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« Every mathematician knows it is impossible to
understand an elementary course in
thermodynamics. »

(V. I. Arnold, 1990)

In this talk: we keep trying

Specifically: derive Fourier's law from linear
microscopic dynamics

Key tools:
— Dissipativity
— Port-Hamiltonian systems




Thermodynamics

A phenomenological theory of how heat flows/transforms

Fourier's law (1822): Ghot-to-cold = k(Thot — Teold)

Carnot, Clausius, Kelvin (>1824): entropy, free enerqy,
etc. as Lyapunov functions for isolated, constant-
temperature, etc. systems

Variables: internal energy, volume, temperature, etc. =
macroscopic variables

Not derived from atomic theory but from macroscopic
observations



Microscopic foundations for

thermodynamics

Boltzmann, Maxwell, Gibbs (>1866)
Hamiltonian, lossless microscopic dynamics
Random micro state

Macro state = probability measure on the micro state,
parametrized by macro variable

Entropy = Shannon entropy of micro state given macro
state

But:

— Lack of complete and rigorous derivation of thermodynamics
from micro dynamics

— Little use of control theory (e.g. port-Hamiltonian systems) by
stat. phys., while thermodynamics is a theory of open systems




A story of thermodynamics from

control-theoretic point of view

This talk: recover basic facts of thermodynamics
No new physical content

Use language of control theory, e.g. Willems’s
dissipativity theory

Focus on linear systems

Focus on recovering Fourier's law and introducing a new
Lyapunov function




Microscopic systems are lossless

* A microscopic system is of the form
#(t) = Az(t) + Bu(t)
T
with y(t) = B" x(t)
— state T
— Input (e.q. forces, voltages) U
— output (e.g. speeds, currents) Y
— power into system uTy
— Energy = Hamiltonian H = %
— Skew symmetry A + AT =0
« Lossless port-Hamiltonian system

* Energy is preserved

:cT::c




Macroscopic systems are
dissipative

 Limits of very high-dim lossless systems =

(low-dim) dissipative systems. Cf. Sandberg-Delvenne-
Doyle (TAC, 2011)

« Example: ideal resistance = infinite-dim lossless
transmission line

 Thus macroscopic systems look dissipative:
t(t) = (A — R)x(t) + Bu(t)
y(t) = B z(t)

« R=R"' > 0 is the friction/resistance/dissipation term



Macroscopic system with noise

« Random high-dim micro initial condition becomes noise
Into low-dim dissipative model:

i(t) = (A — Z R;)z(t) + Bu(t) + Z V2T, Rjw;(t),

y(t) = B  x(t),
where
— w;(t) = unit Gaussian white noise for resistance j
— T = temperature of noise = thermal bath

« Same resistance both in diss. and fluct. terms: =
fluctuation-dissipation theorem

« Cf. Sandberg-Delvenne-Doyle (TAC, 2011)




Macroscopic system with noise

i(t) = (A — Z R;)x(t) + Bu(t) + Z V2T, Rjw;(t),

y(t) = B (1),
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Thermodynamic state equation

Assume centered Gaussians distributions for state (called Gibbs states)
Deriving thermodynamics = finding dynamics of probability distributions
Here state space = covariance matrix (« meta-state »)

Thermodynamic state equation = Lyapunov equation

X=AX+XAT =) R;X - XR] +2) R;T,

J J J

Ry, 1Ty Ry, Th

= 1]

A B, x X



The state equation Is dissipative

X=AX+XA" =) R;X-) XRI+2) RT;
J J J

« Our contribution: observe the Lyapunov equation itself is a
deterministic dissipative system with

— storage function = « meta-energy » = Hueta = 318X ?
— input = bath temperatures = T’
— output = power dissipated by resistances

Ry, T —,X(t)—>TI

“«—

« Lyapunov function when single constant input temperature

Hpeta — 2TEH

where IEH is expected energy, so-called internal energy




Thermodynamics of one-bath systems

Ry, Ty —,X(t)—>TI

-

« Classical analysis: use free energy

F=EH-TS, S=[plogp= Entropy
as Lyapunov function to prove convergence to equilibrium
(equipartition in linear case)

« Here we find « meta-energy » plays the role of entropy
and seems more natural for linear systems

« Our Lyapunov function also generalizes to several
constant input temperatures

« NB: Distinct from Haddad et al.’s ectropy (2008)




Fourier's law and
the paradox of instant heat transfer

« Consider two micro systems

Uy = Y2

2171 —> ZCQ

S U2 = —Y)

« If 21(0) 1L x2(0), the instant energy transfer
Ey1y2 = Tr Cf C2 X 12
IS zero, against Fourier’'s law
qi2 = k(T2 —T1)

« How can we make Fourier’'s law compatible with our
thermodynamics of linear systems?



Maxwell-Cattaneo’s law

We assume:;

— Time scale separation: interaction between two systems slow
compared to internal dynamics of systems (cf. Simon-Ando, 1961)

— Local equilibrium: each system is close to equilibrium with a heat
bath

We find : q12 + 7¢12 = k(12 — T1) where
— T IS a relaxation time
—  k is thermal conductance

= Maxwell-Cattaneo’s law

Classically introduced to avoid infinite propagation in
parabolic heat equation

Allows brief heat flow from cold to hot!




Maxwell-Cattaneo’s law emerges from time

Infinite
systems
(baths)

Finite
systems

scale separation
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Strong coupling
Qvath-to-i = ki(T; — T;™)

Xy Ty M T Y2 x, & intg

S U2 = —Y

Weak coupling

q12 + TG12 = k(Ti™ — Ti™Y)



Network of systems

R17 Tl R?; T2 Rg, T3
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Generalize to any network of systems

Node has temperature, internal energy, total energy

Edge has thermal conductivity, relaxation time

Energy exchange through Fourier-Maxwell-Cattaneo’s law

We so recover Local Equilibrium Theory of non-equilibrium
thermodynamics

Also a justification of Haddad et al.’s phenomenological axioms
(2008)




Conclusion

Elementary derivation of classic results of thermodynamics from
microscopic principles
— Equipartition theorem
— Fourier’s law corrected to Maxwell-Cattaneo’s law
Dynamical systems tools:
— dissipativity
— port-Hamiltonian systems
— time-scale separation
New concept: meta-energy instead of entropy

How to introduce work (e.g. pressure-volume, current-voltage) and
Carnot’s theorem: need nonlinear control: cf. Delvenne-Sandberg
(Physica D, 2014)

Extension to fully nonlinear systems?




