
EL2310 – Scientific Programming
Lecture 7: Programming in C

Ramviyas Parasuraman (ramviyas@kth.se)

Royal Institute of Technology – KTH

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Wrap Up

Wrap up

� Constant values: const type <identifier> <value>
� Preprocessor: #define <identifier> <value>
� Arrays: int i[10], j[2] = {1,2}, k[] = {1,2,3}
� Matrix: int i[2][2] = {1,2,3,4}, k[][3] = {1,2,3}
� Logical operators: <=, >=, ==, !=, <, >

� What does it do after you run the program? : echo $?

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Wrap Up

Wrap up

� Functions:
� Syntax:
return-type function-name([arguments])
{
declarations
statements

}
� Example: #includes
#defines

function declarations

main() { ...}

function definitions
Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Wrap Up

Task 6.1

� Write a program that multiplies two matrices and prints the
result

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Some basics

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Some basics

Remember the steps

� Write
� Compile
� Link
� Execute

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Some basics

Linking to extra libraries

� Often use function defined in other libraries, such as cos,
sin, exp from libm

� Need to tell linker that it should use libm as well
� gcc -o mymathprg mymathprg.c -lm
� Take a look at:
http://www.cprogramming.com/tutorial/
shared-libraries-linux-gcc.html
http://www.tunl.duke.edu/documents/public/
root/material/5/An_Introduction_to_GCC-Brian_
Gough.pdf

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
http://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf
http://www.tunl.duke.edu/documents/public/root/material/5/An_Introduction_to_GCC-Brian_Gough.pdf

Lecture 7: Programming in C

Some basics

enum

� enumeration constant
� An alternative to using many #define
� Ex:
enum state { STATE START, STATE RUN,
STATE STOP};

� First name assigned value 0, next 1, etc
� The same with #define
#define STATE START 0
#define STATE RUN 1
#define STATE STOP 2

� Can give value to all names manually
� Unassigned names will be assigned “last + 1”

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Some basics

Exercise

� Test enum
� What if you add as a last item NUMBER OF ITEMS in the enum?

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Some basics

Task 7.1

� Write function that returns the probability to draw a certain
value x given that it is from a normal distribution N (µ, σ)

� double getprob(double x, double mean, double
sigma);

� Print a table with x and p(x)

Hint: You will have to include <math.h> and link with libm (math)

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

char array: C style strings

� Ex: char name[] = "Toulouse";
� strlen(...) return length of a string
� A string is terminated by \0
� The variable name will be of length 9 where last character has

value \0

Hint: You have to include <string.h>

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

Task 7.2

� Experiment with char arrays, strlen and sizeof
� What if char name[]= "John Smith", what is the string

length?
� What is the array size in bytes?
� What happens if you set name[4] = 0;

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

Precedence

Incomplete table of precedence
1. () [] -> .

2. ! ˜ -- ++ &

3. * / %

4. + -

5. > >= < <=

6. == !=

7. &&
8. ||
9. = += -= ...

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

Evaluating logical expressions

� Logical expressions are evaluated left to right
� Guaranteed to stop as soon as expression value is determined
� A logical expression that evaluates to true is assigned value 1
� A logical expression that evaluates to false is assigned value 0

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Strings

Task 7.3

� Write function double atof(char s[])
� Should take a char array as input and return a double

representation of the string
� Assume that the string is a number like -1.234 or 123.4

Hint: Functions isdigit, isspace from stdlib.h are useful
http://www.asciitable.com/

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.asciitable.com/

Lecture 7: Programming in C

Splitting code

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Splitting code into separate files

� Can split code in a program into many files
� Easier to read large programs
� Makes code reuse easier

� Code is traditionally split into:
� Header files (myunit.h) - contain mostly declarations
� Source files (myunit.c) - contain mostly definitions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Header files

� Contain declarations of the functions defined in source files
� Are included into other files using #include
� The preprocessor combines all #included files into a single file

before compiling
� Why do we need source files? Why not put all source code to

header files?
� Every time we make a small change in any of the #included files,

the whole program has to be re-compiled
� We clutter our files with all the definitions. For readability, it’s better

to split definitions and declarations

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

#include

� To include function declarations we use #include
� You can do
#include <file.h> or
#include "file.h"

� The difference is in the order in which directories are searched
� "file.h" version starts to look for files in local directory
� <file.h> looks in the included path

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Splitting declarations and definitions

� Create myunit.c and myunit.h files for each code unit
� Put definitions of your functions and “private” code to .c
� Put declarations and “public” code to .h
� The header file becomes the interface of your code unit
� Files using the “public” functions of myunit.c contain:
#include "myunit.h"
to get access to declarations and be able to use the unit.

� myunit.c should also include myunit.h
� Compile with gcc -o program main.c myunit.c
� If you change something in myunit.c only myunit.c will be

re-compiled

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Avoiding multiple definitions

� Each variable/function can only be defined once
� What if you include a file that includes a file, that includes a file,

etc
� File can be included twice - we might get multiple definitions

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Avoiding multiple definitions

� To avoid multiple declarations use “include guard”:
#ifndef MYUNIT H
#define MYUNIT H

double function1(double x);
double function2(double x, double y);

#endif
in the header file

� Make sure that the symbol, here MYUNIT H is unique

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Splitting code

Task 7.4

� Implement a Newton to f (x) = cos(x)− x3

xn+1 = xn −
f (x)
f ′(x)

� Put the functions that evaluate f (x) and f ′(x) into a separate file
� Convert the example Matlab code on the course page to C.

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

Lecture 7: Programming in C
Wrap Up
Some basics
Strings
Splitting code
Makefiles

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

Building projects with many files

� Method 1: Build everything in one line
gcc -o program program.c file1.c file2.c -lm

� Method 2: Compile first, then link
gcc -o file1.o -c file1.c
gcc -o file2.o -c file2.c
gcc -o program program.c file1.o file2.o -lm

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

The make tool

� When you have many files and larger projects it helps to have a
tool when you compile and link your code

� make is such a tool
� File Makefile contains instructions/rules describing how to build

stuff

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

Makefile

� VARNAME= declares variable
� $(VARNAME) access variable
� rulename: defines rule

� make rulename Makes rule rulename
� make Makes first rule

� # starts a comment

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

Standard variable names

CC = C compiler
CXX = C++ compiler
LDLIBS = external libraries Ex: -lm
INCLUDES = path for external declarations Ex: -I
CFLAGS = flags for the C compiler Ex: -Wall
CXXFLAGS = flags for the C++ compiler Ex: -Wall
LDFLAGS = flags for the linker Ex: -L

� If you do not provide a rule, one might be generated for you
� It will use those variables

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 7: Programming in C

Makefiles

Rules

� Compiles executable
TASK1=task1
TASK1 OBJS=task1.c functions.c
$(TASK1):

$(CC) -o $(TASK1) $(TASK1 OBJS) $(LDLIBS)

� Remove created files
clean:
rm -f *.o $(TASK1)

� It is possible to specify dependencies
all: $(TASK1) task3

� Also take a look at: http:
//www.cprogramming.com/tutorial/makefiles.html

Ramviyas Parasuraman Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.cprogramming.com/tutorial/makefiles.html
http://www.cprogramming.com/tutorial/makefiles.html

	Overview
	Overview

	Content
	Lecture 7: Programming in C
	Wrap Up
	Some basics
	Strings
	Splitting code
	Makefiles

