
Resilient Collaborative Privacy for
Location-Based Services

Hongyu Jin and Panos Papadimitratos

Networked Systems Security Group
KTH Royal Institute of Technology, Stockholm, Sweden

hongyuj@kth.se, papadim@kth.se

www.ee.kth.se/nss

Abstract. Location-based Services (LBSs) provide valuable services,
with convenient features for users. However, the information disclosed
through each request harms user privacy. This is a concern particularly
with honest-but-curious LBS servers, which could, by collecting requests,
track users and infer additional sensitive user data. This is the motiva-
tion of both centralized and decentralized location privacy protection
schemes for LBSs: anonymizing and obfuscating LBS queries to not dis-
close exact information, while still getting useful responses. Decentralized
schemes overcome the disadvantages of centralized schemes, eliminat-
ing anonymizers and enhancing users’ control over sensitive information.
However, an insecure decentralized system could pose even more serious
security threats than privacy leakage. We address exactly this problem,
by proposing security enhancements for mobile data sharing systems.
We protect user privacy while preserving accountability of user activi-
ties, leveraging pseudonymous authentication with mainstream cryptog-
raphy. Our design leverages architectures proposed for large scale mobile
systems, while it incurs minimal changes to LBS servers as it can be de-
ployed in parallel to the LBS servers. This further motivates the adoption
of our design, in order to cater to the needs of privacy-sensitive users.
We provide an analysis of security and privacy concerns and countermea-
sures, as well as a performance evaluation of basic protocol operations
showing the practicality of our design.

Keywords: Location-Based Service, Security and Privacy, Pseudony-
mous Authentication

1 Introduction

The evolution and popularization of mobile Internet brings forth opportunities
for service providers to cater to people’s needs. Location-based Services (LBSs)
in particular respond to user queries based on their locations, available at their
location-aware mobile devices. However, the improved relevance and precision
of responses comes at a cost: users’ privacy can be harmed [8, 26]; user loca-
tion information can be used to reconstruct user trajectories and profile their
activities or even infer their interests. In fact, the LBS itself, i.e., its server(s),
is uniquely positioned to undermine users’ privacy, collecting rich information



2

over time, for all locations a user (client or mobile device/application) submits
queries from. Moreover, it can have a financial motivation to do so, seeking to
push advertisements to users. As a result, increased concerns have been voiced
and numerous efforts to safeguard user privacy led to a number of proposals,
both centralized and decentralized.

Centralized schemes [13, 23, 25] introduce a new entity, an anonymizer : it
anonymizes a received client query (removing its identity attributes), obfuscates
and/or blends the queries of multiple clients, and then sends them to the LBS
server(s). The location is obfuscated to a corresponding region with the client
and at least k − 1 other clients included, to achieve k-anonymity: the user is
indistinguishable among these k users. Clearly, these schemes are effective but
this centralized approach seeks to solve the problem at hand based on the as-
sumption that originally raised concerns for the LBS servers; they presume the
anonymizer is trustworthy. But still, the anonymizer has all the rich information
collected from client queries. If an LBS server can be curious and track or profile
users, the question rises naturally: Why couldn’t an anonymizer also breach the
user privacy the same way?

This challenge motivated a number of works that proposed decentralized
privacy schemes. Similar, in spirit, to decentralized approaches overcoming dis-
advantages of centralized approaches for privacy-related problems in many areas
[24, 17, 12], LBSs user privacy protection can be achieved in a collaborative man-
ner: without relying on an anonymizer. In particular, users can hide from the
LBS server by obtaining LBS-provided information from their neighbors [29].

Nonetheless, opening up the system functionality is a double-edged sword:
it reduces the user exposure to the curious provider (LBS or anonymizer) but
it also exposes her to possibly faulty or misbehaving peers. In fact, risks in
and abuses of, for example, peer-to-peer (P2P) systems [18, 20, 30] show that
insecure decentralized schemes face serious problems. For example, users are
threatened by exposure of their sensitive information to other peers or injected
bogus data from malicious nodes. In [29], responses from the LBS server are
signed, thus they are self-verifiable while passed to other peers. However, this
does not comply with many existing LBS servers, which authenticate themselves
and secure only pairwise communication over, e.g., a TLS channel, instead of
signing the responses. In either case, peers could be uncooperative or offending.

This challenge exactly motivates our work, in the context of enhancing LBS
user privacy. The decentralized or collaborative approach has clear advantages,
enhancing the users’ control over sensitive information: their exposure can be
significantly reduced while they still obtain their sought quality of service (trad-
ing off mild delay for much better privacy). But this would be of no use if user
peers could disrupt or even debilitate the collaborative querying part, by passing
on bogus or irrelevant information, or excessively querying their peers. Even if
LBS responses were signed, still, misbehaving peers can aggressively consume
resources of benign peers and obstruct the peer query-response operation. Or,



3

worse even, abuse peer queries to also harm users’ privacy based on the peer-to-
peer data exchange.1

This is what we address in this paper: we propose a security architecture for
decentralized/collaborative privacy protection for LBSs. We are cognizant that
already deployed LBS servers would be unwilling to change their operations,
thus we propose new components that are orthogonal to the LBS servers and
new functionality for the privacy-sensitive users. In fact, we conjecture that our
scheme could even motivate LBS servers to adopt and offer the collaborative
privacy-enhancing scheme to their interested users. While, in turn, the users
would be further motivated to embrace it knowing that it protects them from
unwanted risks (manipulation, overloading) and, at the same time, safeguards
their privacy. Moreover, we impose constraints on pseudonym usage to further
protect users from being inundated with bogus data.

In the rest of the paper, we first outline requirements and discuss related
work (Sec. 2). Then, we present our proposed scheme (Sec. 3), we analyze the
achieved security and privacy protection (Sec. 4), benchmark our protocol on
mainstream mobile devices (clients) and provide a performance evaluation (Sec.
5), and conclude with our next steps (Sec. 6).

2 Problem Statement and Related Work

2.1 System and Adversary Model

Base Station Access Point Road Side Unit

LBS Servers

Fig. 1. System Model

System: Consider a general model, as illustrated in Fig. 1: Users’ mobile
clients, termed nodes in the rest of the paper, can be smartphones, tablet PCs,
On-board Units (OBUs) in vehicles, etc. They are connected to the Internet
through different channels (Wi-Fi and/or cellular network) and they are inter-
ested in different types of location-dependent information; e.g., specific Point of

1 Although, of course, an adversary would need a massive number of peers to collect,
each one locally, the same information an LBS would and is able to collect simply
through its regular operations.



4

Interest (POI) information, traffic status, environmental conditions, etc. Nodes
are able to request these information from LBS servers through the Internet.
Nodes can in addition communicate with other nodes through ad-hoc connec-
tivities, including Wi-Fi ad-hoc network, Wi-Fi Direct [5], LTE Direct [2] and
Bluetooth. This allows them to exchange information with other nodes; thus
sharing information with each other or aggregating data obtained from multiple
peers. We assume this is an alternative way of obtaining location-dependent in-
formation while hiding from the LBS servers. This can be achieved by running
an application on mobile devices; which obtains information from LBS servers
through provided APIs [1, 4], and shares the information with other nodes.

Adversaries: We assume that LBS servers are honest-but-curious: they fol-
low the protocols, responding faithfully to their users’ (nodes’) queries. But they
can trace the nodes (linking their queries), profile the nodes (recording their
queries), and even deanonymize the nodes (inferring home and work sites). Such
inferred sensitive data, based on the collected queries, could be commercially
exploited. We maintain the same assumption for any third party, including the
ones we introduce in our architecture (see Sec. 3).

Nodes can be honest, honest-but-curious or malicious. In the latter case, they
can deviate from the collaborative protocol functionalities and policies, attacking
the systems, notably their peer nodes: forging or tampering with responses,
masquerading other nodes, excessively posting queries to their peers, seeking
to exhaust their resources. The result could be degradation of the service users
receive (i.e., being misled) or even a Denial of Service (DoS) on the collaborative
exchange. These would not only affect quality of service but also force honest
nodes to expose themselves to the LBS servers.

2.2 Security and Privacy Protection Requirements

We seek to thwart the aforementioned node misbehavior, while maintaining the
benefit of “hiding” from the LBS servers and obtaining useful information.

Authentication and Integrity: Node messages, queries and responses,
should allow their receiver to authenticate their sender and verify they were
not modified or replayed from a previous exchange. We do not require strict
identification of the sender (querier or responder) but at least validation that
the sender is a legitimate participant of the P2P operation.

Non-repudiation and accountability: The sender of any message (any
action, in general) cannot deny having sent the message (taken the action). Any
node can be tied to its actions, if need arises, and held accountable. Accordingly,
it should be possible to have such nodes evicted from the system (the P2P
operation).

Anonymity/Pseudonymity and unlinkability: Nodes should not be iden-
tifiable, based on their P2P interactions, and have their messages linked to their
identities. Anonymity should be conditional, allowing the system to identify a
misbehaving node (and evict it). Ideally, we want to make it impossible for any
observer to link any two messages (e.g., queries) to the same node. But, for prac-
tical operation and efficiency/lower cost reasons, we require that node actions



5

(messages) can be linked at most over a protocol selectable period τ . Accord-
ingly, any node can maintain one temporary identifier, a pseudonym, for that
same period.

Confidentiality (optionally): The LBS-originating content should be acces-
sible only by legitimately participating nodes, possibly registered with the LBS
and the system/application that enables collaborative privacy protection.

2.3 Related Work

We discuss briefly decentralized approaches to enhance privacy for LBSs. As
with centralized approaches, many decentralized schemes seek to provide k-
anonymity: P2P spatial cloaking [11] and MobiHide [14] achieve k-anonymity
by finding k − 1 neighboring peers within a cloaked region. We do not dwell on
how effectively this can be done (e.g., unlinkability under the assumption that
nodes are not likely to move in the same direction). However, we note that the
trust model among nodes (users) was not considered [11]; while MobiHide [14]
relies on a central server who maintains a list of active nodes and supports
them on joining the clusters, which is a privacy threat for users. Along the same
lines, AMOEBA [28] protects user privacy by forming groups and delegating
LBS queries to group leaders, proposed for vehicular communication systems;
the predictable mobility helps in that case. The formation of groups, of course,
imposes additional complexity and overhead. If the conditions allow such group
operation and it is effective, it could be beneficial. But such group formation and
provision of k-anonymity is orthogonal to our work here, and it could possibly
co-exist with (and even be facilitated by) our scheme, by explicitly addressing
trust assumptions and providing a security architecture.

Passing/sharing self-verifiable information among users helps to provide au-
thentication and integrity [29]. Nodes cache information received from the LBS
server and pass to its neighbors when requested, thus decreasing exposure to
the LBS server. This is the approach we extend in this paper. It assumes that
responses signed by the LBS server are self-verifiable (manipulation by a node
will be detected). However, even with such signatures, assuming of course a
change on the side of LBS (possibly considered unrealistic by some providers),
a misbehaving node passing on tampered responses would remain “invisible”
and continue attacking the system. This is exactly where this work comes in,
protecting the system against node misbehavior. Moreover, it is interesting that
this does not comply with many existing LBS servers: user-/node-server com-
munication is authenticated (and kept confidential) through end-to-end security
(a secure channel, e.g., TLS, with the LBS server), without signed responses.

The EU PRIME project [6] proposes the use of anonymous credentials in
the context of LBS. This is related to our work, but a location intermediary is
assumed between the LBS and the mobile operator. The use of non-traditional
public key cryptographic protocols has also been considered in [22, 9, 10, 27], with
special care for sybil-free operations, in spite of the relatively higher overhead
for those cryptographic primitives.



6

3 Our Scheme

3.1 Overview

We assume basic collaborative functionality for nodes, sharing location-dependent
information [29]: before querying the LBS, a node queries its neighbors/peers,
who respond if they can; if no appropriate response is obtained in this P2P
manner, then the querier cannot but query the LBS. To secure such a system, as
per the requirements in Sec. 2, we propose a security architecture and augment
the basic P2P functionality, and the node-to-LBS communication. We assume
nodes keep track of all communication in the vicinity, and react appropriately
to P2P queries; listening if a query was already served by other nodes. This is
straightforward to support in commodity wireless networks (e.g., Wi-Fi). Table
1 summarizes the used notation.

Table 1. Notation

LTCA Long-Term Certification Authority

Lk/LK Long-term Private/Public Key

LTC Long-Term Certificate

PCA Pseudonymous Certification Authority

Sk/SK Short-term Private/Public Key

PC Short-term (Pseudonymous) Certificate

{msg}σ Signed msg

typepoi Type of POI

id Node id or Query id

t/tnow Timestamp/A fresh timestamp indicating current time

Ttimeout Timeout for peer response reception

SN Serial Number

N Number of needed responses to a peer query

Fig. 2 illustrates the proposed system architecture. We mandate that nodes
are registered with an identity and credential management facility that equips
them with short-lived anonymized credentials. To do so, we require the nodes be
registered with an Long-Term Certification Authority (LTCA) that maintains
their long-term identities and issues Long-Term Certificates (LTCs) for them.
With the LTC, a node obtains a ticket from the LTCA and present the ticket
to the Pseudonymous Certification Authority (PCA) to obtain Pseudonymous
Certificates (PCs)/pseudonyms. The ticket is authenticated by the LTCA but
anonymized : it does not reveal real identity of the node to the PCA. Therefore,
neither the LTCA nor the PCA can link the real identity of the node to the issued
pseudonyms (thus, the messages signed under the pseudonyms). The details of
the operation are presented next (Sec. 3.2, 3.3).

We require that the pseudonyms be used to authenticate (with the corre-
sponding cryptographic private key) P2P queries and responses. They can be



7

LBS

Ticket
Request

Ps
eu
do
ny
m
Re
qu
es
t

us
ing
Tic
ke
t

Ps
eu
do
ny
m

Re
sp
on
se

Queries
Signed with
Pseudonyms

Responses from
the LBS Server

Ticket
Response

PCALTCA

Fig. 2. System Architecture

optionally used to authenticate queries to the LBS (if its functionality allows
that). The pseudonyms attest to the legitimate participation of the node in
node-to-LBS or P2P communication. Furthermore, to prevent abuse of the node
anonymity, our scheme provides conditional anonymity and allows revocation of
anonymity and eviction. The node interactions with the facility entities are ex-
plained below. Moreover, we enforce ticket and pseudonym (lifetime) policies on
the Certification Authorities (CAs) and nodes, so that user privacy is protected
to the full extent and the nodes have regulated access to P2P part of the LBS. Fi-
nally, our extension of the P2P functionality allows for increasing resilience and
user-control: the querying node can seek multiple responses and can regulate the
maximum rate at which it responds to queries.

3.2 Protocols

Registration: All nodes register with an LTCA, which essentially acts as an
identity provider. (1) A node generates a pair of long-term public/private keys,
LK and Lk, and (2) submits a Certificate Signing Requests (CSR) (a self-signed
LK and other relevant information) to the LTCA; (3) the node is issued with
an LTC. The whole exchange is secured with a TLS channel or done offline.

C : Lk,LK (1)

C → LTCA : {id
C
, LK, others}σ

Lk
(2)

LTCA→ C : LTCC = {SN
LTC

, id
C
, LK, others}σ

LTCA
(3)

Ticket and Pseudonym Acquisition: (4) A node requests a ticket with
a desired pseudonym validity starting time, tstart. The length of ticket validity



8

period is defined by system policy, thus no need to be specified by the node. (5)
The LTCA checks if a ticket was issued with an overlapping lifetime; if not, (6)
it issues a ticket with validity period [t

′

start, t
′

end]. The ticket validity period is
computed by the LTCA based on tstart and the policy defined in [19] to prevent
ticket and pseudonym linkability.

With the ticket in hand, the node can obtain a set of pseudonyms (7-9) from
any associated PCAs, which acts as a service provider itself. There can be multi-
ple that recognize/accept the LTCA tickets; for the sake of presentation, without
loss of generality, we refer to a single PCA. The anonymized ticket does not re-
veal anything about the identity of the node (and the user) to the PCA. This
separation of duties concept is based on the work done in the context of vehicu-
lar communication systems [16, 19]. Both ticket and pseudonym acquisitions are
protected with TLS channels. The ticket request is protected by mutual authenti-
cation; while the pseudonym request is protected by uni-directional (PCA-only)
authentication, since the node is authenticated with the presented ticket.

C → LTCA : ticket req{tstart}σ
C

(4)

LTCA : check(id
C
, tstart) (5)

LTCA→ C : ticket = {SNticket, t
′

start, t
′

end}σLTCA
(6)

C : Sk, SK (7)

C → PCA : pseudonym req{ticket, {SK}σ
Sk
} (8)

PCA→ C : PC = {SNpc, SK, t
′

start, t
′

end}σPCA
(9)

Prreq(i, j) =

{
1 i = j

0 i 6= j
(10)

Prreq(i, j) =
wj ∗ e−dE(li,lj)∑

k∈I
wk ∗ e−dE(li,lk)

(11)

P2P Query: Algorithm 1 illustrates the querying thread of a node. As stated
above, nodes cache locally responses received from the LBS server (and other
peers). When POI information is needed, the local cache is checked first. If there
is no match, it generates a signed query. To ensure unlinkability after a change
of pseudonym, the node can randomly reset its IP and MAC address. The node
waits for and possibly receives responses from its neighbors. It can specify in
the query that N responses are required in total from its peers and assign a
query id (idq). It then verifies the responses and combine them to form a final
response. Each receiver could overhear the responses to the same query while
the query is queued, and serve the query only while less than N responses are
overheard from the network (see Sec. 3.3 for detail). Moreover, a node could



9

Algorithm 1 Querying thread (of a node)

1: Possesses a valid PC
2: query = {loc, typepoi}
3: resplocal = search(query)
4: if resplocal is satisfactory then
5: respfinal = resplocal

6: else
7: QUERY = {idq, tnow, query}σ

PC

8: broadcast({QUERY, PC})
9: Let respfinal = φ, n = 0, t = tnow + Ttimeout

10: while {RESPi, PCi} = receiveRespBefore(t) and n < N do
11: RESPi = {idq, tnow, resp}σ

PCi

12: if verify(PCi, LTCPCA) and verify(RESPi, PCi) then
13: respfinal = combine(respfinal , respi)
14: n = n+ 1
15: end if
16: end while
17: if respfinal is not satisfactory then
18: respfinal = queryLBS(QUERY )
19: end if
20: cache(respfinal)
21: end if
22: return respfinal

adapt to current CPU usage and battery amount remaining, the rate at which
to serve peer queries for further reducing the overhead. We do not formulate
what is a satisfactory response to a query, it can be specified in the preferences
of the application or determined through UI (e.g., a button indicating the user
wants to query the LBS server directly) after being presented the peer responses.

LBS Query: Nodes query the LBS server only when they have to, e.g.,
when the information obtained from their neighbors is not satisfactory. The
information obtained from the LBS server is the essential resource for supporting
P2P function of our scheme. Nodes send the signed queries to the LBS server.
Then, the responses from the LBS server are cached by the nodes.

P2P Query Processing: As shown in Algorithm 2, when a node receives
a peer query, it first verifies the attached pseudonym and checks if the attached
pseudonym has been over-used (i.e., received queries signed under the same
pseudonym exceeds the query rate allowed for one pseudonym). If not, it verifies
the query and searches its cache. If successful in finding matching information, it
signs and sends the response to the sender. This, of course, depends on whether
or not N responses to the same query have been overheard from the network.



10

Algorithm 2 Serving thread (of a node)

1: Possesses a valid PC
2: {QUERYi, PCi} = receiveQuery()
3: QUERYi = {idq, tnow, query}σ

PCi

4: if verify(PCi, LTCPCA) and verify(QUERYi, PCi) then
5: query = {loc, typepoi}
6: resp = search(query)
7: if resp 6= φ then
8: RESP = {idq, tnow, resp}σ

PC

9: send(i, RESP )
10: end if
11: end if

Reporting misbehavior: We address post-misbehavior processing while
the misbehavior detection is out of scope of this paper. However, we note that
some types of misbehavior are straightforward to detect and confirm. For exam-
ple, the honest LBS responses can help finding out which of the contradictory
responses to a query is/are bogus information. When a misbehavior is detected
by a node, (12) it sends to the Resolution Authority (RA), the messages related
to the misbehavior with pseudonyms attached. In case (13) the messages are
proved to be related to a misbehavior case, (14) it sends the pseudonym (or
multiple pseudonyms) to the PCA, and (15) the PCA derives the SNticket of the
ticket that had been used to issue the pseudonym. (16-17) With the help of the
LTCA, the misbehaving node is exposed (and possibly evicted from the system).

C → RA : {{msg}σ
PCi

, PCi}σ
PC

(12)

RA : judge(msg) (13)

RA→ PCA : PCi (14)

PCA→ RA : SNticket (15)

RA→ LTCA : SNticket (16)

LTCA→ RA : idi (17)

3.3 Optimizations for Query Processing

Processing a query requires searching the node cache and two signature verifi-
cations: one for the attached certificate (pseudonym) and one for the sender’s
signature. Similarly, the response validation requires two signature validations,
and checking if the nonce and location matches that of the query. To reduce com-
munication and processing overhead, we propose the following optimizations:

– Optimization 1: A node could sign multiple queries/responses under the
same pseudonym, thus it may omit attaching it to some of those - thus reduc-
ing communication overhead. Accordingly, the receiving nodes need to vali-
date the pseudonym of the said node only once throughout the pseudonym



11

lifetime. Then, they cache validated pseudonyms and omit their verification
for successive queries/responses signed under cached pseudonyms [10]. This
way, the processing overhead is reduced, as only one signature needs to be
validated for peer queries and responses. This is important, as the PCA key
would in principle have high security level, thus relatively higher verification
delay.

– Optimization 2: Each node could opportunistically cache responses to pop-
ular queries (both overheard and locally generated), assuming such informa-
tion is likely to become useful later. The popularity can be determined by
occurrence frequency of type of POI in queries or responses, while it is proto-
col selectable. In case an incentive scheme is used, caching popular responses
would provide increased rewards.

– Optimization 3: Requesting multiple, N , responses allows cross-checking
(Sec. 4), but could waste resources if responses are sent after the querier ob-
tained all needed responses. Responders can back-off randomly and overhear
communications, counting responses to the specific query, based on its idq;
then, at the end of the back-off they respond only if less than N responses
were overheard.

4 Security and Privacy Analysis

In this section, we explain how the security and privacy requirements are ad-
dressed and how malicious behavior is thwarted.

Authentication, integrity, and confidentiality: The communication of
the nodes with the CAs and the LBS server is carried over TLS channels, thus
providing end-to-end security. Signing P2P messages under pseudonyms pro-
vides authentication and integrity. While confidentiality of P2P communication
is optional, any two nodes can establish a shared session key and mutually au-
thenticate each other leveraging their pseudonymous certificates, encrypting the
response(s) with the session key. Thus, only users registered with the system
have access to LBS-provided information.

Non-repudiation and accountability: The use of public key cryptography
and the digital signatures ensure non-repudiation. Any suspected misbehavior
(messages deemed to be inconsistent, bogus, etc., by a node) can be linked to the
signer’s pseudonym. This can be reported to the security infrastructure and the
LTCA and PCA can jointly identify the node and if necessary evict it - revoking
valid pseudonyms and/or preventing it from obtaining new pseudonyms.

Unlinkability: Keeping ticket request records at the LTCA prevents nodes
from excessively requesting pseudonyms with overlapping lifetimes - we enforce
non-overlapping pseudonym lifetimes and similarly to [19] we enforce that all
tickets and pseudonyms are issued at discrete times for all requests to the PCA.
This precludes linkability of pseudonyms of the same node based on time of
issuance and lifetime - the likelihood is inversely proportional to the number of
all active pseudonyms in the system. Actions of a node are linkable only as long as
the same private key (under the same pseudonym) is used, that is, only over the
period τ . Setting this is a trade-off between unlinkability and efficiency. Changing



12

node identifiers across the protocol stack (IP, MAC) precludes linkability across
pseudonym changes.

Node authentication and exposure to the LBS server: For subscriber-
based LBSs, node authentication is necessary. Optionally, nodes can be authen-
ticated to the LBS server with long-term credentials or pseudonyms based on the
requirements of a specific LBS server. Use of long-term credentials would make
the nodes identifiable and queries linkable. While pseudonymous authentication
ensures nodes authentication without revealing their identities and breaching
unlinkability, if done under different pseudonyms.

Non-verifiable responses: If the LBS server signs responses, their integrity
and timeliness can be readily verified. Otherwise, any malicious node could forge
bogus responses, or any node create an arbitrary, valid yet unverifiable response
based on its cache. We don’t address this aspect here; we only suggest that
queriers request redundant responses in order to cross-check them and infer
valid information, e.g., extracting and using only information included in the
majority of the responses from distinct peer nodes. Such a scheme warrants a
separate investigation and it is part of future work. We note, however, that the
authentication of the nodes and the constraints imposed by our scheme prevent
an adversary from posing as multiple nodes and inundating the receiver with
bogus responses.

Essentially, honest LBS responses can serve as ground truth for detecting
injected bogus data. Nodes can examine suspicious responses (e.g., contradictory
responses from different peers) by querying the LBS server, and consequently,
downgrading and reporting deviant responders. Actually, a node dissatisfied by
other responders trades off its exposure to the LBS server for precise and genuine
information, while at same time, it contributes to the common objective: decrease
and balance exposure of nodes to the LBS server.

Thwarting clogging attacks: An internal attacker could post a large
amount of queries to fetch cached information from its neighbors and drain their
resources. Limiting the number of received peer queries signed under a same
pseudonym and enforcing non-overlapped pseudonym lifetimes address this prob-
lem. It ensures each node has only one valid pseudonym at any point; thus when
the quota (with respect to one receiver) of currently valid pseudonym has been
consumed completely, it will not have any more valid pseudonyms to generate
queries. However, flooding with bogus pseudonyms or messages that attached
with bogus signatures could consume a lot of client resources for verification,
while they are not avoidable. This is the same even if LBS-obtained information
are signed. Attackers can still pass forged data to their neighbors to consume
resources of benign nodes. As a remedy for our system, keys with relatively low
security levels could be used. Considering the ephemeral nature of information
transmitted in the system and short lifetimes of credentials; even if the keys are
cracked, the attacker will no longer be interested in expired credentials by that
time. The decision on key choice will be made based on cryptographic bench-
marks (see Sec. 5).

Exposure to the security infrastructure and collusion with the LBS:
Though authorities we introduce are designed in a manner that protects the



13

nodes from being traced, they could be honest-but-curious. However, any of the
honest-but-curious LTCAs or PCAs cannot trace a user’s actions (based on an
eavesdropped transcript) - we refer to the analysis in [19]. Moreover, if the the
LBS server authenticated nodes with pseudonyms, its collusion with the LTCA
would not reveal any information; collusion with the PCA would only reveal the
batch of pseudonyms obtained with the one presented by the LBS server but
not with past ones issued to the same node under a different ticket. Only the
unlikely collusion of all three, the LBS server, the LTCA and the PCA, would
expose the user.

5 Performance Evaluation

In this section, we demonstrate the practicality and applicability of our scheme.
We show performance evaluation results for basic operations in our system with
off-the-shelf components and popular platforms, i.e., RSA and ECDSA for pub-
lic key cryptography and Android smartphone as user device. We find that a
smartphone can easily handle high query rates from its neighbors, especially by
using RSA keys with relatively low security levels.

Table 2. Processing delay of cryptographic operations

Key Type
Security
Level
(bits)

Generation
(ms)

Sign
(ms)

Verify
(ms)

Signature
Size

(bytes)

RSA-1024 80 400.86 4.63 0.78 128

RSA-2048 112 2104.59 21.18 1.21 256

ECDSA-192 96 214.65 210.01 286.44 56

ECDSA-224 112 251.66 251.91 345.95 63

The most frequent and time consuming operations are signature generation
and verification.2 Encryption of P2P communication would incur also key es-
tablishment cost, thus some additional public key encryption, whose processing
delay is on the same order of magnitude of signature verification delay. However,
we do not explicitly consider it here, as it is optional. Table 2 shows process-
ing delays for cryptographic operations on a Sony Xperia Ultra Z smartphone,
which has a Quad-core 2.2 GHz Krait 400 CPU. We choose RSA and ECDSA
algorithms, commonly used for public key cryptography. Note that ECDSA is
standard in other applications, notably Vehicular Ad-hoc Networks (VANETs)
[7], due to its low key generation and signing delays and short signature sizes.
However, the Spongy Castle library [3], the only library available for Android

2 Compared to other domains [19, 15], which need frequent pseudonym changes to en-
sure unlinkability of messages transmitted in high rate, a relatively longer pseudonym
lifetime is acceptable in our scheme, as one can expect relatively lower message rates.
Thus, the performance is less affected by key generation operations.



14

supporting ECDSA, is inefficient. We found that RSA key generation takes more
time than ECDSA, but sign/verify operations take much less time than ECDSA.
Actually, all the execution delays of ECDSA are abnormally high (compared to
those in other libraries for other platforms). By checking the system logs of the
smartphone, we found that for each cryptographic operation of ECDSA the ap-
plication needs to free the heap 2 or 3 times. As a result, it increases significantly
cryptographic latencies, due to the limited heap size of each application in An-
droid and the high spatial overhead of ECDSA operations. Due to abnormalities
of ECDSA operations in Android, RSA is preferred for our scheme.

Table 3. Processing overhead for different operations

Operation Processing Overhead

Message verification with
cached pseudonym

Message Verification

Message verification with
non-cached pseudonym

Pseudonym Verification,
Message Verification

Query generation Message Signing

Response generation
Database Query,
Message Signing

768 1024 1536 2048
0

5

10

15

20

25

RSA key size of pseudonym

P
ro

ce
ss

in
g 

de
la

y 
(m

s)

 

 
Response generation
Query generation
Message verification with non−cached pseudonym
Message verification with cached pseudonym

Fig. 3. Processing delay under pseudonyms with different RSA key sizes, assuming an
RSA-2048 certificate of the PCA

Table 3 shows processing overhead for different operations and Fig. 3 shows
processing delays on the smartphone. Consider, for example, mobile phone user
density in Spanish cities [21]: Barcelona, the most densely populated in terms
of mobile phone users in Spain, has around 3000 mobile phone users per km2.
Assuming Wi-Fi radio range of 100m, there are around 100 peers within range.



15

Assume all peers (e.g., in a landmark site or in the city center) need to query
with a query rate per user equal to 1 query/min: this implies that a node would
receive approximately 1.7 queries/sec. From Fig. 3, we can see that verifying
a query, even with non-cached pseudonyms, would incur processing overhead
for less than 3 msec, thus more than 300 queries/sec could be verified. Peer
response generation delay is highly dependent on local cache implementation
and size of the cache. It includes a searching process and a signing operation.
In our experiment, we use SQLite database. We assume 50 pieces of POIs are
stored in the cache and 5 pieces of them matches each query. From Fig. 3, we see
it takes approximately 7 msec to generate a peer response with RSA-1024 key.
This implies that a node could, if able and needing to, respond to 1.7 queries/sec
(the query rate we calculated earlier).

Based on availability of relevant information in the cache, only a part of them
could be served; moreover, the actual latency could be significantly lower thanks
to optimizations we proposed in Sec. 3. More basically, a node can “decide,”
based on, e.g., current CPU usage and battery amount remaining, whether or
not to serve peer queries. A protocol-selectable parameter, the maximum rate
at which to respond, can further reduce the overhead.

Peer query and response sizes are application and implementation dependent.
In our experiments, we assume 25 byte queries. By encoding public keys and
signatures into Base64 format and encapsulating into JSON format; the total size
of a peer query, with an RSA-1024 pseudonym (public key and signature from the
PCA) attached, is 980 bytes. The size of a peer response depends on how many
information pieces it contains; while the signature and attached pseudonym sizes
are same as those for a query. With most smartphones supporting IEEE 802.11
b/g/n with throughput between 11 and 300 Mbps, the above mentioned query
rate would not incur heavy communication overhead. Clearly, receiving queries
would affect posting own queries, as responses are received over the same channel.
But, as mentioned above, beyond optimizations, a node can always stop serving
queries beyond a threshold, to ensure it can obtain own needed information.

6 Conclusion

We presented a decentralized secure and privacy protection scheme for LBSs. We
leverage the concept of information sharing in P2P systems for POI information
sharing, and further secure it in a privacy-preserving manner with pseudonym-
based authentication. Through security and privacy analysis and performance
evaluation, we show a system with high resiliency to different attacks and high
practicality for the deployment. Our scheme can be extended in terms of opti-
mizations we proposed. In our evaluation, we assume mobile nodes are evenly
distributed. However, efficiency of our scheme in flash crowds needs to be eval-
uated with large scale simulation to show how peer queries for varying types
of POI information can be handled by load balancing among the nodes in the
crowds. Moreover, with simulation, we can quantify user privacy and determine
optimal parameters for the optimizations we proposed. An incentive scheme and



16

cross-checking mechanism can be integrated to promote user participation and
improve attack resiliency.

References

1. Google maps api. https://developers.google.com/maps/.
2. Lte direct. https://www.qualcomm.com/invention/technologies/lte/direct.
3. The Spongy Castle Cryptography APIs. https://rtyley.github.io/spongycastle/.
4. Uber api. https://developer.uber.com/.
5. Wi-fi direct. https://rtyley.github.io/spongycastle/.
6. PRIME Framework Version. 3. https://www.prime-

project.eu/prime products/reports/fmwk/, 2008.
7. IEEE Standard for Wireless Access in Vehicular Environments Security Services

for Applications and Management Messages. IEEE Std 1609.2-2013, 2013.
8. L. Barkhuus and A. K. Dey. Location-based services for mobile telephony: a study

of users’ privacy concerns. In INTERACT, Cape Town, South Africa, Sept. 2003.
9. G. Calandriello, P. Papadimitratos, J.-P. Hubaux, and A. Lioy. Efficient and robust

pseudonymous authentication in vanet. In ACM VANET, Montreal, Canada, 2007.
10. G. Calandriello, P. Papadimitratos, J.-P. Hubaux, and A. Lioy. On the performance

of secure vehicular communication systems. IEEE TDSC, 2011.
11. C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial cloaking algorithm

for anonymous location-based service. In ACM GIS, New York, NY, Nov. 2006.
12. L. A. Cutillo, R. Molva, and T. Strufe. Privacy preserving social networking

through decentralization. In IEEE/IFIP WONS, Snowbird, Utah, Feb. 2009.
13. B. Gedik and L. Liu. Protecting location privacy with personalized k-anonymity:

Architecture and algorithms. IEEE Transactions on Mobile Computing, Jan 2008.
14. G. Ghinita, P. Kalnis, and S. Skiadopoulos. Mobihide: a mobilea peer-to-peer

system for anonymous location-based queries. In SSTD. Boston, MA, July 2007.
15. S. Gisdakis, T. Giannetsos, and P. Papadimitratos. Sppear: security & privacy-

preserving architecture for participatory-sensing applications. In ACM WiSec,
Oxford, UK, July 2014.

16. S. Gisdakis, M. Laganà, T. Giannetsos, and P. Papadimitratos. Serosa: Service ori-
ented security architecture for vehicular communications. In IEEE VNC, Boston,
MA, Dec. 2013.

17. L. Han, B. Nath, L. Iftode, and S. Muthukrishnan. Social butterfly: Social caches
for distributed social networks. In PASSAT, Boston, MA, Oct. 2011.

18. M. Johnson, D. McGuire, and N. Willey. The evolution of the peer-to-peer file
sharing industry and the security risks for users. In HICSS, Waikoloa, Big Island,
Hawaii, Jan. 2008.

19. M. Khodaei, H. Jin, and P. Papadimitratos. Towards deploying a scalable & ro-
bust vehicular identity and credential management infrastructure. In IEEE VNC,
Paderborn, Germany, Dec. 2014.

20. S. H. Kwok, K. R. Lang, and K. Y. Tam. Peer-to-peer technology business and
service models: risks and opportunities. Electronic Markets, 2002.

21. T. Louail, M. Lenormand, O. G. Cantu Ros, M. Picornell, R. Herranz, E. Frias-
Martinez, J. J. Ramasco, and M. Barthelemy. From mobile phone data to the
spatial structure of cities. Scientific Reports, June 2014.

22. L. A. Martucci, M. Kohlweiss, C. Andersson, and A. Panchenko. Self-certified
sybil-free pseudonyms. In ACM WiSec, Alexandria, VA, 2008.



17

23. S. Mascetti, C. Bettini, D. Freni, and X. S. Wang. Spatial generalisation algorithms
for lbs privacy preservation. Journal of Location Based Services, 2007.

24. G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos. Privacy-preserving re-
lationship path discovery in social networks. In CANS. Japan, Dec. 2009.

25. M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query processing
for location services without compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases, Seoul, Korea, Sept. 2006.

26. G. Myles, A. Friday, and N. Davies. Preserving privacy in environments with
location-based applications. IEEE Pervasive Computing, 2003.

27. P. Papadimitratos, G. Calandriello, A. Lioy, and J.-P. Hubaux. Impact of Vehicular
Communication Security on Transportation Safety. In IEEE INFOCOM MOVE,
Phoenix, AZ, 2008.

28. K. Sampigethaya, M. Li, L. Huang, and R. Poovendran. Amoeba: Robust location
privacy scheme for vanet. IEEE JSAC, 2007.

29. R. Shokri, G. Theodorakopoulos, P. Papadimitratos, E. Kazemi, and J.-P. Hubaux.
Hiding in the mobile crowd: Location privacy through collaboration. IEEE TDSC,
2014.

30. L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa, and S. Chien. A first look
at peer-to-peer worms: threats and defenses. In Proceedings of the 4th International
Conference on Peer-to-Peer Systems. Konstanz, Germany, Aug. 2005.


