
EL2310 – Scientific Programming
Lecture 15: Templates, STL, File I/O and Strings in C++

Hakan Karaoguz (hkarao@kth.se)

Royal Institute of Technology – KTH

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 15: Templates, STL, File I/O and Strings in C++
Reminders
Wrap up
Templates
File I/O
string in C++

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Reminders

The help session

� C++ help session: 10 October

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Lecture 15: Templates, STL, File I/O and Strings in C++
Reminders
Wrap up
Templates
File I/O
string in C++

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: a Car is a Vehicle
� A Car inherits many of its properties from being a vehicle
� These same properties could be inherited by a Truck or a Bus
� Syntax:
class Car : public Vehicle
specifies that Car inherits from Vehicle

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Overloading in sub-classes

� We can overload a method in a sub-class
class Vehicle {

void drive();
}
class Car: public Vehicle {

void drive();
}

� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� Car *c = new Car();
� v1->drive(); and v2->drive(); run drive() from the

Vehicle
� c->drive(); runs drive() from the Car

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

virtual functions

� What if we want the object know what it “really” is and run the
correct drive() method?

� Declare the method with the keyword virtual
class Vehicle {

virtual void drive();
}
class Car: public Vehicle {
virtual void drive();

}
� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� v1->drive(); runs drive() from the Vehicle
� v2->drive(); runs drive() from the Car

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Polymorphism with virtual functions

� What virtual function to run is determined at run-time
� Depends on the “real” type of objects

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Interfacing: Abstract class

� In C++, abstract classes provides interfaces
� Not to be confused with data abstraction
� To make a class abstract : declare at least one of its functions

as pure ”virtual” function.
� A pure virtual function is specified by placing ”= 0”
� class Car

{
public:
virtual double getNrWheels() = 0; // pure

virtual function
private:
double NrWheels

};
Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Wrap up

Abstract class

� Abstract classes cannot be instantiated
� Purpose : A base class which could be inherited in other

classes
� Inherited classes have to overload each of the virtual functions

in the base class

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Lecture 15: Templates, STL, File I/O and Strings in C++
Reminders
Wrap up
Templates
File I/O
string in C++

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Template Function

� Templates offers a way to write code compatible with any data
types

� Use it when you want a generic function that can work on many
different data types

� Example of a template function:
template <typename T>
T getMax (T a, T b)
{
if(a<b) {return b;}
return a;

}
� getMax<int>(4,5) returns 5
� getMax<double>(4.2, 4.1) returns 4.2
� Compiler generates a version for each data type you use it with

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Template Class

� Use it when you want a generic class that can work on many
different data types

� Example of a template class:
template <class T>
class mypair {
T a,b;
public:
mypair(T first, T second){a=first; b=second;}
T getmax ();

}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Standard Template Library: STL

� The Standard Template Library (STL) provides classes for:
� Collections: lists, vectors, sets, maps

� Defined as templates: can store data of any type!
� Examples:

� std::list<T>
Ex: std::list<std::string> names;

� std::vector<T>
Ex: std::vector<double> values;

� std::set<T>
Ex: std::set<std::string> nameOfPerson;

� std::map<T1,T2>
Ex: std::map<int, std::string> nameOfMonth;
Ex: std::map<std::string, int> monthNumberByName;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Standard Template Library: STL

� Different collections are optimized for different use, e.g.:
� std::list<T>

Cannot access elements with x[i], need to use so called iterators
to step through the list, can add/remove elements at low cost

� std::vector<T>
Can access elements with x[i], but resizing is more costly

� std::set<T>
Does not allow for redundant elements

� std::map<T1,T2>
Provides a mapping from one object to another

� More in C++ Library Reference, e.g.
http://www.cplusplus.com/reference/stl/

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

http://www.cplusplus.com/reference/stl/

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Often used: vector (from C++ reference)

// erasing from vector
#include <iostream>
#include <vector>
using namespace std;

int main ()
{

unsigned int i;
vector<unsigned int> myvector;

// set some values (from 1 to 10)
for (i=1; i<=10; i++) myvector.push_back(i);

}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Often used: vector (from C++ reference)

// erase the 6th element
myvector.erase(myvector.begin()+5);

// erase the first 3 elements:
myvector.erase(myvector.begin(),
myvector.begin()+3);

cout << "myvector contains:";
for (i=0; i<myvector.size(); i++) {
cout << " " << myvector[i];
cout << endl;

}
return 0;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

Often used: iterators (from C++ reference)

using namespace std;
vector<int> v;
vector<int>::iterator vIt;
v.push_back(2);
v.push_back(3);
for(vIt = vIt.begin(); vIt != vIt.end(); vIt++) {

cout<<*vIt;
}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

STL Algorithm Library (from C++ reference)

#include <algorithm>
int myints[] = { 10, 20, 30 ,40 };
int * p; // pointer to array element:
p = std::find (myints,myints+4,30);
++p;
std::cout << "The elem. following 30 is ";
std::cout << *p << ’\n’;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

STL Algorithm Library (from C++ reference)

#include <algorithm>
#include <vector>
int myints[] = {32,71,12,45,26,80,53,33};
std::vector<int> myvector (myints, myints+8);
// 32 71 12 45 26 80 53 33
// using default comparison (operator <):
std::sort (myvector.begin(), myvector.begin()+4);
//(12 32 45 71)26 80 53 33

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

STL Algorithm Library (from C++ reference)

#include <algorithm>
#include <vector>
int myints[] = {32,71,12,45,26,80,53,33};
std::vector<int> myvector (myints, myints+8);
// 32 71 12 45 26 80 53 33
// using default comparison (operator <):
bool myfunction (int i,int j) { return (i>j); }
std::sort(myvector.begin()+4,

myvector.end(), myfunction);
// 32 71 12 45 (80 53 33 26)

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

Templates

From double ** pointers to double vectors for Matrix
Representations

� vector allows us to define multi-dimensional data structures
std::vector< std::vector<double> > matrix;
// A 2D matrix using double vectors

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

File I/O

Lecture 15: Templates, STL, File I/O and Strings in C++
Reminders
Wrap up
Templates
File I/O
string in C++

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

File I/O

file streams (fstream)

� We use the headers iostream and fstream for performing
file operations in C++

� Compared to C, C++ offers object based approach through
classes ofstream and ifstream

� File modes, ios::out for write, ios::in for read, ios::app
for append

� Ex for writing data to a file:
ofstream file("file.txt",ios::out);
if(!file) return -1;
string name;
int age;
cout<<"Enter name and age:";
cin>>name>>age;

file<<name<<" "<<age<<" "<<endl;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

File I/O

� Read from file Ex:
ifstream file("file.txt",ios::in);
if(!file) return -1;
string name;
int age;
while(file>>name>>age)
cout<<name<<" "<<age<<endl;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

string in C++

Lecture 15: Templates, STL, File I/O and Strings in C++
Reminders
Wrap up
Templates
File I/O
string in C++

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

string in C++

Class string

� string class provides an easy interface for
string-manipulation such as copying, searching, etc.

� The header <string> should be included for using strings
� Ex initializations:
string text("Hi");
string str; // Empty string
string str = "john";
string charstr(’a’); ERROR!!
string numstr = 22; ERROR!!

� There is no direct conversion from a single char or int to
string.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

string in C++

string operations

� Assignment: string str1 = str2;
� Concatenate: string str1 += str2
� Comparison: if(str1 == str2){}
� Getting substring: str1.substr(7,5) //Get the
substring composed of 5 characters which
starts from the 7th index of str1

� Swapping: str1.swap(str2)
� Finding a substring: str1.find("is") // Returns the
position of the first character if found, -1
otherwise

� Accessing to the character array char* of string: char* ptr
= str.data()

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

string in C++

stringstream

� It is a class that works on string processing (string version of
filestream)

� It simplifies creating strings that are composed of various data
types. In order to use it, sstream header should be included

� Ex:
string str = "Hi, I was born in 1990."
int year = 1990;
for(int i = 1; i < 2016-1990; i++) {

stringstream sstream(str);
sstream<<" In year "<<year+i<<" I was

"<<i<<" years old.";
cout<<sstream.str()<<endl;

}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 15: Templates, STL, File I/O and Strings in C++

string in C++

Task 1

� Open cpp.sh from your web browser.
� Assume that you need to read a bunch of files from a directory.

You have the root path which is given as /home/data/.
� You should append the filename given as person, the person id

from 1000 to 2000 and the file ending .db to the root path in
order to access to a file. Ex: path = /home/data/person1234.db

� Use strings and any other tools to create all the paths
iteratively. Output all the paths to the command terminal.

� Optionally write all paths to a text file called path.txt if you are
running on your local machine.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 15: Templates, STL, File I/O and Strings in C++
	Reminders
	Wrap up
	Templates
	File I/O
	string in C++

