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Motivation 
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• Networked control systems are to a growing 
extent  

- based on commercial off-the-shelf components 

- integrated with data analytics environments etc. 

 

• Leads to increasing vulnerability to cyber-
physical threats with many potential points 
of attacks 

 

• Need for tools and strategies to understand 
and mitigate attacks in networked control 
systems: 

- Which threats should we care about?  

- What impact can we expect from attacks? 

- Which resources should we protect (more)? 
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Contributions  
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• Adversary models for networked control systems 

 

• Optimization tools for quantization of cyber security 

- Trade-off between protection resources and level of security 

- Trade-off between attack resources and attack impact 

 

• Security metric for power network state estimators. Efficient 
computation using graph Min Cut relaxations 

 

• Security metric for wireless LQG-controlled quadruple tank. 
Computation using mixed integer linear programs 

 

 

 Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 



Outline  
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• Adversary models for networked control systems 

 

 

• Application 1: Power network state estimation 

 

 

• Application 2: Wireless LQG-controlled quadruple tank 
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Networked Control System under Attack 
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• Physical Attacks 

• Disclosure Attacks 

 

 

• Deception Attacks 

• Physical plant (  ) 

• Feedback controller (  ) 

• Anomaly detector (  ) 
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Adversary Model 

5/21/2013 6 

• Adversary’s goal to force the process state into an unsafe region 

• Attack should be stealthy, i.e., no alarms (at least until it is too late)  

• Adversary constrained by limited resources 
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Networked Control System with Adversary Model 

5/21/2013 7 Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 



Attack Space 
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Eavesdropping 

[Bishop] 

Replay 

[Sinopoli] 

Covert 

[Smith] 

[Teixeira et al., 2012] 
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Outline 
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• Adversary models for networked control systems 

 

 

• Application 1: Power network state estimation 

- Security index definition 

- Computation with LASSO/graph Min Cut relaxations 

 

 

• Application 2: Wireless LQG-controlled quadruple tank 
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Power Network Control System 
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 state 

measurement z 

̂

Remote  
Terminal 
Units 
(in substations) 

Supervisory 
Control 
And 
Data 
Acquisition 



Model-Based State Estimation 

 
state measurement 

z 

 z h 

Given redundant measurement z, find state 

estimate    based on steady-state model ̂
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Power Network State Estimation Model 

bus 
(node) 

line 
(edge) 

meter 

   States () 
= bus voltage phase angles 

1 

2 

3 

4 

   Measurements (z)  

= line power flow & bus injection 

“DC power flow model” [Abur et al.]: 

12 

θ Hz 

z12 

z34 

z2 

z23 

z1 

line power  
flow 

bus injection 

measurement matrix 

( 1 2) 

(flow conservation) 
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State Estimation by Least Squares 

θ Hz 

  zHHH TT 1
θ̂




State estimator (LS) Contingency 
analysis 

OPF 
calculations 

…
 What if the measurements were wrong? 

z zz 

wrong 

wrong 

wrong 

random measurement noise 

intentional data attack 
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Stealth Additive False-Data Attack 
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z1 

z12 

z23 

z24 

z34 

z2 

z3 

+z1 

+z12 

+z23 

+z2 

+z3 

+z34 

+z24 

Measurements subject to attack: 

z zz 

Stealth attack [Liu et al., Giani et al.]: θz H  

Attack is constrained; 
otherwise will be detected by 
Bad Data Detection algorithm 
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• Adversary’s goal to induce a bias in measurement channel  

• Attack should be stealthy, i.e., no alarms   

• Adversary should use minimal disruption resources 
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Security Index 
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θz H  Stealth attack 

In general,   spanke H

θ
min
 0

θH

 ,: θ 1H k  s.t. 

Minimum # of meters attacked,  
targeting the k th measurement:  

Minimum objective value = 
security index [Sandberg et al.]  

Security index identifies network vulnerabilities  

target  

additional 



The Goal: Quantify Security 
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dangerous 
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Security Index – Cardinality Minimization 

θ
min
 0

θH

 ,: θ 1H k  s.t. 

 1,: θH 

 2,: θH 

feasible set 

(affine subspace) 

optimal solution set 
not convex 

Closely related to compressed 
sensing and computation of the 
cospark of H, see [Tillmann and 
Pfetsch, 2005]. Problem known to 
be NP-hard in general. 

Security index problem 
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θ
min
 0

θH

 ,: θ 1H k  s.t. 

Security index problem 

How to solve? 
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Security Index Computation – MILP  

20 

θ
min
 0

θH

 ,: θ 1H k  s.t. 

 Cardinality minimization problem 
 Mixed integer linear program (MILP) 
 Exact solution (solver: CPLEX) 
 Solution algorithm not scalable 

θMy H My   

 ,: θ 1H k  

   0,1y i  i

θ,
min

y

 
i

y i

s.t. 

MILP formulation 
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Security Index Computation – LASSO 
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 Convex linear program (LP) 
 Known as LASSO 
 Approximate solution 
 Less expensive to solve 

θ
min
 1

θH

 ,: θ 1H k  s.t. 
θy H y   

 ,: θ 1H k  

 y i  i

θ,
min

y

 
i

y i

s.t. 

LP formulation 
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The Challenge 

•Can we find solutions as accurately as MILP, and 
faster than LASSO? 

 

•For general H, the answer is no (problem NP-hard) 

 

•Let us exploit DC-power flow structure of H and 
make a full measurement assumption 

 

•Specialize into graph problems with accurate and 
efficient algorithms 
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Graph Interpretation of Stealth Attack 
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1 

2 

3 

4 

θz H  Stealth attack 

= phase angle assignment 
= ? 

= ? 

= ? 

= ? 

Phase angle differences  flows 

attack cost                = # of meters with nonzero flows 

= 1.2 

= 3 

= 3 

= -0.6 

0
θH
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Binary Phases Assignment is Optimal 

24 

No phase angle difference  No flows Attack cost = 0 

No attack… 

Next guess: (0,1) phase angle assignment? 

Theorem: Optimal i can be restricted to 0 or 1, for all i 

θ
min
 0

θH

 ,: θ 1H k  s.t. 

θ
min
 0

θH

 ,: θ 1H k  s.t. 

 ,θ 0 1i 5/21/2013 



Binary Optimal Solution Justification 
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1 

2 

3 

4 = 1 

= 0 

= 1/4 

= -1/4 1 

2 

3 

4 = 1 

= 0 

= 1 

= 0 

positive becomes 1 

negative becomes 0 

Cost = 13 attacks Cost = 10 attacks 

Can always find (0,1) feasible solution with no worst cost 
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Reformulation as Node Partitioning 
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1 

2 

3 

4 = 1 

= 0 

= 0 or 1? 

= 0 or 1? 

Cut 

Each cut line requires 2 attacks 

Each node incident to at least  
one cut line requires 1 attack 

Pick partition of 
minimum # of attacks 

Phase angle assignment becomes node partitioning 

Optimal i can be restricted to 0 or 1, for all i 

= 0 

= 0 

Security index problem: 
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θ
min
 0

θH

 ,: θ 1H k  s.t. 

Security index problem Generalized Min Cut problem 

How to solve generalized Min Cut? 
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Standard Min Cut on Appended Graph 

   Generalized Min Cut = Standard Min Cut on appended graph 

v s 

v 1 v 2 v 3 v t 

z s 

z 1 z 2 z 3 z t 
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vs 

v1 v2 v3 v4 

source 

sink 

100 100 1 

1 1 

ps = 2 

p1 = 0 p3 = 4 p2 = 4 pt = 0 

generalized min cut standard min cut appended graph 

V 3

VE  2 3 Edges ≤ 

Nodes ≤  

V

E edges 

nodes 



Security Index Problem – Summary 

θ
min
 0

θH

 ,: θ 1H k  s.t. 

Security index problem Generalized Min Cut problem 

Standard Min Cut problem 
on an appended graph 

>> [maxflow,mincut] = max_flow(A,source,sink); 

Practical  
implications? 
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[Sou et al., 2011] 

[Hendrickx et al., 
2013]  
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MILP 
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IEEE 14 Bus Benchmark Test Result 

30 

Security indices for all 
measurements 

Solve time: MILP 1.1s; LASSO 0.6s; Min Cut 0.02s 
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IEEE 14 Bus Vulnerable Measurements  

31 

security index 
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IEEE 118, 300, 2383 Bus Benchmarks 

32 

Min Cut solution is exact 

Solve time comparison: 

Method/Case 118 bus 300 bus 2383 bus 

MILP 763 sec 6708 sec About 5.7 days 

Min Cut 0.3 sec 1 sec 31 sec 
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What about LASSO (1-Norm Relaxation)? 

We have seen LASSO relaxation in general yields  
non-optimal solution 

Will LASSO ever work? 

Yes, when H is totally unimodular! [Sou et al., 2013] 
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θ
min
 1

θH

 ,: θ 1H k  s.t. 



Totally Unimodular Matrices 

A matrix is totally unimodular 

= determinant of all square sub-matrices are -1,0,1  

1 1 0 0 1

1 0 1 1 0

0 1 1 1 1

 
  
 

   

network incidence matrix 

1 1 1 1 1

0 0 1 1 0

0 1 1 1 1

 
 
 
  

consecutive one matrix 
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Corresponds to full flow measurements  
(no bus injection measurements) 



Summary – Power Network State 
Estimation   

5/21/2013 35 Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 

•Adversary model 

- Induce measurement bias undetected 

- DC-power flow model known 

- Minimum disruption resources desired 

 

•Security index problem yields lower bounds on 
required disruption resources. Suggests protection 
strategy [Vukovic et al., 2012] 

 

•Security index computation in general NP-hard. 
Under appropriate assumptions graph Min Cut 
relaxation works very well 

 



Outline  
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• Adversary models for networked control systems 

 

 

• Application 1: Power network state estimation 

 

 

• Application 2: Wireless LQG-controlled quadruple tank 

- Max-impact/min-resource attacks 
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Extension to Dynamical Systems 
 

•  Attacker needs to satisfy constraints not only across 
channels (spatial dimension) but also constraints 
across time (temporal dimension) 

 

•  Cases considered: 

1. Minimum resource attacks 

2. Maximum impact attacks 

3. Maximum impact bounded  

      resource attacks 
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[Teixeira et al., 2013] 



Dynamical Networked Control System 

5/21/2013 38 

• Physical Plant 

• Feedback Controller 

• Anomaly Detector 

- Alarm triggered if 

Alarm 
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• Adversary’s goal is to force the process state into an unsafe region 

• Attack should be stealthy, i.e., no alarms   

• Adversary constrained by limited resources 

Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 

Adversary Model 



The Dynamical Systems Case (1) 
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Lift to time interval  
with zero-initial conditions and no noise: 

Dynamical anomaly detector for closed-loop system: 
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The Dynamical Systems Case (2) 
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Lift to time interval  
with zero-initial conditions and no noise: 

Dynamics of plant and controller: 
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Max Impact/Bounded Resource Attack 
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s.t. 

•  Maximize impact (push         far away from equilibrium) 

•  No alarms (threshold    ) 

•  Attack no more than    channels 

 

•  Mixed Integer Linear Program (MILP) 

Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 

(residual in detector) 

(# channels attacked) 

[Teixeira et al., 2013] 

(physical impact) 



Numerical Example 
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•  Wireless LQG controller 

•  4 channels: 2 actuators and 2 measurements 

•  Minimum phase or non-minimum phase depending on   
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Numerical Example (Non-Min Phase) 
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Values of        for max impact/bounded resource attack  
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Numerical Example (Non-Min Phase) 
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Numerical Example 

•  Maximum Impact/Bounded Resource attack illustrated 

 

•  2 channels allowed: MILP selects the actuators 

 

•  3-4 channels allowed: Unbounded impact (any attack on 
actuators can be hidden by corrupting 2 measurements)  

 

•  Infinity norm criteria yields more aggressive attack than 
2-norm criteria (bounds get saturated) 

 

•  Not surprisingly, non-min phase plant more sensitive 
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Steady-State Attacks 

•  Consider attacks over         where 

-    

-                    (sinusoidal attacks) 

 

•  Similar analysis carries through but make substitutions 

-   

-      

 

•  Yields worst-case attack frequency     etc.  
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Summary 
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• Tools for quantitative trade-off analysis between attacker’s 
impact and resources, also important for cyber defense 
prioritization 

 

• For dynamical systems there are temporal as well as spatial 
(channel) constraints for attacker to fulfill 

- Enforced through lifting and frequency-response models 

- Solved using MILP. No well-working relaxation known by us 
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Generalized Min Cut with Costly Nodes 

source 
sink 

Focus on directed graph (undirected = bi-directed) 

Find the cut (node partition) 

to minimize weights of cut edge + incident node weights… 

edge weight = # of line meters 
node weight = # of bus meters 

Generalization of standard Min Cut! 
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The Network: SCADA System 
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[Vukovic et al., 2012]  



Numerical Example  
(2-Norm, Non-Min Phase) 
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Numerical Example  
(2-Norm, Non-Min Phase) 
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Numerical Example (Min Phase 2-norm) 

Sandberg: ”Quantifying Cyber Security for Networked Control Systems" 



Numerical Example (Min Phase inf-norm) 
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