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• « Every mathematician knows it is impossible to 

understand an elementary course in 

thermodynamics. » 

 (V. I. Arnold, 1990) 

 

• In this talk: we keep trying 

• Specifically: derive Fourier’s law from linear 

microscopic dynamics 

• Key tools:  
– Dissipativity 

– Port-Hamiltonian systems   

 

 



Thermodynamics 

• A phenomenological theory of how heat flows/transforms 

 

• Fourier’s law (1822):  

 

• Carnot, Clausius, Kelvin (>1824): entropy, free energy, 

etc. as Lyapunov functions for isolated, constant-

temperature, etc. systems 

 

• Variables: internal energy, volume, temperature, etc. = 

macroscopic variables 

 

• Not derived from atomic theory but from macroscopic 

observations 



Microscopic foundations for 

thermodynamics 
• Boltzmann, Maxwell, Gibbs (>1866) 

• Hamiltonian, lossless microscopic dynamics 

• Random micro state 

• Macro state = probability measure on the micro state, 

parametrized by macro variable 

• Entropy = Shannon entropy of micro state given macro 

state 

• But: 

– Lack of complete and rigorous derivation of thermodynamics 

from micro dynamics 

– Little use of control theory (e.g. port-Hamiltonian systems) by 

stat. phys., while thermodynamics is a theory of open systems 

 



A story of thermodynamics from 

control-theoretic point of view 

• This talk: recover basic facts of thermodynamics 

 

• No new physical content 

 

• Use language of control theory, e.g. Willems’s 

dissipativity theory 

 

• Focus on linear systems 

 

• Focus on recovering Fourier’s law and introducing a new 

Lyapunov function 



Microscopic systems are lossless 

• A microscopic system is of the form 

 

 

with  

– state 

– input (e.g. forces, voltages)   

– output (e.g. speeds, currents) 

– power into system  

– Energy = Hamiltonian 

– Skew symmetry  

• Lossless port-Hamiltonian system 

• Energy is preserved 



Macroscopic systems are 

dissipative  
• Limits of very high-dim lossless systems =  

 (low-dim) dissipative systems. Cf. Sandberg-Delvenne-

Doyle (TAC, 2011) 

 

• Example: ideal resistance = infinite-dim lossless 

transmission line 

 

• Thus macroscopic systems look dissipative: 

 

 

                 

•     is the friction/resistance/dissipation term 



Macroscopic system with noise 

• Random high-dim micro initial condition becomes noise 

into low-dim dissipative model: 

 

 

 

where 

–          = unit Gaussian white noise for resistance 𝑗 

–       = temperature of noise = thermal bath 

• Same resistance both in diss. and fluct. terms:  = 

fluctuation-dissipation theorem 

• Cf. Sandberg-Delvenne-Doyle (TAC, 2011) 

 

 

 



Macroscopic system with noise 

Infinite 

systems 

(baths) 

Finite micro 

systems 

Dissipation Fluctuation/noise 

Dissipation Fluctuation/noise 



Thermodynamic state equation 
• Assume centered Gaussians distributions for state (called Gibbs states) 

• Deriving thermodynamics = finding dynamics of probability distributions 

• Here state space = covariance matrix (« meta-state ») 

• Thermodynamic state equation = Lyapunov equation 

 

 



The state equation is dissipative 

 

 

• Our contribution: observe the Lyapunov equation itself is a 

deterministic dissipative system with 

– storage function = « meta-energy » =  

– input = bath temperatures = 

– output = power dissipated by resistances 

 

 

 

• Lyapunov function when single constant input temperature  

 

 

where          is expected energy, so-called internal energy  



Thermodynamics of one-bath systems 

 

 

• Classical analysis: use free energy 

 

as Lyapunov function to prove convergence to equilibrium 

(equipartition in linear case) 

 

• Here we find « meta-energy » plays the role of entropy 

and seems more natural for linear systems  

• Our Lyapunov function also generalizes to several 

constant input temperatures 

• NB: Distinct from Haddad et al.’s ectropy (2008) 

 

 

 

 



Fourier’s law and  

the paradox of instant heat transfer 

• Consider two micro systems 

 

 

 

 

• If                         , the instant energy transfer 

  

is zero, against Fourier’s law 

 

• How can we make Fourier’s law compatible with our 

thermodynamics of linear systems? 

 

  



Maxwell-Cattaneo’s law 

• We assume: 

– Time scale separation: interaction between two systems slow 

compared to internal dynamics of systems (cf. Simon-Ando, 1961) 

– Local equilibrium: each system is close to equilibrium with a heat 

bath 

• We find :                                         where 

–         is a relaxation time 

–         is thermal conductance 

• = Maxwell-Cattaneo’s law 

• Classically introduced to avoid infinite propagation in 

parabolic heat equation 

• Allows brief heat flow from cold to hot!  



Maxwell-Cattaneo’s law emerges from time 

scale separation 

 

 

 

  

Infinite 

systems 

(baths) 

Finite 

systems 

Strong coupling 

Weak coupling 



Network of systems 

• Generalize to any network of systems 

• Node has temperature, internal energy, total energy 

• Edge has thermal conductivity, relaxation time 

• Energy exchange through Fourier-Maxwell-Cattaneo’s law 

• We so recover Local Equilibrium Theory of non-equilibrium 

thermodynamics 

• Also a justification of Haddad et al.’s phenomenological axioms 

(2008) 

 

 

 



Conclusion 

• Elementary derivation of classic results of thermodynamics from 

microscopic principles  

– Equipartition theorem  

– Fourier’s law corrected to Maxwell-Cattaneo’s law 

• Dynamical systems tools:  

– dissipativity  

– port-Hamiltonian systems 

– time-scale separation 

• New concept: meta-energy instead of entropy 

• How to introduce work (e.g. pressure-volume, current-voltage) and 

Carnot’s theorem: need nonlinear control: cf. Delvenne-Sandberg 

(Physica D, 2014) 

• Extension to fully nonlinear systems? 


