EL2310 — Scientific Programming

Lecture 7: Programming in C

FRTHE

Y

VETENSKAP
39 OCH KONST 9%

St

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology — KTH

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Constant values: const type <identifier> <value>
> Preprocessor: #define <identifier> <value>

> Arrays: int i[10], jI12] = {1,2}, k[1 = {1,2,3}

> Matrix: int i[2]1([2] = {1,2,3,4}, k[1[3]1 = {1,2,3}
> Logical operators: <=, >=, ==, !=, <, >

4

v

What does it do after you run the program? : echo $?

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Functions:
> Syntax:
return-type function-name ([arguments])

{

declarations
statements

}

> Example: #includes
#defines

function declarations

main() { ...}

function definitions

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in C
[o]e]

> Write a program that multiplies two matrices and prints the
result

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in
00000«

Some basics

Lecture 7: Programming in C

Some basics

Some basics

Remember the steps

>
>
>
>

Write
Compile
Link
Execute

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Some basics

Linking to extra libraries

> Often use function defined in other libraries, such as cos,
sin, exp from libm

> Need to tell linker that it should use libm as well

> gcc -o mymathprg mymathprg.c —-1m

> Take alook at:
http://www.cprogramming.com/tutorial/
shared-libraries-linux-gcc.html
http://www.tunl.duke.edu/documents/public/

root/material/5/An_Introduction_to_GCC-Brian__
Gough.pdf

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf

mming in

Some basics

enum

> enumeration constant

> An alternative to using many #define

> Ex:
enum state { STATE_START, STATE_RUN,
STATE_STOP};

> First name assigned value 0, next 1, etc
> The same with #define

#define STATE_START 0

#define STATE RUN 1

#define STATE_STOP 2
> Can give value to all names manually

> Unassigned names will be assigned “last + 1”

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Pros
000

Some basics

Exercise

> Test enum
> What if you add as a last item NUMBER_OF _ITEMS in the enum?

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Write function that returns the probability to draw a certain
value x given that it is from a normal distribution A/ (1, o)

> double getprob (double x, double mean, double
sigma) ;

> Print a table with x and p(x)

Hint: You will have to include <math.h> and link with libm (math)

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in
900000«

Strings

Lecture 7: Programming in C

Strings

char array: C style strings

>
>
>
>

Ex: char name[] = "Toulouse";

strlen(...) return length of a string

A string is terminated by \ 0

The variable name will be of length 9 where last character has
value \0

Hint: You have to include <string.h>

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Experiment with char arrays, strlen and sizeof

What if char name[]= "John Smith", whatis the string
length?

> What is the array size in bytes?

What happens if you set name [4] = 0;

v

v

Royal Institute of Technology — KTH

Ramviyas Parasuraman

EL2310 - Scientific Programming

Lecture 7: Program
[e]e]e]]

Strings

Precedence

Incomplete table of precedence

0)

*

+

© ® N ORAGD
Y
I

(] ->

~
o°

Ramviyas Parasuraman

++

Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in
[eJe]e] }

Strings

Evaluating logical expressions

> Logical expressions are evaluated left to right

> Guaranteed to stop as soon as expression value is determined
> A logical expression that evaluates to true is assigned value 1
> A logical expression that evaluates to false is assigned value 0

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Write function double atof (char s[])

> Should take a char array as input and return a double
representation of the string

> Assume that the string is a number like -1.234 or 123.4

Hint: Functions isdigit, isspace from stdlib.h are useful
http://www.asciitable.com/

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

http://www.asciitable.com/

Lecture 7: Programming in C

Lecture 7: Programming in C

Splitting code

Splitting code into separate files

> Can split code in a program into many files
> Easier to read large programs
> Makes code reuse easier

> Code is traditionally split into:

> Header files (myunit.h) - contain mostly declarations
> Source files (myunit.c) - contain mostly definitions

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Header files

» Contain declarations of the functions defined in source files
> Are included into other files using #include

> The preprocessor combines all #included files into a single file
before compiling

» Why do we need source files? Why not put all source code to
header files?

> Every time we make a small change in any of the #included files,
the whole program has to be re-compiled

> We clutter our files with all the definitions. For readability, it's better
to split definitions and declarations

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programm

Splitting code

#include

> To include function declarations we use #include

> You can do
#include <file.h> or
#include "file.h"

> The difference is in the order in which directories are searched
"file.h" version starts to look for files in local directory
> <file.h> looks in the included path

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Splitting declarations and definitions

>
>
>
>
>

v

Create myunit.c and myunit.h files for each code unit
Put definitions of your functions and “private” code to .c
Put declarations and “public” code to .h

The header file becomes the interface of your code unit

Files using the “public” functions of myunit.c contain:
#include "myunit.h"
to get access to declarations and be able to use the unit.

myunit.c should also include myunit.h

> Compile with gcc -0 program main.c myunit.c
> If you change something in myunit.c only myunit.c will be

re-compiled

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 7: Proi ing in C
000000e000

Avoiding multiple definitions

> Each variable/function can only be defined once

> What if you include a file that includes a file, that includes a file,
etc

> File can be included twice - we might get multiple definitions

Royal Institute of Technology — KTH

Ramviyas Parasuraman

EL2310 - Scientific Programming

Lecture 7

Splitting code

Avoiding multiple definitions

> To avoid multiple declarations use “include guard”:
#ifndef _MYUNITH__
#define _MYUNIT_H__

double functionl (double x);
double function2 (double x, double vy);

#endif
in the header file

> Make sure that the symbol, here _MYUNIT_H__is unique

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programm

Splitting code

Task 7.4

> Implement a Newton to f(x) = cos(x) — x3

Xn+1 = Xn — %

> Put the functions that evaluate f(x) and f'(x) into a separate file
> Convert the example Matlab code on the course page to C.

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in

Makefiles

Lecture 7: Programming in C

Makefiles

Building projects with many files

> Method 1: Build everything in one line

gcc —o program program.c filel.c file2.c —-1m
> Method 2: Compile first, then link

gce —o filel.o -c filel.c

gcc —o file2.0 -c file2.c

gcc —o program program.c filel.o file2.o0 —-1m

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in

The make tool

> When you have many files and larger projects it helps to have a
tool when you compile and link your code

> make is such a tool

> File Makefile contains instructions/rules describing how to build
stuff

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7: Programming in C

Makefiles

Makefile

A\

VARNAME= declares variable
$ (VARNAME) access variable
rulename: defines rule

> make rulename Makes rule rulename
> make Makes first rule

> 4 starts a comment

A\

\

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Makefiles

Standard variable names

cc = C compiler

cxx = C++ compiler

LDLIBS = external libraries Ex: —1m

INCLUDES = path for external declarations Ex: -1
CFLAGS = flags for the C compiler Ex: -wall
CXXFLAGS = flags for the C++ compiler Ex: -wal1l
LDFLAGS = flags for the linker Ex: -L

> If you do not provide a rule, one might be generated for you
> It will use those variables

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 7

> Compiles executable
TASKl=taskl
TASK1_OBJS=taskl.c functions.c
S (TASK1) :
$(CC) —-o $(TASK1l) S$(TASK1_.OBJS) $ (LDLIBS)

> Remove created files
clean:
rm —f *.0 $(TASK1)

> ltis possible to specify dependencies
all: S$(TASK1l) task3

> Also take a look at: http:
//www.cprogramming.com/tutorial/makefiles.html

Ramviyas Parasuraman Royal Institute of Technology — KTH

EL2310 - Scientific Programming

http://www.cprogramming.com/tutorial/makefiles.html
http://www.cprogramming.com/tutorial/makefiles.html

	Overview
	Overview

	Content
	Lecture 7: Programming in C
	Wrap Up
	Some basics
	Strings
	Splitting code
	Makefiles

