
EL2310 – Scientific Programming
Lecture 14: Inheritance and Polymorphism in C++

Hakan Karaoguz (hkarao@kth.se)

Royal Institute of Technology – KTH

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Overview

Overview

Lecture 14: Inheritance and Polymorphism in C++
Announcements
Wrap Up
Inheritance
Polymorphism

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Last time

� Classes in Depth
� Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Today

� Inheritance
� Polymorphism

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Announcements

Announcements

� This week’s schedule:
� 5 October → @ Teknikringen 14 Plan 5 room 523
� 10 October → Help Session

� C++ project will be announced this week

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Wrap Up

Lecture 14: Inheritance and Polymorphism in C++
Announcements
Wrap Up
Inheritance
Polymorphism

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Wrap Up

Source and header files

Header file ex A.h:
// Preprocessor guards
#ifndef A H
#define A H
class A{
public:
A();

private:
int m X;

}; // Don’t forget the
semicolon!!
#endif

Source file ex A.cpp:
#include "A.h"
A::A(){
m X=0;
}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Wrap Up

Setters and Getters

� In order to modify/access to the private data members of a class, we
use set and get functions.

A.h:
Class A {
public:
A(); // Constructor
void setm X(int x);
int getm X();
private:
int m X;

};

A.cpp:
A::A(){m X = 0;}
void A::setm X(int x) {
m X = x;

}
int A::getm X() {
return m X;

}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Wrap Up

keyword const

� To make some functions, data members and objects as
”read-only”

� const function type:
� Ex: void fcn(int arg) const;
� const data members:
� Ex: const int m X;
� const data members cannot be modified by assignment.
� const objects:
� Ex: const A a;
� const objects can only use const member functions
� constructors cannot be const!! But they can be used to

initialize const objects

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Wrap Up

Static members

� A static member (data/function) is the same across all
objects.

� It’s a special member of a class that can be accessed even if
there is no object of that class!:

� Ex: int A::m Counter = 0; if m Counter is a static data
member of class A

� static member functions cannot be const. Because const
member functions only work for the object that it operates.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Lecture 14: Inheritance and Polymorphism in C++
Announcements
Wrap Up
Inheritance
Polymorphism

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Inheritance

� Inheritance is a way to show a relation like “is a”
� Ex: a Car is a Vehicle
� A Car inherits many of its properties from being a vehicle
� These same properties could be inherited by a Truck or a Bus
� Syntax:
class Car : public Vehicle
specifies that Car inherits from Vehicle

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Inheritance cont’d

� We call the Vehicle the base class
� A Car is a derived class of Vehicle
� A base class can have more than one derived classes (Bus,

Truck)
� The aim of inheritance: Increase code reusability, sharing of

similar functions

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Inheritance cont’d

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Task1

� Create a Bus class that is derived from base class Vehicle
� Add a function and a private variable for the Bus class that

returns the number of decks of the bus (single or double decker)

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Inheritance

Accessing methods of inherited class from Base Class
(Downcasting) (Not recommended!!)

� class Vehicle
{
public:

void drive();
}
class Car: public Vehicle
{
public:

void openTrunk();
}

� Vehicle *v = new Car();
� v->drive(); runs drive() from the Vehicle part of the Car
� v->openTrunk(); NOT POSSIBLE!
� But: ((Car *)v)->openTunk(); WORKS!

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

Lecture 14: Inheritance and Polymorphism in C++
Announcements
Wrap Up
Inheritance
Polymorphism

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

Polymorphism

� Program in general rather than specific
� The word means having many forms
� C++ polymorphism means that a call to a member function will

cause a different function to be executed

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

virtual functions

� What if we want the object know what it “really” is and run the
correct drive() method?

� Declare the method with the keyword virtual
class Vehicle {

virtual void drive();
}
class Car: public Vehicle {
virtual void drive();

}
� Vehicle *v1 = new Vehicle();
� Vehicle *v2 = new Car();
� v1->drive(); runs drive() from the Vehicle
� v2->drive(); runs drive() from the Car

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

Interfacing: Abstract class

� In C++, abstract classes provides interfaces
� Not to be confused with data abstraction
� To make a class abstract : declare at least one of its functions

as pure ”virtual” function.
� A pure virtual function is specified by placing ”= 0”
� class Car

{
public:

virtual double getNrWheels() = 0; // pure virtual
function
private:

double NrWheels

};
� Virtual functions cannot have overloaded versions in derived

classes!
Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

Abstract class

� Abstract classes cannot be instantiated
� Purpose : A base classes which could be inherited in other

classes
� Inherited classes have to overload each of the virtual functions

in the base class
� Meaning: B (inherits the base class A) supports the interface

provided by A.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 14: Inheritance and Polymorphism in C++

Polymorphism

Task2

� Modify the Vehicle and the Car classes such that the
getNumberofWheels function becomes pure virtual function
and the Vehicle class becomes an abstract class

� Do not forget that the derived class should implement its own
function in this case.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming


	Overview
	Overview

	Content
	Lecture 14: Inheritance and Polymorphism in C++
	Announcements
	Wrap Up
	Inheritance
	Polymorphism



