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Outline

e The Parameterized Model Order Reduction
(PMOR) problem

o Extended Gramians and a related dissipation
inequality

o Computing parameterized Gramians

* New methods for parameterized model order
reduction




The Considered Problem

w(k+1) = Acx(k) + Beu(k) [Ae Be]  ~~, [4;, B,
Gg{ y(k) = Cex(k) + Deu(k) [(Jg DJ Zfz[. ]

Find:
_ (#(k4+1) = Ac2(k) + Beu(k) [,45 Bgl al [Ai Bz-]
G 2 7 9 = i —~ .

such that:
(i): model order(G¢) < model order(G¢); and

(ii): ||Ge — Ge|loo small for all fized £ € E.

Convex bounded polyhedron = := {{ : £ eRY, Zfll &E=1,6 > O}
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Motivation

* Model reduction of models where an operating point
(¢) is varying or unknown at time of reduction

* A desire to reduce all models G¢, ¢ € £ in one shot

e Applications: Fluid dynamics, circuits, power systems,
control systems,...




The Considered Problem (cont’d)

* A seemingly direct approach: Solve for all ¢ € £
P(€) — A¢P(€)A! — BeB{ =0

Q&) — A; Q(€)Ae — C¢ Ce =0
and apply balanced truncation or Hankel-norm approximation

* But generally no closed-form solution P(§¢),Q(¢) and
reduced model G not easily parameterized

» Instead we will look for generalized Gramians. Solve for
all ¢e= P(§) — A¢P(§)A{ — B¢B! >0, P(£)>0
Q(€) = A; Q) A: —C¢ Ce > 0, Q(€) >0

where P(¢) and Q(¢) are easily parameterized (generalized)
Gramians



Contributions

* A new method to compute easily parameterized
generalized Gramians based on extended balanced
truncation [1]

* Two new LMI-based algorithms to solve the
parameterized model order reduction problem,
with a priori H,-approximation error bounds

[1] H. Sandberg, "An extension to balanced truncation with application to
structured model reduction," IEEE Transactions on Automatic Control, 2010
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A Useful Lemma
P(¢) — AcP(§A! —BeB! >0, P(&)>0, (1)

~P(g) A R(E) B |
RE)'A; RE+RE' —PE 0|>0, (2
- B/ 0 I

Lemma ([1],[2]): Suppose ¢ € R" is fixed.

o If P(¢) satisfies (1), then there exists a slack variable R(¢)
such that P(¢) and R(&) satisfy (2)

e Conversely, if P(¢) and R(§) satisfy (2), then P(§) satisfies (1)

[1] H. Sandberg, "An extension to balanced truncation with application to structured model reduction,"
IEEE Transactions on Automatic Control, 2010

[2] M. de Oliveira et al., "A new discrete-time robust stability condition, Systems & Control Letters, 1999
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Generalized and Extended
Gramians

e Solutions to (1) are
—Generalized controllability Gramians P(§)

e Solutions to (2) are
—Extended controllability Gramians (P(&¢),R(§))
-P(&)=R(¢) is always possible solutions

Feasibility set




The Dual

» Generalized observability Gramian Q (&)

Q&) — AL QA —C/ C: >0, Q(&) >0,

» Extended observability Gramian (Q(§),5(¢))

S(E)+8(6) —Q(€) S(EA: 0]
ALS©)' QE) C| >0,
0 c. I




Dissipation-Inequality Interpretation

DI U v a rr(k+1) = Agz, (k) + Beul(k) + v(k),
S yr (k) = Cear (k) + Deu(k).

| z(k+1) = Acx(k) + Beu(k)
Y Ge Ge { y(k) = Cex(k) + Deu(k)

k

Ve(x(k+1),zr(k+1)) - Ve(x(0),2-(0)) + Z%(i),

Storage function parameterized by generalized Gramian Q(§):
Ve(a,zr) = (x —z) ' Q(E) (2 — z7)
Supply rate parameterized by the slack variable S(¢):
we (i) = 2[(z — 2.) (i +1)] ' S(€)v(d) — [(y — ) (0)]?

(A dual inequality exists for P(¢),R(é). For details, see [1])




Methods for Finding Parameterized
Gramians

1. Fix P = P(¢) and
VEEE: P& — AcP(§A! — BB/ >0, P(¢) >0,
is a finite-dimensional LMI in the unknown P (similar to

Wood et al.) Solve in corners of convex polyhedron.
Feasibility requires gquadratic stability

2. Fix R = R(¢) and affine P(¢) = P; = YL, &P, and

P(¢) A¢R() Be
VeEeZ: |R(E)'Al RE+RE'-PE 0| >0,
e ; I

is an LMI in the unknowns Rand P;, i=1,...,N




New Methods and Error Bounds for
PMOR

Method 1: Balance/truncate constant generalized Gramians
P and Q (“traditional” method, similar to Wood et al.):

VEEE: [[Ge = Gelloo - 2) VA(PQ) =€,

L>T

Method 2: Balance/truncate constant slack variables R and
S (first new method):

VEEE: [Ge — Gello - 2) VN(RS) - &

1>T
Method 3: Balance/truncate affine generalized Gramians P;
and Q: (second new method):

VEE€E: |Ge—Gelloo - 2D\ N(PQe) - &

1>T




Balanced Truncation (Method 2)

1. Solve
Inimi trace( R inimi ‘
mll;:flﬁlze race(R) 11’11%11:%126 trace(.S)
P; AiR B S+S—@Q; SA; 0
subjectto  [RTA! R+R"—-P 0] >0 subject to AlsT Qi C'| >0
B, 0 I 0 c; I
R=R'<P*, i=1,....N S=8T<Q*. i=1,...,] \

2. Extended Hankel values [1]: o.; := v/ X(R*S*)

3. Balance the optimal solutions R* and §*:
TRT' =R*=T"'S*T ' = 5* =diag{oc1,...,00n}

4. Truncate the balanced G;

G {ﬂkﬂ):ﬁsﬂkHB&(@ [5‘5 1?5] o [f‘_‘_zll E}]
¢ g(k)zégi’(k)—l—ﬁgu(k)’ Ce D = 1l D,

(For details on Methods 1 and 3, see the paper.)



Numerical Example

x(k+1) = Aex(k) + Beu(k) [A; B 7;
G&{ y(k) = Cex(k) + Deu(k) [(j£ DJ Zfz [ | ] :

08 -025 0 1
1 0 0 0
where _

Ale) =1 ).8a —O5a 0.2 OOS—I—a el <y
0 1
0 1
0 0

B(B) =81, 0
0 0

ClOOOD

Reduce to second order!

(Model from De Oliveira et al.)



Numerical Example (Typical Path in E)

Path 1 (ja| < 0.4)

0 = Regular balanced
truncation (non-PMOR,
lower bound)

O = Method 1 (P, Q)

X = Method 2 (R, S)

+ = Method 3 (Pg, Qg)

0.2 0.4 06 0.8 :
Ga4=1-&(L=8=0)
« Method 2-3 close to lower bound
« Method 3 best since {-dependent coordinates



Numerical Example (Not A Typical Path in =)

0 = Regular balanced
truncation (non-PMOR,
lower bound)

O = Method 1 (P, Q)

X = Method 2 (R, S)

+ = Method 3 (Pg, Qg)

« Method 1-3 cannot handle uncontrollable mode at ¢, = 0.5!



A Priori H,, Error Bounds
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Path 3 (|a| < 0.04)

A priori error bounds:

—
(8)]
|

Method 1 (P, Q): —

Method 2 (R, S): ---

Method 3 (P, Q¢): V




Summary

 Extended balanced truncation can be applied to the PMOR
problem

- Methods 1-2: G, has simple affine parameterization

- Method 3: Gf has no closed-form parameterization (but Gramians
have simple affine parameterization)

- In general: Method 3 better than Method 2 better than Method 1

» Methods only work for relatively low-order models due to
required solution of LMIs

» Interesting to use non-convex methods to compute non-
affinely parameterized Gramians and reduced models 65




