EL2310 — Scientific Programming
Lecture 13: OOP and Classes in C++

ap

=

QQ == s%}a
EKTHS

©
{B ETENSKAP
38 OCH KONST 97

Hakan Karaoguz (hkarao@kth.se)

Royal Institute of Technology — KTH

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 13: OOP and Classes in C++
Announcements
Wrap Up
Classes in Depth
Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

Last time

> OOP concepts in C++
> Introduction to Classes

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

Today

> Classes in Depth
> Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

Announcements

> This week’s schedule:

> 8,4,5 October — We will have lecture
> 10 October — We will have the help session for C++ project

> C++ project will be announced this week

Hakan Karaoguz

Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

O@00000¢

Wrap Up

Lecture 13: OOP and Classes in C++

Wrap Up

Royal Institute of Technology — KTH

Lecture 13: OOP and Classes in C++

[e]e] lele]e]

Passing Arguments by Reference
> Declaration: void fcn(int &x);

> Any changed to x inside fcn will affect the parameter used in
the function call

> Ex:
void fcn(int &x)
{
x = 42;
}
int main ()
{
int x = 1;
fcn (x);
cout << "x=" << x << endl;
}
> Will change value of x in the scope of main to 42

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

[s]e]e] lole]

Dynamic Memory Allocation in C++

» InCweusedmalloc and free
> In C++ the new and delete operators are used

> Ex:
int *p = new int;
*p = 42;

delete pj;

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

O000eO0!

Key Concepts of OOP

Classes (types)

Instances (objects)

Functions (Methods)

Interfaces

Encapsulation

Polymorphism

Inheritance

Access protection - information hiding

Yy VY vV vV VY VY VY

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

00000

Class definition

> Syntax:
class ClassName {
public:
void fecn () ;
private:
int m.X;
}; // Do not forget the semicolon!!!
As a general rule, class names start with capital letter!
m_X is @ member data
void fcn () is a member function
public is an access specifier specifying that everything below
can be access from outside the class
> private is an access specifier specifying that everything

below is hidden from outside of the class
Hakan Karaoguz Royal Institute of Technology — KTH

vyvyYvyy

EL2310 - Scientific Programming

Constructor

Constructor is a special kind of function.

The constructor tells how to “setup” the objects

default constructor.

> It is a constructor without arguments

> Implicitly defined by compiler when it is not explicitly defined by the
user

When an object of a certain class is created (instantiated), the

so-called constructor is called first

The constructor has the same name as the class and has no

return type

class A {

public:

a() {}
}i

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Leoture 13: OOP and Classes in C++
0000000000000 0000

Classes in Depth

Lecture 13: OOP and Classes in C++

Classes in Depth

Royal Institute of Technology — KTH

Lecture 13: OOP and Classes in C++
0000000080000 00000000000

Classes in Depth

Source and header files

> OORP allows us to generate hierarchical code structure. As such
classes are defined in seperate files other than the main file to
isolate different components.

> For classes, it is a good programming practice to separate the
class interface from the class implementation.

> The class interface goes into the header file .h
> The class implementation goes into the source file .cpp

> A radio analogy — We use radio through buttons and knobs
(interfaces) but we don’t see how it runs in inside
(implementation).

> The header and source files are named the same as the class
name. Ex: If class name is Car, car.h and car.cpp

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

Source and header files

Header file ex A.h: Source file ex A.cpp:
// Preprocessor guards #include "A.h"
#ifndef AH A::A(){
#define A_H m_X=0;
class A{ }
public:
AQ);
private:
int m.X;
}; // Don’t forget the
semicolon!!
#endif

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

00@00000000000
Depth

Task 1

> Download the task1-examples.zip file from the course website

> Try to compile using the command:
g+t+ taskl.cpp gradebook.cpp -o taskl

> Try to fix the code such that it works

Royal Institute of Technology — KTH

Hakan Karaoguz
EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

000@000000000C

Depth

Access specifiers

> private: can be accessed from:
> inside of the class

> public: can be accessed from:

> inside of the class
> subclasses
> outside of the class

> protected: can be accessed from:

> inside of the class
> subclasses

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

0000@00000000C

Depth

Setters and Getters

> In order to modify/access to the private data members of a class, we
use set and get functions.

A.h: A.cpp:
Class A { A::A(){mX = 0;}
public: void A::setmX(int x) {
A(); // Constructor mX = x;
void setm. X (int x); }
int getmX(); int A::getmX() {
private: return m.X;
int m_X; }

}i

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

00000@00000000
Depth

Task 2

> Use the previously defined Gradebook class
> Add a private data member string courseName

Add the necessary get and set functions to access/modify
courseName.

Try these functions in the main

v

v

Royal Institute of Technology — KTH

Hakan Karaoguz

EL2310 - Scientific Programming

Lecture 13: OOP and Classes
000000800000

Classes in Depth

Constructor with default arguments

> Ex:
Class Time {
public:
// Constructor with default arguments
Time (int hour = 0, int minute = 0, int second = 0);

}i
> In main:

int main() {

Time tl; // All arguments are defaulted

Time t2(12); // Hour is initialized, others are
defaulted

Time t3(12,15); // Hour and minute are initialized,
second 1is defaulted

Time t4(12,15,20); // All arguments are initialized
return 0; }

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

0000000 @000000
Depth

Destructor

To perform cleanup an object is deleted
Only 1 destructor in a class

Called before the object is destroyed
Syntax: TlassName () ;

Class A {

public:
A(); // Constructor
A(); // Destructor

vy vV v v Y

b

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

000000008000

Classes in Depth

keyword const

>

YV Y Y VY VY VY VY VvYYy

To make some functions, data members and objects as
"read-only”

const function type:

Ex: void fcn (int arg) const;

const data members:

Ex: const int m.X;

const data members cannot be modified by assignment.
const objects:

Ex: const A a;

const objects can only use const member functions

constructors cannot be const!! But they can be used to
initialize const objects

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 13: OOP and Classes in C++
000000000 e00

Classes in Depth

Static members

v

A static member (data/function) is the same across all
objects.

> It's a special member of a class that can be accessed even if
there is no object of that class!:

» Ex: int A::m_Counter = 0; if m_.Counter is a static data
member of class A

> static member functions cannot be const. Because const
member functions only work for the object that it operates.

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

000000000080
Depth

this pointer

> Inside class methods you can refer to the object with this
pointer

> The this pointer cannot be assigned (your program decides it
run-time)

> Static members or functions cannot be referred by this!

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

0000000000000

Classes in Depth

Dynamic allocation of objects

>

vV vy vy VvYVvYyy

One reason to use dynamic memory allocation (new/delete):
> Moving around pointers to BIG chunks of memory (avoiding
unnecessary copying)

Makes sense not only for arrays

Objects can also be BIG (e.g. database object can be 500MB!)
Typically, we dynamically allocate objects

We free memory when the object is no longer needed

We pass objects by reference (* or &) to functions

Example:

Database db = new Database ("mydatabase.db");
useDb (db); // void useDb (Database =*db)

delete db;

db = NULL;

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 13: OOP and Classes in C++
[ele}

Overloading of Functions and Operators

Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Function overloading

» We can create functions and methods with the same name, but
different arguments

> |t is not possible to overload by changing return type

> Example:

4

void method ()
int a);
i

void method
vold method (int b, double c);
void method(int b); WRONG!
int method(int b); WRONG!

—_— o~ o~ o~

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 13: OOP and Classes in C++

Overloading of Functions and Operators

Operator overloading

> Operators behave just like functions

» Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

> You can overload (provide your own implementation of) most
operators

> It will not change the behavior for other classes only the one
which overloads the operator

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Use the previously defined Gradebook class

> Overload the function displayMessage to accept a string and an
integer.

In the main function, initialize a normal Gradebook object with
using constructor such as Gradebook gradebook("EL2310”)
and use its member function displayMessage() to output
information.

Now dynamically initialize a Gradebook object, and use the
overloaded displayMessage function to output information.

Don'’t forget to delete dynamically initialized object before
finishing execution.

Hakan Karaoguz Royal Institute of Technology — KTH

EL2310 - Scientific Programming

	Overview
	Overview

	Content
	Lecture 13: OOP and Classes in C++
	Announcements
	Wrap Up
	Classes in Depth
	Overloading of Functions and Operators

