
EL2310 – Scientific Programming
Lecture 16: C++1y and Conclusion

Hakan Karaoguz (hkarao@kth.se)

Royal Institute of Technology – KTH

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 16: C++1y and Conclusion
Reminders
Wrap up
C++11
Conclusion of the Lectures

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Reminders

The help session and deadline

� C++ second help session: Thu 13 October, 08:00-10:00
� C++ assignment deadline: Wed 19 October, 23:55

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Reminders

Tips for the C++ project

� Initializing a float Mat object:
Mat mat = Mat::zeros(rows,cols,CV 32F);

� Reading an image from file:
Mat image = imread("filename");

� Accesing an element of Mat:
T element = mat.at<T>(i,j) ;

� Assigning a value to an element of Mat (T depends on Mat type
such as float, integer, char,etc):
T element;
mat.at<T>(i,j) = element;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

Lecture 16: C++1y and Conclusion
Reminders
Wrap up
C++11
Conclusion of the Lectures

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

Standard Template Library: STL

� The Standard Template Library (STL) provides classes for:
� Collections: lists, vectors, sets, maps

� Defined as templates: can store data of any type!
� Examples:

� std::list<T>
Ex: std::list<std::string> names;

� std::vector<T>
Ex: std::vector<double> values;

� std::set<T>
Ex: std::set<std::string> nameOfPerson;

� std::map<T1,T2>
Ex: std::map<int, std::string> nameOfMonth;
Ex: std::map<std::string, int> monthNumberByName;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

Often used: vector (from C++ reference)

// erasing from vector
#include <iostream>
#include <vector>
using namespace std;

int main ()
{

unsigned int i;
vector<unsigned int> myvector;

// set some values (from 1 to 10)
for (i=1; i<=10; i++) myvector.push_back(i);

}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

Often used: vector (from C++ reference)

// erase the 6th element
myvector.erase(myvector.begin()+5);

// erase the first 3 elements:
myvector.erase(myvector.begin(),
myvector.begin()+3);

cout << "myvector contains:";
for (i=0; i<myvector.size(); i++) {
cout << " " << myvector[i];
cout << endl;

}
return 0;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

STL Algorithm Library (from C++ reference)

#include <algorithm>
#include <vector>
int myints[] = {32,71,12,45,26,80,53,33};
std::vector<int> myvector (myints, myints+8);
// 32 71 12 45 26 80 53 33
// using default comparison (operator <):
std::sort (myvector.begin(), myvector.begin()+4);
//(12 32 45 71)26 80 53 33

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

From double ** pointers to double vectors for Matrix
Representations

� vector allows us to define multi-dimensional data structures
std::vector< std::vector<double> > matrix;
// A 2D matrix using double vectors

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Wrap up

file streams (fstream)

� We use the headers iostream and fstream for performing
file operations in C++

� Compared to C, C++ offers object based approach through
classes ofstream and ifstream

� File modes, ios::out for write, ios::in for read, ios::app
for append

� Ex for writing data to a file:
ofstream file("file.txt",ios::out);
if(!file) return -1;
string name;
int age;
cout<<"Enter name and age:";
cin>>name>>age;

file<<name<<" "<<age<<" "<<endl;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

Lecture 16: C++1y and Conclusion
Reminders
Wrap up
C++11
Conclusion of the Lectures

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

C++11

� A new revision from 2011 of C++, supported by g++
� Many improvements to C++
� activate using -std=c++11 (default?)
� example: g++ -std=c++11 main.cpp -o main

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

C++11

� Variable type inference:
� auto a = 42;
� auto b = 42.01;
� auto c = new MyObject();
� auto d = myfunction(a,b,c);

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

C++11

� Lambda functions: Ex: auto func = [] () cout <<
"Hello KTH"; ;

int main() {
vector<int> x;
for(int i=1;i<10;i++) { x.push_back(i);}
auto pos = std::find_if(std::begin(x),

std::end(x), [](int n) {return n%2==0;});
cout << *pos; // is 2

};

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

C++11

easy looping

using namespace std;
int main() {

vector<int> x;
for(int i=1;i<10;i++) { x.push_back(i);}
for(auto v:x) {cout << v <<" ";};
// 1 2 3 4 5 6 7 8 9

};

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

C++14

� Minor improvements over C++11 and bug fixes
� Extension of ”auto” data type to all functions (not just lambda)
� Digit separators: ’ character, Ex: auto fpnum = 0.113’343
� Template for variables as well
� Ex: template<typename T> constexpr T pi =
T(3.141592653589793238462643L);

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

C++11

Other tools for Scientific Programming:

� Python + Numpy - Simple, interpreted (no compilation)
� Java - general purpose, portable, no pointers!
� Mathematica - powerful computation
� Maple - extensive analytics
� R - majorly used in statistics
� Note: Matlab now has OO features!

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

EL2310

� covered basics of programming,
� started with MATLAB, continued with C and finished with C++.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

MATLAB - What you should have learned:

� Be comfortable working with MATLAB

� Preparing scripts and functions using basic elements of
programming (loops, branching, ...)

� Taking advantage of built-in functions (load data, plot data),
especially the visualization capabilities.

� Translating a scientific problem into MATLAB code.

� Interpret MATLAB code when you see it.
� Know when (and how) to use MATLAB when required.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

MATLAB - What you should have learned:

� Be comfortable working with MATLAB

� Preparing scripts and functions using basic elements of
programming (loops, branching, ...)

� Taking advantage of built-in functions (load data, plot data),
especially the visualization capabilities.

� Translating a scientific problem into MATLAB code.

� Interpret MATLAB code when you see it.
� Know when (and how) to use MATLAB when required.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

MATLAB - What you should have learned:

� Be comfortable working with MATLAB

� Preparing scripts and functions using basic elements of
programming (loops, branching, ...)

� Taking advantage of built-in functions (load data, plot data),
especially the visualization capabilities.

� Translating a scientific problem into MATLAB code.

� Interpret MATLAB code when you see it.
� Know when (and how) to use MATLAB when required.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

MATLAB - What you should have learned:

� Be comfortable working with MATLAB

� Preparing scripts and functions using basic elements of
programming (loops, branching, ...)

� Taking advantage of built-in functions (load data, plot data),
especially the visualization capabilities.

� Translating a scientific problem into MATLAB code.

� Interpret MATLAB code when you see it.
� Know when (and how) to use MATLAB when required.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C - What you should have learned:

� Working with C: how to write, compile, link, execute.
� Declaring and initializing variables, basic data types, pointers(!),

memory allocation(!)...
� Preparing programs using basic elements of programming

(loops, branching, ...)
� Taking advantage of built-in libraries (e.g. for printing data)
� Interpret C code when you see it.
� Know when (and how) to use C for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C - What you should have learned:

� Working with C: how to write, compile, link, execute.
� Declaring and initializing variables, basic data types, pointers(!),

memory allocation(!)...
� Preparing programs using basic elements of programming

(loops, branching, ...)
� Taking advantage of built-in libraries (e.g. for printing data)
� Interpret C code when you see it.
� Know when (and how) to use C for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C - What you should have learned:

� Working with C: how to write, compile, link, execute.
� Declaring and initializing variables, basic data types, pointers(!),

memory allocation(!)...
� Preparing programs using basic elements of programming

(loops, branching, ...)
� Taking advantage of built-in libraries (e.g. for printing data)
� Interpret C code when you see it.
� Know when (and how) to use C for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C - What you should have learned:

� Working with C: how to write, compile, link, execute.
� Declaring and initializing variables, basic data types, pointers(!),

memory allocation(!)...
� Preparing programs using basic elements of programming

(loops, branching, ...)
� Taking advantage of built-in libraries (e.g. for printing data)
� Interpret C code when you see it.
� Know when (and how) to use C for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C++ - What you should have learned:

� Everything in C can be used in C++ and what C++ has to offer
more (or in a different way) ...

� especially, the Object Oriented Programming Paradigm(!):
Encapsulation, Polymorphism, Inheritance.

� Declaring classes and instantiating objects, accessing
members, ...

� Understanding of ’conceptual programming’, i.e. hiding of
functions, declaring of static, const, virtual ...

� Interpret C++ code when you see it.
� Know when (and how) to use C++ for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C++ - What you should have learned:

� Everything in C can be used in C++ and what C++ has to offer
more (or in a different way) ...

� especially, the Object Oriented Programming Paradigm(!):
Encapsulation, Polymorphism, Inheritance.

� Declaring classes and instantiating objects, accessing
members, ...

� Understanding of ’conceptual programming’, i.e. hiding of
functions, declaring of static, const, virtual ...

� Interpret C++ code when you see it.
� Know when (and how) to use C++ for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C++ - What you should have learned:

� Everything in C can be used in C++ and what C++ has to offer
more (or in a different way) ...

� especially, the Object Oriented Programming Paradigm(!):
Encapsulation, Polymorphism, Inheritance.

� Declaring classes and instantiating objects, accessing
members, ...

� Understanding of ’conceptual programming’, i.e. hiding of
functions, declaring of static, const, virtual ...

� Interpret C++ code when you see it.
� Know when (and how) to use C++ for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C++ - What you should have learned:

� Everything in C can be used in C++ and what C++ has to offer
more (or in a different way) ...

� especially, the Object Oriented Programming Paradigm(!):
Encapsulation, Polymorphism, Inheritance.

� Declaring classes and instantiating objects, accessing
members, ...

� Understanding of ’conceptual programming’, i.e. hiding of
functions, declaring of static, const, virtual ...

� Interpret C++ code when you see it.
� Know when (and how) to use C++ for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

C++ - What you should have learned:

� Everything in C can be used in C++ and what C++ has to offer
more (or in a different way) ...

� especially, the Object Oriented Programming Paradigm(!):
Encapsulation, Polymorphism, Inheritance.

� Declaring classes and instantiating objects, accessing
members, ...

� Understanding of ’conceptual programming’, i.e. hiding of
functions, declaring of static, const, virtual ...

� Interpret C++ code when you see it.
� Know when (and how) to use C++ for the upcoming scientific

problems.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

In general:

� have a good understanding of basic concepts in programming.
� get to know MATLAB so that you can use it in other courses.
� solve problems and implement algorithms in C and C++.
� be able to read and understand existing code written in C or

C++.
� know the importance of writing reusable code that can shared

among the community.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

In general:

� have a good understanding of basic concepts in programming.
� get to know MATLAB so that you can use it in other courses.
� solve problems and implement algorithms in C and C++.
� be able to read and understand existing code written in C or

C++.
� know the importance of writing reusable code that can shared

among the community.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

In general:

� have a good understanding of basic concepts in programming.
� get to know MATLAB so that you can use it in other courses.
� solve problems and implement algorithms in C and C++.
� be able to read and understand existing code written in C or

C++.
� know the importance of writing reusable code that can shared

among the community.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

In general:

� have a good understanding of basic concepts in programming.
� get to know MATLAB so that you can use it in other courses.
� solve problems and implement algorithms in C and C++.
� be able to read and understand existing code written in C or

C++.
� know the importance of writing reusable code that can shared

among the community.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

In general:

� have a good understanding of basic concepts in programming.
� get to know MATLAB so that you can use it in other courses.
� solve problems and implement algorithms in C and C++.
� be able to read and understand existing code written in C or

C++.
� know the importance of writing reusable code that can shared

among the community.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

Summary

We have learnt a tool but we have not covered everything
especially Computer Science:
� Algorithms: Sorting, Mapping, . . .
� Data structures: Trees, Graphs, . . .
� Complexity
� Discrete Math
� . . .

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

How to continue?

� The aim of this course was to get you started
� Hundreds of References and Books - to learn more and have a

quick lookup for more specific things you need.
� Some more concentrated programming courses at KTH:

� DD2387 Programsystemkonstruktion med C++ 6,0 hp
� DD2456 Avancerade objektorienterade system 7,5 hp (assumes

OOP knowledge)

� Experience(!) - your own project.
� Demoscene

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

Still to do:

� Your Evaluation
� C++-project still to go
� The course is only pass or fail

� Our Evaluation
� Will be available through BILDA after the C++ project
� For collecting feedback and opinions about the course.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

Still to do:

� Your Evaluation
� C++-project still to go
� The course is only pass or fail

� Our Evaluation
� Will be available through BILDA after the C++ project
� For collecting feedback and opinions about the course.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 16: C++1y and Conclusion

Conclusion of the Lectures

Getting involved

� RPL(CVAP) http://www.nada.kth.se/cvap/ does
research in,
� Computer Vision
� Robotics
� Machine Learning and AI

� If you are interested,
� Research interaction
� 2D5348 Individual course in Computer Science
� Thesis work

Programming is a tool in our work but NOT a focus or
motivation

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.nada.kth.se/cvap/

	Overview
	Overview

	Content
	Lecture 16: C++1y and Conclusion
	Reminders
	Wrap up
	C++11
	Conclusion of the Lectures

