying Security in Cyber-Physical Systems" 4



Outline

* Background and motivation
* Quantifying security using sparse optimization
* Quantifying security using game theory

e SumMmary

12/17/2014 Sandberg: “"Quantifying Security in Cyber-Physical Systems"



Power System Monitoring '
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Adversary Model
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Attack Policy

» Attack policy: Induce bias in power measurements without alarms
» Model knowledge: Steady-state model of power system
* Disruption resources: Small number of measurement channels

Can we quantify how hard such attacks would be?
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States (0) (o< 61 = 02) $ 7

= bus voltage phase angles line powe
%1 floyio

(flow conservation)
bus injection

Measurements (y)
= line power flow & bus injection

Y1

“DC power flow model”:
Y= H bus
T J (node)

measurement matrix
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Steady-State Power System Model
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Structure of Measurement Matrix H

- DAL |1 (flow measurements)
H=I|—-DAT (flow measurements)
ADAT (injection measurements)

o A - directed incidence matrix of graph corresponding to
power network topology

e D) - nonsingular diagonal matrix containing reciprocals of
reactance of transmission lines

» More measurements than states. Redundancy!
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State Estimation by Least Squares

wrong

State estimator (LS) ‘ Contingency
analysis
y= HG6

=0=(H"H)"'H"y —
OPF
wrong \ calculations

What if the measurements were wrong?

Yy =1y + Ay —— random measurement noise

‘intentional data attack ‘% é — é + A0
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Stealthy Additive Deception Attack

$ Y2 + Ay
Measurements subject to attack: , | you + Aty
y=y+ Ay yis + Ayis
Y1+ Ay [] ]
Is the_re_ a state | m -
explaining the received

measurements?
Yoz + Avyos

Attack is constrained; ' '
otherwise will be detected by ‘ ys + Ay
Bad Data Detection algorithm

Stealth attack: Ay = HAH ‘
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Quantification: Security Index
| B target

Stealth attack Ay = HA0 e additional

-
Minimum # of meters attacked, | /

targeting the kth measurement: . .

min || HAB||o
AN

L]
In general, ex & span(H ) i / \ -
\

Minimum objective value =

s.t. H(k,:)A0 =1 security index
[Sandberg et al., CPSWEEK, 2010]
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See also [Kosut et al., IEEE TSG, 2011]



A Security Metric for 40-bus Network

security index
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Security level
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The Goal: Quantify Security to Aid
Allocation of Protection
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Security index problem

min || HA8|o
A6
s.t. H(k,:)AO =1

How to solve?

Closely related to compressed sensing and computation of
cospark of H [Tillmann and Pfetsch, IEEE TIT, 2013].
Problem known to be NP-hard for arbitrary H.
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Wish List

* Can we find solutions as accurately as MILP, and
faster than LASSO?

- Arbitrary H: No! (Problem NP-hard)

- H with the special physical and measurement
structure: Yes! (Min cut polynomial time algorithm
next)

» Can we find methods giving more problem insight,
and ideas for assigning protection?

- Yes, exploit graph interpretation of solution
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Binary Phase Assignment is Optimal

Security index problem

min || HAO)|o PR min |7 A0lo
= S.t.
S.t [Sou et al., CDC, 2011]
. H(k,:)AO =1
H(k,:)A0 =1 AB, & (0,1}

Theorem: Optimal A8 can be restricted to 0 or 1, for all i

Proof: Restriction can never increase number of flows,
given the structure of H
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Reformulation as Node Partitioninc
HE;lIIHAQIIO Security index problem:

st. H(k,)A0 =1 “ Pick partition of

minimum # of flows

and incident nodes

Each line with flow requires 2 attacks

Each node incident
requires 1 attack

between partitions B target additional
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Interlude: The Min Cut Problem

\ sink
source

V| nodes

|E| edges

/
/

min cut *

o Partition nodes into two sets (black and white) such that
source is black and sink is white (“a cut”)

e Find partitions with the smallest number of edges from
source set to sink set (“a min cut”)

» Problem solvable in O(|V||E| + |V|?log|V|) operations
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Security index problem Generalized Min Cut problem

\
\
min [| 77 Ao )
s.t. H(k,:)Af0 =1
/

How to solve generalized Min Cut?
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Standard Min Cut on Appended Graph
Generalized Min Cut = Standard Min Cut on appended graph

generalized min cut “ standard min cut appended graph

1% -
nodes Vs Nodes < 3|V/|
E edges EdgeS < B‘E‘ _|_ Q‘V’
source W W
C C
4 0

[Hendrickx et al., TAC, 2014]
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Security Index Problem — Summary

Security index problem Generalized Min Cut problem
\

\

min | H A8 g
A6

=)

s.t. H(k,:)Af0 =1

/

/7
“  [Souetal, CDC, 2011]

[Hendrickx et al., TAC,

_ 2014]
Standard Min Cut problem

on an appended graph

Practical
implications?

>> [maxflow,mincut] = max_flow(A,source,sink);
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IEEE 14 Bus Benchmark Test Result
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k (measurement index)

Solve time: MILP 1.1s; LASSO 0.6s; Min Cut 0.02s
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IEEE 118, 300, 2383 Bus Benchmarks

Min Cut solution is exact

Solve time comparison:

MILP 763 sec 6708 sec About 5.7 days

Min Cut 0.3 sec 1 sec 31 sec

12/17/2014 Sandberg: “"Quantifying Security in Cyber-Physical Systems" 24



Wish List

* Can we find solutions as accurately as MILP, and
faster than LASSO?

- Arbitrary H: No! (Problem NP-hard)

- H with the special physical and measurement
structure: Yes! (Min cut polynomial time algorithm
next.)

» Can we find methods giving more problem insight,
and ideas for assigning protection?

- Yes, exploit graph interpretation of solution

- Securing sensors that are frequently cut gives

indirect protection to many sensors!
[Vukovic et al., JSAC, 2012]
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Stealth Attack on Distribution System
Volt/VAR Control

» Operator’s goal: Switch capacitors ¢! and C3 to
make voltage levels as low as possible, but within
safety limits.

* The voltage measurements v, and v are stealth
attacked (i.e., bias consistent with physical model)

» Adversary’s goal: Make voltage levels unnecessarily
high, but within safety limits (to avoid detection)

| Teixeira et al., ACC, 2014]



Operator vs. Adversary Game
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Summary

* How to quantify security in CPS? Standard control
metrics (Hs2, Hoo, - - .) NOt necessarily the relevant ones

e Security metric using sparse optimization (exactly
computable using min cut) min || HA8]|
N

s.t. H(k,:)A0 =1

» Game theory to quantify and limit possible damage of
stealth attacks

* Many exciting opportunities in security for CPS!
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