
EL2310 – Scientific Programming
Lecture 13: OOP and Classes in C++

Hakan Karaoguz (hkarao@kth.se)

Royal Institute of Technology – KTH

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Overview

Overview

Lecture 13: OOP and Classes in C++
Announcements
Wrap Up
Classes in Depth
Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Last time

� OOP concepts in C++
� Introduction to Classes

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Today

� Classes in Depth
� Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Announcements

Announcements

� This week’s schedule:
� 3,4,5 October → We will have lecture
� 10 October → We will have the help session for C++ project

� C++ project will be announced this week

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Lecture 13: OOP and Classes in C++
Announcements
Wrap Up
Classes in Depth
Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Passing Arguments by Reference

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:

void fcn(int &x)
{
x = 42;

}

int main()
{
int x = 1;
fcn(x);
cout << "x=" << x << endl;

}
� Will change value of x in the scope of main to 42

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Dynamic Memory Allocation in C++

� In C we used malloc and free
� In C++ the new and delete operators are used
� Ex:
int *p = new int;

*p = 42;
...
delete p;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Key Concepts of OOP

� Classes (types)
� Instances (objects)
� Functions (Methods)
� Interfaces
� Encapsulation
� Polymorphism
� Inheritance
� Access protection - information hiding

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� As a general rule, class names start with capital letter!
� m X is a member data
� void fcn() is a member function
� public is an access specifier specifying that everything below

can be access from outside the class
� private is an access specifier specifying that everything

below is hidden from outside of the class
Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Wrap Up

Constructor

� Constructor is a special kind of function.
� The constructor tells how to “setup” the objects
� default constructor:

� It is a constructor without arguments
� Implicitly defined by compiler when it is not explicitly defined by the

user
� When an object of a certain class is created (instantiated), the

so-called constructor is called first
� The constructor has the same name as the class and has no

return type
class A {
public:
A() {}

};
Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Lecture 13: OOP and Classes in C++
Announcements
Wrap Up
Classes in Depth
Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Source and header files

� OOP allows us to generate hierarchical code structure. As such
classes are defined in seperate files other than the main file to
isolate different components.

� For classes, it is a good programming practice to separate the
class interface from the class implementation.

� The class interface goes into the header file .h
� The class implementation goes into the source file .cpp
� A radio analogy → We use radio through buttons and knobs

(interfaces) but we don’t see how it runs in inside
(implementation).

� The header and source files are named the same as the class
name. Ex: If class name is Car, car.h and car.cpp

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Source and header files

Header file ex A.h:
// Preprocessor guards
#ifndef A H
#define A H
class A{
public:
A();

private:
int m X;

}; // Don’t forget the
semicolon!!
#endif

Source file ex A.cpp:
#include "A.h"
A::A(){
m X=0;
}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Task 1

� Download the task1-examples.zip file from the course website
� Try to compile using the command:
g++ task1.cpp gradebook.cpp -o task1

� Try to fix the code such that it works

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Access specifiers

� private: can be accessed from:
� inside of the class

� public: can be accessed from:
� inside of the class
� subclasses
� outside of the class

� protected: can be accessed from:
� inside of the class
� subclasses

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Setters and Getters

� In order to modify/access to the private data members of a class, we
use set and get functions.

A.h:
Class A {
public:
A(); // Constructor
void setm X(int x);
int getm X();
private:
int m X;

};

A.cpp:
A::A(){m X = 0;}
void A::setm X(int x) {
m X = x;

}
int A::getm X() {

return m X;
}

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Task 2

� Use the previously defined Gradebook class
� Add a private data member string courseName
� Add the necessary get and set functions to access/modify

courseName.
� Try these functions in the main

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Constructor with default arguments

� Ex:
Class Time {
public:

// Constructor with default arguments
Time(int hour = 0, int minute = 0, int second = 0);

...
};

� In main:
int main() {

Time t1; // All arguments are defaulted
Time t2(12); // Hour is initialized, others are

defaulted
Time t3(12,15); // Hour and minute are initialized,

second is defaulted
Time t4(12,15,20); // All arguments are initialized

return 0; }

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Destructor

� To perform cleanup an object is deleted
� Only 1 destructor in a class
� Called before the object is destroyed
� Syntax: C̃lassName();
� Class A {
public:
A(); // Constructor
Ã(); // Destructor

...
};

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

keyword const

� To make some functions, data members and objects as
”read-only”

� const function type:
� Ex: void fcn(int arg) const;
� const data members:
� Ex: const int m X;
� const data members cannot be modified by assignment.
� const objects:
� Ex: const A a;
� const objects can only use const member functions
� constructors cannot be const!! But they can be used to

initialize const objects

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Static members

� A static member (data/function) is the same across all
objects.

� It’s a special member of a class that can be accessed even if
there is no object of that class!:

� Ex: int A::m Counter = 0; if m Counter is a static data
member of class A

� static member functions cannot be const. Because const
member functions only work for the object that it operates.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

this pointer

� Inside class methods you can refer to the object with this
pointer

� The this pointer cannot be assigned (your program decides it
run-time)

� Static members or functions cannot be referred by this!

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Classes in Depth

Dynamic allocation of objects

� One reason to use dynamic memory allocation (new/delete):
� Moving around pointers to BIG chunks of memory (avoiding

unnecessary copying)
� Makes sense not only for arrays
� Objects can also be BIG (e.g. database object can be 500MB!)
� Typically, we dynamically allocate objects
� We free memory when the object is no longer needed
� We pass objects by reference (* or &) to functions
� Example:
Database db = new Database("mydatabase.db");
useDb(db); // void useDb(Database *db)
delete db;
db = NULL;

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Lecture 13: OOP and Classes in C++
Announcements
Wrap Up
Classes in Depth
Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Function overloading

� We can create functions and methods with the same name, but
different arguments

� It is not possible to overload by changing return type
� Example:
void method();
void method(int a);
void method(int b, double c);
void method(int b); WRONG!
int method(int b); WRONG!

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Operator overloading

� Operators behave just like functions
� Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

� You can overload (provide your own implementation of) most
operators

� It will not change the behavior for other classes only the one
which overloads the operator

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming



Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Task 3

� Use the previously defined Gradebook class
� Overload the function displayMessage to accept a string and an

integer.
� In the main function, initialize a normal Gradebook object with

using constructor such as Gradebook gradebook(”EL2310”)
and use its member function displayMessage() to output
information.

� Now dynamically initialize a Gradebook object, and use the
overloaded displayMessage function to output information.

� Don’t forget to delete dynamically initialized object before
finishing execution.

Hakan Karaoguz Royal Institute of Technology – KTH

EL2310 – Scientific Programming


	Overview
	Overview

	Content
	Lecture 13: OOP and Classes in C++
	Announcements
	Wrap Up
	Classes in Depth
	Overloading of Functions and Operators



