
EL2310 – Scientific Programming
Lecture 9: Pointers and Structures

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology – KTH

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Wrap up

� Change the scope of variables: extern and static
� Pointer basics: Pointer contain the address of another variable

� To pass reference to big things in memory
� To return multiple values from functions

� Assigning a pointer: int *b = &a;
� Deferencing a pointer: *b = 4;
� Passing values by reference:
void func(double x, double *f);

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Wrap up

� Arrays and Pointers:
int a[] = {1,2,3,4,5,6,7,8};
int *p = &a[0];

� increment/decrement pointers: p++, p-=3; p[-2] = 2
� access array values: *(p+i) and p[i]
� access array address: &a[i] and a+i
� Pointers to Pointers:
int a;
int *p = &a;
int **pp = &p;

� void and NULL pointers

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Pointers

� Comparison
� Let int *p1, *p2;
� What is the difference?
...
if (p1 == p2) ...
...
if (*p1 == *p2) ...

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Announcements

� C project announced. Deadline 30th Sep (Fri).
� Next lab session (help session):

27th Sep (Tues) 9.30-12, room 304, TK14
� Slight changes in Groups (for presentations). Check updated

list in Bilda later today.

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Task 8.2

� Rewrite the Newton code using a function of the following form:
void eval fcn(double x, double *f, double

*dfdx);

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Wrap Up

Task 8.3

� Write the function
void strcpy2(char *dest, char *src);

� Should copy the string src into dest

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Pointer to functions

� Just like in Matlab you can work with pointers to functions
� In C you need to declare explicitly what the argument the

function has as input and output
� Ex: Pointer (fcn) to a function that returns an int and takes a
double as argument
int (*fcn)(double)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Arrays of pointers to functions

� Can store arrays of function pointers
� To declare an array pf of 4 pointers to functions we do
double (*pf[4])(double);

� You assign values by
pf[0] = &fcn1;

� and you use them as
pf[0](4.2);

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Task 1

� Illustrate what happens in the following case
int *pi, i, j, *q = NULL;
i = 10;
pi = &i;
j = *pi;
(*pi)++;
q = pi;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Task 1 cont’d

From “The ANSI C Language” Granet VincentRamviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Task 2

Write a program which accesses the functions,
� int add(int x,int y){return x+y}
� int mul(int x,int y){return x*y}
using function pointers

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Task 3

� Rewrite the Newton function so that it can take a function
pointer instead

� This makes it easier to switch functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Function Pointers

Task 4

� Write a program with several functions, all with the same
interface

� Create an array of pointers to these functions
� Loop through the pointers and call the functions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Constant variables

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Constant variables

const

� If you want to make sure that a variable is not changed you can
use the const keyword

� Ex: const double pi = 3.1415;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Structures

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Structures

struct

� So far we looked at basic data types and pointers
� It is possible to define your own types
� For this we use a struct
� Ex:
struct complex number {

double real;
double imag;

};
� The variables real and imag are called members of the
struct complex number.

� Declaring variables x,y of type complex number is done with
struct complex number x,y;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Structures

Assigning struct

� Can be assign similar to arrays
� struct complex number x = { 1.1, 2.4 };
� Will give the complex number x = 1.1 + 2.4i .
� One more example:
struct person {

char *name;
int age;

};
struct person p1 = {"Jan Kowalski", 38};

� Order must be same as in structure, unless:
struct person p1 = {.age=38, .name="Jan
Kowalski"};

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Structures

Accessing members of a struct

� If you want to set/get the value of a member you use the “.”
operator

� Ex:
struct complex number {

double real;
double imag;

};
struct complex number x;
x.real = 1.1;
x.imag = 2.4;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Structures

typedef

� typedef can be used to give types a new name, like a
synonym

� Can introduce shorter names for things
� Ex:
struct position {
double x;
double y;

};
typedef struct position pos;

� Now you can use pos instead of struct position

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Pointers and structures

� You can use pointers to structures
� Ex:
struct complex number x;
struct complex number *xptr = &x;

� To access a member using a pointer we use the “− >” operator
� Ex: xptr->real = 2;
� This is the same as (*xptr).real or x.real = 2;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Structures of structures

� You can have any number of levels of structures of structures
� Ex:
struct position {
double x;
double y;

};
struct line {
struct position start;
struct position end;

};

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Structures of structures

� Continued. struct line l;
l.start.x = 4; l.start.y = 6;
l.end.x = 2; l.end.y = -1;
struct line *lp = &l;
lp->start.y = 42;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Pointers to structures in structures

� Normally you need to declare a type before you use it.
� You can have a pointer to the structure you define
� Ex: struct person {

char name[32];
struct person *parent;

};

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

cast

� Some conversions between types are implicit
� Ex: double x = 4;
� In other cases you need to tell the compiler to do this
� Ex: double fraction = 3 / 4; will give 0
� Ex: double fraction = (double)3 / 4;
� We casted 3 from an int to a double
� Be careful when casting!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Pointers and Structs

Casting pointers

� We can convert also between pointer types
� These are typically allowed with gcc (implicit convertions):
int a;
char *pa = &a;
int *b;
char *pb = b;

� Will generate a warning, use an explicit cast:
int a;
char *pa = (char*) &a;
int *b;
char *pb = (char*) b;

� Be even more careful when casting pointers!

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Memory Allocation

Lecture 9: Pointers and Structures
Wrap Up
Function Pointers
Constant variables
Structures
Pointers and Structs
Memory Allocation

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Memory Allocation

Dynamic allocation of memory

� Sometimes you do not know the size of arrays when you write
code

� Idea: Allocate memory dynamically
� This way you can allocate memory at runtime
� You can calculate how much memory you need and allocate

(e.g. array) only then

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Memory Allocation

malloc

� Allocate memory with malloc
� Need to #include <stdlib.h>
� This function returns a pointer of type void*
� Ex: int *p = malloc(100*sizeof(int));
� Will allocate memory for 100 ints
� You can use an explicit cast:
int *p = (int*)malloc(100*sizeof(int));

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Memory Allocation

free

� You should free the memory that you no longer need!!!
� Ex:
int *p = (int *)malloc(100*sizeof(int));

...

free(p);
� If you do not free allocated memory you will get memory leaks
� Your program will crash eventually
� A big problem if you program should run a very long time

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Pointers and Structures

Memory Allocation

Common mistakes

� Forgetting to free memory (memory leak!!!)
� Using memory that you have not initialized
� Using memory that you do not own
� Using more memory than you allocated
� Returning pointer to local variable (thus no longer existing)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 9: Pointers and Structures
	Wrap Up
	Function Pointers
	Constant variables
	Structures
	Pointers and Structs
	Memory Allocation

