

Parameterized Model Order Reduction Using Extended Balanced Truncation

Henrik Sandberg

Automatic Control Lab, ACCESS Linnaeus Centre, KTH, Stockholm, Sweden

Outline

- The Parameterized Model Order Reduction (PMOR) problem
- Extended Gramians and a related dissipation inequality
- Computing parameterized Gramians
- New methods for parameterized model order reduction

The Considered Problem

Given:

$$G_{\xi} \begin{cases} x(k+1) = A_{\xi}x(k) + B_{\xi}u(k) \\ y(k) = C_{\xi}x(k) + D_{\xi}u(k) \end{cases}, \begin{bmatrix} A_{\xi} & B_{\xi} \\ C_{\xi} & D_{\xi} \end{bmatrix} := \sum_{i=1}^{N} \xi_{i} \begin{bmatrix} A_{i} & B_{i} \\ C_{i} & D_{i} \end{bmatrix}$$

Find:

$$\widehat{G}_{\xi} \left\{ \begin{array}{l} \widehat{x}(k+1) = \widehat{A}_{\xi}\widehat{x}(k) + \widehat{B}_{\xi}u(k) \\ \widehat{y}(k) = \widehat{C}_{\xi}\widehat{x}(k) + \widehat{D}_{\xi}u(k) \end{array}, \begin{bmatrix} \widehat{A}_{\xi} & \widehat{B}_{\xi} \\ \widehat{C}_{\xi} & \widehat{D}_{\xi} \end{bmatrix} := \sum_{i=1}^{N} \xi_{i} \begin{bmatrix} \widehat{A}_{i} & \widehat{B}_{i} \\ \widehat{C}_{i} & \widehat{D}_{i} \end{bmatrix} \right\}$$

such that:

- (i): model order(\hat{G}_{ξ}) \ll model order(G_{ξ}); and
- (ii): $||G_{\xi} \hat{G}_{\xi}||_{\infty}$ small for all fixed $\xi \in \Xi$.

Convex bounded polyhedron
$$\Xi := \left\{ \xi : \xi \in \mathbb{R}^N, \sum_{i=1}^N \xi_i = 1, \xi_i \geq 0 \right\}$$

Motivation

- Model reduction of models where an operating point (ξ) is varying or unknown at time of reduction
- A desire to reduce **all** models G_{ξ} , $\xi \in \Xi$ in **one shot**
- Applications: Fluid dynamics, circuits, power systems, control systems,...

The Considered Problem (cont'd)

• A seemingly direct approach: Solve for all $\xi \in \Xi$

$$P(\xi) - A_{\xi}P(\xi)A_{\xi}^{\top} - B_{\xi}B_{\xi}^{\top} = 0$$
$$Q(\xi) - A_{\xi}^{\top}Q(\xi)A_{\xi} - C_{\xi}^{\top}C_{\xi} = 0$$

and apply balanced truncation or Hankel-norm approximation

- But generally **no closed-form solution** $P(\xi)$, $Q(\xi)$ and reduced model \hat{G}_{ξ} **not easily parameterized**
- Instead we will look for **generalized Gramians**. Solve for all $\xi \in \Xi$ $P(\xi) A_{\xi}P(\xi)A_{\xi}^{\top} B_{\xi}B_{\xi}^{\top} > 0, \quad P(\xi) > 0$

$$Q(\xi) - A_{\xi}^{\top} Q(\xi) A_{\xi} - C_{\xi}^{\top} C_{\xi} > 0, \quad Q(\xi) > 0$$

$$Q(\xi) - A_{\xi}^{\top} Q(\xi) A_{\xi} - C_{\xi}^{\top} C_{\xi} > 0, \quad Q(\xi) > 0$$

where $P(\xi)$ and $Q(\xi)$ are easily parameterized (generalized) Gramians

Contributions

 A new method to compute easily parameterized generalized Gramians based on extended balanced truncation [1]

• Two new LMI-based algorithms to solve the parameterized model order reduction problem, with a priori \mathcal{H}_{∞} -approximation error bounds

Related Work

- Model reduction of uncertain and linear parametervarying models
 - Wood, Goddard, Glover (1996)
 - Beck, Doyle, Glover (1996)
 - Li, Petersen (2010)
- Parameterized model order reduction
 - Sou, Megretski, Daniel (2008)
 - Baur, Beattie, Benner, Gugercin (2011)
- Extended LMIs
 - De Oliviera, Bernussou, Geromel (1999)

A Useful Lemma

$$P(\xi) - A_{\xi} P(\xi) A_{\xi}^{\top} - B_{\xi} B_{\xi}^{\top} > 0, \quad P(\xi) > 0,$$
 (1)

$$\begin{bmatrix} P(\xi) & A_{\xi}R(\xi) & B_{\xi} \\ R(\xi)^{\top}A_{\xi}^{\top} & R(\xi) + R(\xi)^{\top} - P(\xi) & 0 \\ B_{\xi}^{\top} & 0 & I \end{bmatrix} > 0, \quad (2)$$

Lemma ([1],[2]): Suppose $\xi \in \mathbb{R}^n$ is fixed.

- If $\frac{P(\xi)}{P(\xi)}$ satisfies (1), then there exists a slack variable $\frac{R(\xi)}{P(\xi)}$ such that $\frac{P(\xi)}{P(\xi)}$ and $\frac{R(\xi)}{P(\xi)}$ satisfy (2)
- Conversely, if $P(\xi)$ and $R(\xi)$ satisfy (2), then $P(\xi)$ satisfies (1)

^[1] H. Sandberg, "An extension to balanced truncation with application to structured model reduction," IEEE Transactions on Automatic Control, 2010

^[2] M. de Oliveira et al., "A new discrete-time robust stability condition, Systems & Control Letters, 1999

A Useful Lemma

$$P(\xi) - A_{\xi} P(\xi) A_{\xi}^{\top} - B_{\xi} B_{\xi}^{\top} > 0, \quad P(\xi) > 0,$$
 (1)

$$\begin{bmatrix} P(\xi) & A_{\xi}R(\xi) & B_{\xi} \\ R(\xi)^{\top}A_{\xi}^{\top} & R(\xi) + R(\xi)^{\top} - P(\xi) & 0 \\ B_{\xi}^{\top} & 0 & I \end{bmatrix} > 0, \quad (2)$$

Lemma ([1],[2]): Suppose $\xi \in \mathbb{R}^n$ is fixed.

- If $P(\xi)$ satisfies (1), then there exists a slack variable $R(\xi)$ such that $P(\xi)$ and $R(\xi)$ satisfy (2)
- Conversely, if $P(\xi)$ and $R(\xi)$ satisfy (2), then $P(\xi)$ satisfies (1)

[2] M. de Oliveira et al., "A new discrete-time robust stability condition, Systems & Control Letters, 1999

^[1] H. Sandberg, "An extension to balanced truncation with application to structured model reduction," IEEE Transactions on Automatic Control, 2010

Generalized and Extended Gramians

- Solutions to (1) are
 - -Generalized controllability Gramians $P(\xi)$
- Solutions to (2) are
 - -Extended controllability Gramians $(P(\xi),R(\xi))$
 - $-P(\xi)=R(\xi)$ is always possible solutions

The Dual

• Generalized observability Gramian $Q(\xi)$

$$Q(\xi) - A_{\xi}^{\top} Q(\xi) A_{\xi} - C_{\xi}^{\top} C_{\xi} > 0, \quad Q(\xi) > 0,$$

• Extended observability Gramian $(Q(\xi), S(\xi))$

$$egin{bmatrix} S(\xi) + S(\xi)^ op - Q(\xi) & S(\xi)A_\xi & 0 \ A_\xi^ op S(\xi)^ op & Q(\xi) & C_\xi^ op \ 0 & C_\xi & I \end{bmatrix} > 0,$$

Dissipation-Inequality Interpretation

Storage function parameterized by generalized Gramian $Q(\xi)$:

$$V_{\xi}(x, x_r) = (x - x_r)^{\top} Q(\xi)(x - x_r)$$

Supply rate parameterized by the slack variable $S(\xi)$:

$$w_{\xi}(i) = 2[(x - x_r)(i + 1)]^{\top} S(\xi) v(i) - |(y - y_r)(i)|^2$$

(A dual inequality exists for $P(\xi)$, $R(\xi)$). For details, see [1])

Methods for Finding Parameterized Gramians

1. Fix $P = P(\xi)$ and

$$\forall \xi \in \Xi : P(\xi) - A_{\xi}P(\xi)A_{\xi}^{\top} - B_{\xi}B_{\xi}^{\top} > 0, P(\xi) > 0,$$

is a finite-dimensional LMI in the unknown P (similar to Wood $et\ al$.) Solve in corners of convex polyhedron. Feasibility requires $quadratic\ stability$

2. Fix
$$R = R(\xi)$$
 and **affine** $P(\xi) = P_{\xi} \coloneqq \sum_{i=1}^{N} \xi_{i} P_{i}$ and $\forall \xi \in \Xi : \begin{bmatrix} P(\xi) & A_{\xi} R(\xi) & B_{\xi} \\ R(\xi)^{\top} A_{\xi}^{\top} & R(\xi) + R(\xi)^{\top} - P(\xi) & 0 \\ B_{\xi}^{\top} & 0 & I \end{bmatrix} > 0,$

is an LMI in the unknowns R and P_i , i = 1, ..., N

New Methods and Error Bounds for PMOR

Method 1: Balance/truncate **constant** generalized Gramians P and Q ("traditional" method, similar to Wood *et al.*):

$$\forall \xi \in \Xi : \|G_{\xi} - \hat{G}_{\xi}\|_{\infty} \cdot 2\sum_{i>r} \sqrt{\lambda_i(PQ)} =: \epsilon_r$$

Method 2: Balance/truncate **constant** slack variables *R* and *S* (first new method):

$$\forall \xi \in \Xi : \|G_{\xi} - \hat{G}_{\xi}\|_{\infty} \cdot 2\sum_{i>r} \sqrt{\lambda_i(RS)} \cdot \epsilon_r$$

Method 3: Balance/truncate **affine** generalized Gramians P_{ξ} and Q_{ξ} (second new method):

$$\forall \xi \in \Xi : \|G_{\xi} - \hat{G}_{\xi}\|_{\infty} \cdot 2\sum_{i>r} \sqrt{\lambda_i(P_{\xi}Q_{\xi})} \cdot \epsilon_r$$

Balanced Truncation (Method 2)

1. Solve

$$\begin{array}{llll} & \underset{P_i,R}{\text{minimize}} & \operatorname{trace}(R) \\ & \text{subject to} & \begin{bmatrix} P_i & A_i R & B_i \\ R^\top A_i^\top & R + R^\top - P_i & 0 \\ B_i^\top & 0 & I \end{bmatrix} > 0 \\ & R = R^\top \leq P^\star, \quad i = 1, \dots, N \end{array} \qquad \begin{array}{lll} & \underset{Q_i,S}{\text{minimize}} & \operatorname{trace}(S) \\ & \text{subject to} & \begin{bmatrix} S + S - Q_i & SA_i & 0 \\ A_i^\top S^\top & Q_i & C_i^\top \\ 0 & C_i & I \end{bmatrix} > 0 \\ & S = S^\top \leq Q^\star, \quad i = 1, \dots, N. \end{array}$$

- 2. Extended Hankel values [1]: $\sigma_{e,i} := \sqrt{\lambda_i(R^*S^*)}$
- 3. Balance the optimal solutions R^* and S^* :

$$TR^{\star}T^{\top} = \bar{R}^{\star} = T^{-\top}S^{\star}T^{-1} = \bar{S}^{\star} = \operatorname{diag}\{\sigma_{e,1}, \dots, \sigma_{e,n}\}$$

4. Truncate the balanced G_{ξ}

$$\widehat{G}_{\xi} \left\{ \begin{array}{l} \widehat{x}(k+1) = \widehat{A}_{\xi}\widehat{x}(k) + \widehat{B}_{\xi}u(k) \\ \widehat{y}(k) = \widehat{C}_{\xi}\widehat{x}(k) + \widehat{D}_{\xi}u(k) \end{array}, \begin{bmatrix} \widehat{A}_{\xi} & \widehat{B}_{\xi} \\ \widehat{C}_{\xi} & \widehat{D}_{\xi} \end{bmatrix} := \sum_{i=1}^{N} \xi_{i} \begin{bmatrix} \overline{A}_{i}^{11} & \overline{B}_{i}^{1} \\ \overline{C}_{i}^{1} & D_{i} \end{bmatrix} \right\}$$

(For details on Methods 1 and 3, see the paper.)

Numerical Example

$$G_{\xi} \begin{cases} x(k+1) = A_{\xi}x(k) + B_{\xi}u(k) \\ y(k) = C_{\xi}x(k) + D_{\xi}u(k) \end{cases}, \begin{bmatrix} A_{\xi} & B_{\xi} \\ C_{\xi} & D_{\xi} \end{bmatrix} := \sum_{i=1}^{N} \xi_{i} \begin{bmatrix} A_{i} & B_{i} \\ C_{i} & D_{i} \end{bmatrix},$$

where
$$A(\alpha) = \begin{pmatrix} 0.8 & -0.25 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0.8\alpha & -0.5\alpha & 0.2 & 0.03 + \alpha \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad |\alpha| < \gamma$$

$$B(\beta) = \beta \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + (1 - \beta) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad 0 \cdot \beta \cdot 1$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}, \quad D = 0$$

Reduce to second order!

(Model from De Oliveira et al.)

Numerical Example (Typical Path in E)

- Method 2-3 close to lower bound
- Method 3 best since ξ -dependent coordinates

Numerical Example (Not A Typical Path in E)

• Method 1-3 cannot handle uncontrollable mode at $\xi_1 = 0.5!$

A Priori \mathcal{H}_{∞} Error Bounds

Path 3 ($|\alpha| \le 0.04$)

A priori error bounds:

Method 1 (P, Q): —

Method 2 (R, S): ---

Method 3 (P_{ξ} , Q_{ξ}): ∇

Summary

- Extended balanced truncation can be applied to the PMOR problem
 - Methods 1-2: \hat{G}_{ξ} has simple affine parameterization
 - Method 3: \hat{G}_{ξ} has no closed-form parameterization (but Gramians have simple affine parameterization)
 - In general: Method 3 better than Method 2 better than Method 1
- Methods only work for relatively low-order models due to required solution of LMIs
- Interesting to use non-convex methods to compute non-affinely parameterized Gramians and reduced models \hat{G}_{ξ}