EL2310 — Scientific Programming

Lecture 8: Scopes and Pointers in C

by

of ==
&K

n%
HY
ETENSKAP

CH KONST &5

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology — KTH

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 8: Scope and Pointers
Wrap Up
Scopes
Pointer Basics
Pointers and Arrays

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointer:
[lelele

Wrap Up

Wrap up

> Linking to extra libraries

ex: for lib math: gcc -0 mymathprg mymathprg.c —1lm
> Strings: char name[] = "Example";

strlen, #include <string.h>
> Splitting code:

> Header files - all includes, defines, declarations, etc.
> Source files - all definitions, main function, private code, etc.

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope

Makefiles

» Compiles executable
TASKl=taskl
TASK1 OBJS=taskl.c functions.c
$ (TASK1) :
$(CC) —-o S$(TASK1l) S$(TASK1.0BJS) $ (LDLIBS)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointer:
[e]e] lo

Wrap Up

Announcements

> C project will be announced today
> Deadline will be: 29th Sep (No excuses!)
> All course lectures will be in Bilda before lecture starts

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
00000«

Scopes

Lecture 8: Scope and Pointers

Scopes

Lecture 8: Scope and Pointer:
[Jelele]

Scopes

Variable scope: local variables

> The scope of a variable tells where this variable can be used
> Local variables in a function can only be used in that function

They are automatically created when the function is called and
disappear when the function exits

Local variables are initialized during each function call

v

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointer:

[o] le]e]
Scopes

Variable scope: extern

> |f you want to use a variable defined externally to a function in
some other file, you need to use the keyword
extern

> extern int wvalue; declares a variable value defined
externally that will now be available outside the file

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointer:
00000080

Scopes

Variable scope: static

> If you want a variable defined outside a function to be hidden in
a file, use the keyword
static

> A variable declared static can be used as any other variable
in that file but will not be seen from outside

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointer:
0000000e

Scopes

Initialization

> External and static variables are guaranteed to be 0 if not
explicitly initialized
> Local variables are NOT initialized (contain garbage values)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

v

v

v

v

Write program with two functions: fcn1 and fcn2
Let each function

1. define a variable, but not initialize

2. print the value

3. set the value (different for fcn1 and fcn2)
4. printit again

Call fen1, fent, fcn2 and fen1 and see what you get
Lesson: Initializing your variables is important!!

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 8: Scope and Pointers
00000000

Pointer Basics

Lecture 8: Scope and Pointers

Pointer Basics

Pointers

Pointers are special kinds of variables
They contain the address of another variable
Pointers are like bookmarks

Used heavily in C:

> To pass reference to big things in memory
> To return multiple values from functions

Have to be used with care

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Declaring a pointer

> A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int« is a pointer to an int”

> Ex: Pointer to an integer
int *ptr;

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Assigning a pointer

> You assign a pointer to a value being an address of a memory
location

> The address typically corresponds to a variable in memory
> You get the address of a variable with the unary & operator
> Ex:

int a;

int *b = &a;
> We say that b “points” to a

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Dereferencing a pointer

> To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

> Ex:
int aj;
int* b = &a;
b = 4;

> Will set a to be 4
» What's the difference between int+* and int «*?

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Copying pointers

> Copying the data
*ptrl = *ptr2;

> Copying the pointer address
ptrl = ptr2;

Ramviyas Parasuraman

Royal Institute of Technology — KTH

EL2310 - Scientific Programming

ope and Poin
DO00000@0C

Pointer Basics

Passing values by reference

A\

Can use pointer to pass something to a function
Ex void func (double x, double xf);

The pointer is a local variable inside function, but it points to
something outside the function

Allows the function to change the variable outside
A way to return “multiple outputs from a function”

v

v

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Rewrite the Newton code using a function of the following form:
void eval_fcn (double x, double xf, double
*dfdx) ;

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
000000000000

Pointers and arrays

> Can use pointer to perform operations on arrays
> Ex:

int al] = {1,2,3,4,5,6,7,8};

int xp = &al[0];

> Will create a pointer that points to the first element of a

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
000000000000

Pointers and Arrays

Stepping forward backward with pointers

> A pointer points to the address of a variable of the given data
type

> |f you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

> Can also use shorthand pt r++ and ptr—- as well as
ptr+=2; and ptr-=3;

> Remember sizeof?

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

O®@0000000000

Pointers and Arrays

Exercise

> Allocate an array and use a pointer to loop through it

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
000000000000

Arrays and pointers

> Pointers and arrays are very similar

> Assume
int a[l107];
int *p;
> The following are equivalent
p = &al[0)landp = a;
ali] and x (a+1)
&al[i] and a+i
*x (p+i) and p[i]
fen(int +a) and fcn (int al])

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

nters
00®00000000

nters and Arrays

More on pointers

> One has to be careful when moving pointers
» Common mistake when using a pointer: you move it outside the
memory space you intended and change unexpected things
> The following is allowed but make it hard to read
int af]l = {6,5,4,3,2,1};
int *p = &al2];
pl-2] = 2;
» What value will change?

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

nters
000®0000000

nters and Arrays

Constant strings

>

The “Hello world” in print £ ("Hello world"); is a constant
string literal

> It cannot be changed

Consider the two expressions

char amsg[] = "Hello world";

char xpmsg = "Hello world";

amsg is a character array initialized to “Hello world”. You can
modify the content of the array since it contains a copy of the
string literal.

pmsg is a pointer that points to a constant string directly. You
cannot change the character in the string but change what
pmsg points to.

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Write the function
void strcpy2 (char xdest, char =*src);

> Should copy the string src into dest

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
000000800000

Pointers to pointers

Can have pointers to pointer
“Address of the address to the value”
Notation similar

vy v vY

int a;

int *p = &a;

int xxpp = &p;

Example use: Change address of pointer in function
> Dereferencing:

> «pp to get pointer to a
> xxpp to get value of a

A\

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
0000000e0000

Arrays of pointers

> Can also make arrays of pointers like any other data type
» EX: char *sa[100]; array of 100 C strings
» Ex: int xia[1007]; array of 100 int pointers

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
000000008000

Pointers and Arrays

void pointer

> Normal pointers point to a certain type like int

The void pointer (void«) represents a general pointer that
can point to anything

You can assign to and from a void « without a problem
You can not dereference a voidx

The void pointer allows you to write code that can work with
addresses to any data type

v

v

v

v

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
20000000000 e00

Pointers and Arrays

void pointer contd

> NOT ALLOWED

int a = 4;
volid b = &a;
*b = 2;

> ALLOWED
int a = 4;

void xb = &a;
int *c = b; xc = 2;

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2 cientific Programming

Lecture 8: Scope and Pointers
000000000080

Pointers and Arrays

NULL

> Bad idea to leave variables unitialized
> This is true for pointers as well

> To mark that a pointer is not assigned and give it a well defined
value we use the NULL pointer.

> Ex:
int xp = NULL;

if (p != NULL) *p = 4;
> Testing if not NULL before using a pointer is good practice (and
setting it to NULL when unassigned)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 8: Scope and Pointers
00000000000

Pointers and Arrays

Next Time

> Continue with pointers, struct

	Overview
	Overview

	Content
	Lecture 8: Scope and Pointers
	Wrap Up
	Scopes
	Pointer Basics
	Pointers and Arrays

