1 Linear Systems, Model Truncation, and Singular Perturbation

1.1 Linear State-Space Systems

We consider linear state-space systems

\[\begin{align*}
\dot{x} &= Ax + Bu, \quad x(0) = x_0 \\
y &= Cx + Du
\end{align*} \tag{1.1} \]

with state \(x(t) \in \mathbb{R}^n \), input \(u(t) \in \mathbb{R}^m \), and output \(y(t) \in \mathbb{R}^p \). Knowledge of \(x_0 \) and \(u(t) \) in the time interval \([0, T]\) determines \(x(T) \) and \(y(T) \) uniquely by

\[x(T) = e^{AT}x_0 + \int_0^T e^{A(T-t)}Bu(t)dt, \quad y(T) = Cx(T) + Du(T). \]

Often we assume \(A \) is a Hurwitz matrix, i.e., all eigenvalues of \(A \) are in the open left complex half plane and the system is (asymptotically) stable.

Large classes of models can be written in the form (1.1). Examples include

- discretized partial differential equations (finite difference/finite element etc.), such as diffusion and wave equations; and
- linearized nonlinear ordinary differential equations.

If the input-output mapping \(u \mapsto y \) is the main interest, and not the state \(x \), the system \(G \) can also be represented by its transfer function

\[G(s) = C(sI - A)^{-1}B + D \in \mathbb{C}^{m \times p} \]

for complex frequencies \(s \in \mathbb{C} \). As a measure of system size, and to measure the distance between two different systems we regularly use the \(H_\infty \)-norm:

\[\|G\|_\infty := \sup_{s \in \mathbb{C}_+} |G(s)| \quad (\mathbb{C}_+ \text{ is the open complex right-half plane}) \]

\[= \sup_\omega |G(j\omega)| \quad (G(s) \text{ has no poles in } \mathbb{C}_+) \]

which is finite if, and only if, \(G(s) \) is stable (has no poles in the closed right complex half plane). \(|G(s)| \) denotes the largest singular value of the matrix \(G(s) \) in the MIMO (Multi-Input–Multi-Output) case. In the SISO (Single-Input–Single-Output) case this is equal to the magnitude of the complex number \(G(s) \).

1.2 Reduced Order Systems and Approximation Criteria

We identify the complexity of the system \(G \) with its order \(n \). Some motivation for this definition are

- optimal controllers (LQG/\(H_2 \)/\(H_\infty \)) for \(G \) tend to have order of at least \(n \), and
- the simulation time of the system (1.1) is strongly correlated to the number \(n \) of differential equations.

A reduced order system ("an approximation") of \(G \) is a state-space system \(G_r \)

\[G_r : \begin{cases}
\dot{z} = A_r z + B_r u, \quad z(0) = z_0 \\
y_r = C_r z + D_r u
\end{cases} \tag{1.2} \]
such that $z(t) \in \mathbb{R}^r$ where $r < n$.

Not only should G_r be of lower order than G, its trajectories should say something about the trajectories of G. Otherwise, we can hardly speak of an approximation. The main approximation criterium we will be interested in is to make $\|G - G_r\|_\infty$ small. Motivation for this choice will be given throughout the course. One simple motivation is that it is a measure of the worst-case error. Other criteria, such as the relative criterium $\|G^{-1}(G - G_r)\|_\infty$ and the frequency-weighted criterium $\|W_1(G - G_r)W_2\|_\infty$ will also be discussed later in the course.

Since we mainly look at approximating input-output behavior $u \mapsto y$, choices of inputs and outputs are essential to get an approximation G_r that captures what you want.

1.3 Truncation and Singular Perturbation

Good approximations G_r can often be obtained by means of truncation or singular perturbation (residualization). Both methods are done in two steps:

Step 1: Change the coordinates $x(t)$. That is, find a suitable invertible matrix $T \in \mathbb{R}^{n \times n}$ and transform the state-space model according to

$$
\tilde{A} = T^{-1}AT = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{pmatrix}, \quad \tilde{A}_{11} \in \mathbb{R}^{r \times r},

\tilde{B} = T^{-1}B = \begin{pmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{pmatrix}, \quad \tilde{B}_1 \in \mathbb{R}^{r \times m},

\tilde{C} = CT = \begin{pmatrix} \tilde{C}_1 & \tilde{C}_2 \end{pmatrix}, \quad \tilde{C}_1 \in \mathbb{R}^{p \times r},

\tilde{D} = D.
$$

Step 2: Depending on method, define G_r by:

- Truncation:
 $$
 A_r = \tilde{A}_{11}, \\
 B_r = \tilde{B}_1, \\
 C_r = \tilde{C}_1, \\
 D_r = D.
 $$

- Singular perturbation:
 $$
 A_r = \tilde{A}_{11} - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{A}_{21}, \\
 B_r = \tilde{B}_1 - \tilde{A}_{12}\tilde{A}_{22}^{-1}\tilde{B}_2, \\
 C_r = \tilde{C}_1 - \tilde{C}_2\tilde{A}_{22}^{-1}\tilde{A}_{21}, \\
 D_r = D - \tilde{C}_2\tilde{A}_{22}^{-1}\tilde{B}_2.
 $$

Note the following:

(P1) using truncation, we have $G(\infty) = G_r(\infty)$; and

(P2) using singular perturbation, we have $G(0) = G_r(0)$.

Hence, these methods always achieve perfect approximation either at steady state or at infinite frequency.

For successful application of these methods (usually it is not enough to have a good approximation only at one frequency), we need to find good coordinate transformations T, and a suitable approximation order r. The following lectures will deal with this. Mostly we will use the truncation method.

1.4 Truncation = Projection*

The truncation method can also be seen as a (generally non-orthogonal) projection from the original state-space in \mathbb{R}^n to the reduced state-space in \mathbb{R}^k. We have the transformations

$$
W^T = \begin{pmatrix} I_r & 0_{r \times (n-r)} \end{pmatrix} T^{-1} : \mathbb{R}^n \rightarrow \mathbb{R}^r \quad ("x \mapsto z")
$$

$$
V = \begin{pmatrix} I_r \\ 0_{(n-r) \times r} \end{pmatrix} : \mathbb{R}^r \rightarrow \mathbb{R}^n \quad ("z \mapsto x")
$$
Notice that W and V satisfy
\[W^TV = I, \quad V^TW = (VW^T)(VW^T). \]
Such a projection is called a Petrov Galerkin projection. If $W^T = V^T$ the projection is called a Galerkin projection. For Petrov Galerkin projections we have that
\[
\begin{align*}
A_r &= W^T AV, \\
B_r &= W^T B, \\
C_r &= CV, \\
D_r &= D.
\end{align*}
\]
To understand the Petrov Galerkin projection we can do the following analysis. Assume we want to try to express the solution $x(t) \in \mathbb{R}^n$ to the model G only in r variables. Such a solution can be written as $x(t) = Vz(t)$, where $z(t) \in \mathbb{R}^r$ and $V \in \mathbb{R}^{n \times r}$. V should be chosen such that its columns span a subspace where we think the solution $x(t)$ will lie in. If the potential solution is put into the original state-space model G, we obtain
\[
\dot{x} = V\dot{z} = AVz + Bu + E,
\]
where E is the residual. $x(t) = Vz(t)$ is a solution to the original problem if, and only if, $E(t) = 0$ for all t. There are n equations in (1.3), but only r unknowns z. The system is generally over determined. To find a unique solution, we can require that the projection of the residual $E(t)$ onto the subspace spanned by V is zero. This projection is given by W^T. Hence, we add the condition
\[W^TE(t) = 0, \quad \forall t \]
to (1.3). We then obtain the equation
\[\dot{z} = W^T AVz + W^T Bu, \]
which exactly is the Petrov Galerkin projection of (1.1). From this, $z(t)$ can be computed, and the projection of the resulting residual E onto V is zero.

1.5 Recommended Reading

Sections 3.2–3.2.3 in *Linear Robust Control* discuss linear systems and the H_∞-norm. We will discuss signals, systems, and function spaces more during Exercise 1.

Sections 9.1–9.2.2 in *Linear Robust Control* discuss model truncation and singular perturbation in more detail. The controllability and observability Gramians mentioned on page 315 will be introduced at a later stage in this course.

1.6 Exercises

EXERCISE 1.1 (Modal representation and truncation)

Assume that A is Hurwitz, and has n distinct eigenvalues λ_i. Then there exists a coordinate transformation T such that
\[
\bar{A} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \quad \bar{C} = (c_1 \ldots c_n).
The state corresponding to λ_i is often called the i-th mode of the system. Prove that using truncation on the diagonalized system we obtain

$$G(s) - G_r(s) = \sum_{i=r+1}^{n} \frac{c_i b_i}{s - \lambda_i},$$

(1.4)

$$\|G - G_r\|_\infty \leq \sum_{i=r+1}^{n} \frac{|c_i b_i|}{|\text{Re} \lambda_i|},$$

(1.5)

Discuss how an error bound like (1.5) can be used. What modes should be truncated?

EXERCISE 1.2 (Modal truncation)

What modes should be truncated in the following systems if $\|G - G_r\|_\infty$ should be small?

a)
\[
\bar{A} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} 1 \\ 0.1 \\ 0.1 \end{pmatrix}, \quad \bar{C} = (1 \ 1 \ 0.1).
\]

b)
\[
\bar{A} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -0.1 & 0 \\ 0 & 0 & -0.101 \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \bar{C} = (1 \ 1 \ 1).
\]

c)
\[
\bar{A} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -0.1 & 0 \\ 0 & 0 & -0.101 \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \bar{C} = (1 \ 1 \ 1).
\]

d)
\[
G(s) = \frac{(s + 2)(s + 4)(s + 6)(s + 8)}{(s + 1)(s + 3)(s + 5)(s + 7)}.
\]

(1.6)

Relate your choices of truncated states to the error bound (1.5). Plot Bode diagrams of the systems G and the approximations G_r you construct.

EXERCISE 1.3

What are the conditions for controllability and observability of the modes in a state-space system in modal representation?

EXERCISE 1.4

Prove properties P1 and P2.