

A Study on the Sensitivity Matrix in Power System State Estimation by Using Sparse Principal Component Analysis

Adam Molin¹ Henrik Sandberg¹ Magnus Johansson² ¹KTH Royal Institute of Technology – Department of Automatic Control ²Svenska Kraftnät (Swedish National Grid)

Motivation

- Grid more frequently at operational limits due to increased power transfers
- Uncertainties in measurements and network parameters always present in the state estimator of the Energy Management System (EMS)
- Better understanding of the data quality inevitable for driving the power system closer to its limits

Objective

Identify the most relevant data components (measurements & line parameters) for power system state estimation FI NL AND

Background data input a power system state estimator cost J

Data input a to power system state estimator:

 $m{a} = \{ measurements \ m{z}, branch \ parameter \ m{Y}, topology \}$ Network model (power flow equations):

$$\boldsymbol{z} = \boldsymbol{h}(\boldsymbol{x}, \boldsymbol{Y}) + \boldsymbol{e} \qquad \boldsymbol{e} \sim \mathcal{N}(0, \boldsymbol{R}_{\boldsymbol{z}})$$

Weighted least squares:

$$J(\hat{\boldsymbol{x}}, \boldsymbol{a}) = \frac{1}{2} \sum_{\ell=1}^{L} \frac{1}{\sigma_{\ell}^2} \left(z_{\ell} - h_{\ell}(\hat{\boldsymbol{x}}, \boldsymbol{Y}) \right)^2$$

General approach

Data input $a = \{$ measurements z, branch parameter Y, topology $\}$

Sensitivity Analysis with Sparsity Constraint

Find the set *D* of data inputs with |D| < t, whose joint

perturbations impact the state estimate most.

Methodology: Sparse PCA on (a variant of) sensitivity matrix

$$oldsymbol{S}=rac{doldsymbol{\hat{x}}}{doldsymbol{a}}$$

Computation of sensitivity matrix

Method of feasible directions [1]: Compute the modifications (directions) of the optimal state estimate when there is a perturbation of the input data, such that the linearized necessary conditions are still valid.

[1] R. Minguez, A.J. Conejo, "State estimation sensitivity analysis," Power Systems, IEEE Trans. on, 2007

Modified sensitivity matrix $d\hat{z}/da$

$$oldsymbol{S} = rac{doldsymbol{\hat{z}}}{doldsymbol{a}}|_{oldsymbol{\hat{x}}=\hat{x}^{*}}^{ ext{normalized}} = oldsymbol{R}_{oldsymbol{z}}^{-rac{1}{2}} \left(rac{\partialoldsymbol{\hat{z}}}{\partialoldsymbol{x}}oldsymbol{S}_{oldsymbol{\hat{x}}} + rac{\partialoldsymbol{\hat{z}}}{\partialoldsymbol{a}}
ight)oldsymbol{R}_{oldsymbol{a}}^{rac{1}{2}}$$

- Facilitates interpretability ($\frac{\partial \hat{z}}{\partial z}$ common in power sys.)
- Normalization with covariance $R_z^{-\frac{1}{2}}(\cdot)R_a^{\frac{1}{2}}$ enables the comparison of entries

Sparse Principal Component Analysis on S

Conduct sparse PCA on sensitivity matrix *S* [2]:

Loading vector encodes relevant inputs

Non-zero entries in v are interpreted as crucial data inputs for state estimation

[2] A. d'Aspremont, et al., "A direct formulation for sparse PCA using semidef. program.," *SIAM review*, 2007

Algorithms for sparse PCA

1. SDP-SPCA:

Semi-definite programming relaxation technique [2]

2. Soft thresholding:

 ℓ_1 -regularized PCA inspired by LASSO [3]

[2] A. d'Aspremont, *et al.*, "A direct formulation for sparse PCA using semidef. program.," *SIAM review*, 2007
[3] H. Zou, et al., "Sparse principal component analysis," *Journal of computational and graphical statistics*, 2006.

Two Extreme Cases

Take $\|v\|_0 = 1$ and replace objective with $\|Sv\|_{\infty}$ \rightarrow returns entry with maximum absolute value.

Only shows impact of single input/single output

Or

Omit cardinality constraint $\|\boldsymbol{v}\|_0 \leq t$

➔ returns singular value (SVD)

- upper bound
- non-structured

Structure of spectral properties of S

Calculation of *S* reveals the form:

$$\boldsymbol{S} = \begin{bmatrix} \Pi & (\boldsymbol{I}_L - \Pi) \boldsymbol{L}_{\boldsymbol{Y}} \end{bmatrix}$$

with

$$\Pi = \tilde{\boldsymbol{H}} \left(\tilde{\boldsymbol{H}}^{\top} \tilde{\boldsymbol{H}} \right)^{-1} \tilde{\boldsymbol{H}}^{\top} \text{ (projection matrix)}$$
$$\tilde{\boldsymbol{H}} = \boldsymbol{R}_{\boldsymbol{z}}^{-\frac{1}{2}} \boldsymbol{H}$$
$$\boldsymbol{L}_{\boldsymbol{Y}} = \boldsymbol{R}_{\boldsymbol{z}}^{-\frac{1}{2}} \boldsymbol{H}_{\boldsymbol{Y}} \boldsymbol{R}_{\boldsymbol{Y}}^{\frac{1}{2}}$$

and the Jacobians

$$oldsymbol{H} = rac{\partial oldsymbol{h}}{\partial oldsymbol{x}}|_{oldsymbol{x} = oldsymbol{\hat{x}}^*} \qquad oldsymbol{H}_{oldsymbol{Y}} = rac{\partial oldsymbol{h}}{\partial oldsymbol{Y}}|_{oldsymbol{x} = oldsymbol{\hat{x}}^*}$$

Structure of spectral properties of S

From the structure of *S*, we have

Proposition 1: Let $S = UDV^{\top}$ be the SVD with $V = [v_1, \dots, v_L]$. Assume that $(I_L - \Pi)L_Y$ has no singular value at 1. Then, for any positive singular value, we have $v_\ell \in \mathcal{V}^0$.

Same holds for

- Cardinality constrained PCA
- Soft thresholding algorithm

Target set for loading vectors: (either belong to measurement inputs or to line parameters)

$$\mathcal{V}^0 = \{ oldsymbol{v} \in \mathbb{R}^M \mid oldsymbol{v} \in \left[egin{array}{c} oldsymbol{v_z} \ oldsymbol{0} \end{array}
ight], oldsymbol{v_z} \in \mathbb{R}^L \lor oldsymbol{v} \in \left[egin{array}{c} oldsymbol{0} \ oldsymbol{v_Y} \end{array}
ight], oldsymbol{v_Y} \in \mathbb{R}^{M-L} \}.$$

6-bus system

 \rightarrow Active power injection $\mathbf{Q} \rightarrow$ Reactive power flow

Spectral profile of sparse PCA

Adjusted variance (squared singular values, add up to 1)

Results from SVD: Sparsity pattern of V^T

- Separation into measurement & line parameter inputs (Structure as theoretically proven)
- → Otherwise dense structure

Results from SDP-SPCA: Sparsity pattern of V^T

Separation into measurement & line parameter inputs
 Sparse structure

Results from Soft-Thresholding: Sparsity pattern of V^T

- Separation into measurement & line parameter inputs (Structure as theoretically proven)
- → Sparse structure

Interpretation of sparsity pattern

➔ Perturbation of these 3 reactances may lead to 1.44 amplification of estimation error.

Conclusion

Analysis tool for identifying relevant components for power system state estimation – Valuable for model & sensor calibration

Approach concatenates sensitivity analysis & sparse PCA

Reveals relevant additional information for the Energy Management System (EMS)

Future work:

- Sparsity constraint on principal component to reflect concentration of perturbation impact
- Numerical tractability for large-scale power networks

SDP-SPCA

Define
$$X = vv^ op$$

$$\max_{X} \operatorname{tr} \begin{bmatrix} S^{\top} S X \end{bmatrix} \quad \text{s.t.} \begin{cases} \operatorname{tr} \begin{bmatrix} X \end{bmatrix} = 1 \\ \mathbf{1}^{\top} |X| \mathbf{1} \leq t \\ X \succeq 0 \\ \operatorname{rank} [X] = 1 \end{cases}$$

SDP relaxation:
- Omit rank constraint

 $-\ell_1$ -relaxation of cardinality constraint

Comparison with simulated sensitivities

Predicted (from analytical model) vs simulated (Monte Carlo)

	SDP-SPCA		Soft-thres.	
# PC	predicted	simulated	predicted	simulated
1	1.44	1.42	1.51	1.48
2	1.28	1.26	1.25	1.20
3	1.22	1.18	1.16	1.10
4	1.00	0.97	0.99	1.00
5	1.00	0.99	0.99	0.99
6	0.99	0.97	0.99	0.98
7	0.99	0.99	1.00	0.98
8	0.98	0.97	1.00	1.03