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Motivation 

• Grid more frequently at operational limits due to increased 

power transfers  

• Uncertainties in measurements and network parameters 

always present in the state estimator of the Energy 

Management System (EMS)  

• Better understanding of the data quality inevitable for 

driving the power system closer to its limits  

 

Objective 

Identify the most relevant data components 

(measurements & line parameters) for 

power system state estimation  
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Background 

power system 
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Data input a to power system state estimator: 

 

Network model (power flow equations): 

 

Weighted least squares: 
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power system 
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perturbed data  
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cost 

General approach 

Methodology: Sparse PCA on (a variant of) sensitivity matrix 

Sensitivity Analysis with Sparsity Constraint 

Find the set 𝐷 of data inputs with 𝐷 < 𝑡, whose joint 

perturbations impact the state estimate most. 

Data input 
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Computation of sensitivity matrix 

Necessary condition for optimality 

 

Sensitivity equation 

 

Sensitivity matrix: 

Method of feasible directions [1]: Compute the 

modifications (directions) of the optimal state estimate when 

there is a perturbation of the input data, such that the 

linearized necessary conditions are still valid.  

[1] R. Minguez, A.J. Conejo, “State estimation sensitivity analysis,” Power Systems, 

IEEE Trans. on, 2007 
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Modified sensitivity matrix 𝒅𝒛 /𝒅𝒂 

• Facilitates interpretability (       common in power sys.) 

• Normalization with covariance                     enables the 

comparison of entries 

 

 

 

 

state 

estimator 

perturbed 

measurement 

estimate 
perturbed data 
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Sparse Principal Component Analysis on 𝑺 

Conduct sparse PCA on sensitivity matrix 𝑺 [2]: 

Loading vector encodes relevant inputs 
Non-zero entries in 𝒗 are interpreted as crucial data 

inputs for state estimation 

Deflate matrix: 

Normalized inputs 

Rerun after deflation 

Constraint on 

number of inputs 

Maximize impact on output 

[2] A. d’Aspremont, et al., “A direct formulation for sparse PCA using semidef. 

program.,” SIAM review, 2007 
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Algorithms for sparse PCA 

1. SDP-SPCA:  

Semi-definite programming relaxation technique [2]  

 

 

2. Soft thresholding:  

ℓ1-regularized PCA inspired by LASSO [3]  

 

[2] A. d’Aspremont, et al., “A direct formulation for sparse PCA using 

semidef. program.,” SIAM review, 2007 

[3] H. Zou, et al., “Sparse principal component analysis,” Journal of 

computational and graphical statistics, 2006.  
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Two Extreme Cases 

Take                      and replace objective with 

returns entry with maximum absolute value. 

– Only shows impact of single input/single output 

Omit cardinality  constraint 

 returns singular value (SVD)  

– upper bound  

– non-structured 

Or 
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Structure of spectral properties of 𝑺 

Calculation of 𝑺 reveals the form: 

 

 

with 

 

 

 

 

and the Jacobians 

(projection matrix) 
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Structure of spectral properties of 𝑺 

From the structure of 𝑺, we have 

 

 

 

 

Proposition 1: 

Let                         be the SVD with                                . 

Assume that                        has no singular value at 1. 

Then, for any positive singular value, we have               . 

 

 

 

 

 

 

Same holds for  

– Cardinality constrained PCA 

– Soft thresholding algorithm 

 

Target set for loading vectors: (either belong to measurement inputs or 
to line parameters) 
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Numerical illustration of approach 

 

 

• Input data: 

 20 measurements  

 2 x 11 branch parameters 

  (resistance & reactance)  

 Sensitivity matrix:  20 x 42 – matrix 

 

6-bus system 
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Spectral profile of sparse PCA 

Adjusted variance (squared singular values, add up to 1) 
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PCA component 



Numerical illustration of approach 

Results from SVD: Sparsity pattern of 𝑉𝑇 

 

Separation into measurement & line parameter inputs 

(Structure as theoretically proven) 

Otherwise dense structure 

 

singular value > 1 

singular value ≤ 1 
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Numerical illustration of approach 

Results from SDP-SPCA: Sparsity pattern of 𝑉𝑇 

 

Separation into measurement & line parameter inputs 

Sparse structure 
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Numerical illustration of approach 

Results from Soft-Thresholding: Sparsity pattern of 𝑉𝑇 

 

Separation into measurement & line parameter inputs 

(Structure as theoretically proven) 

Sparse structure 
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Interpretation of sparsity pattern 

Perturbation of these 3 reactances may lead to 1.44 

amplification of estimation error. 
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Conclusion 

Analysis tool for identifying relevant components for power 
system state estimation – Valuable for model & sensor calibration 

--- 

Approach concatenates sensitivity analysis & sparse PCA 

--- 

Reveals relevant additional information for the Energy 
Management System (EMS) 

 

Future work: 

• Sparsity constraint on principal component to reflect 
concentration of perturbation impact 

• Numerical tractability for large-scale power networks 
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SDP-SPCA 

Define  

SDP relaxation: 

 Omit rank constraint  

 ℓ1-relaxation of cardinality constraint 
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Comparison with simulated sensitivities 

Predicted (from analytical model) vs simulated (Monte Carlo)  
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