
EL2310 – Scientific Programming
Lecture 12: Memory Management, Object Oriented Programming and

Classes in C++

Hakan Karaoguz (hkarao@kth.se)
Credits: Ramviyas Parasuraman, Andrej Pronobis (U.Washington), Florian Pokorny (UC Berkeley)

KTH - Royal Institute of Technology

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Overview

Overview

Lecture 12: Memory Management, OOP and Classes in C++
Wrap Up
Memory Management in C++
Introduction to Object Oriented Paradigm
Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Lecture 12: Memory Management, OOP and Classes in C++
Wrap Up
Memory Management in C++
Introduction to Object Oriented Paradigm
Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Last time

� History of C++
� Differences between C++ and C
� Printing and getting user input
� Namespaces

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

C++ subsumes C

� You can use all you learned in C in C++ as well
� Some constructs/syntax have a C++ version
� In C++, the file ending is typically .cc or .cpp for source files

and .h, .hh or .hpp for header files
� In this course we will use .cpp and .h
� g++ is specific to C++ by (auto) linking to std C++ libraries
� Usage and command line options for g++ are the same as for
gcc

� Make sure you know how to use make for this part of the
course!

� New variable bool: true/false
� string: “real” string (use #include <string>)

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Getting input from the user

� In C++ we use streams for input and output using the
<iostream> library

� streams is also used to get input from console
� Ex:
int value;
std::cout<<"Please enter an integer value: ";
std::cin >> value;

� When reading multiple inputs, they are separated by spaces
� Ex: std::cin >> a >> b >> c;

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Hello KTH in C++ vs C

#include <iostream>
int main ()
{
std::cout << "Hello

KTH!"<<std::endl;
return 0;

}

#include <stdio.h>
int main()
{

printf("Hello KTH! \n");
return 0;

}

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Namespaces

� In C all function share a common namespace
� This means that there can only be one function for each function

name
� In C++ functions can be placed in specific namespaces
� Syntax:
namespace NamespaceName {

void fcn(); ...
}

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Announcements

� The C assignment deadline 4 October 23:55
� Next week’s schedule

� 3 October Monday Lecture
� 4 October Tuesday Lecture
� 5 October Wednesday Lab Session → Room 523 Teknikringen 14

Plan 5

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Wrap Up

Today

� Memory Management in C++
� Introduction to OOP
� Introduction to Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Lecture 12: Memory Management, OOP and Classes in C++
Wrap Up
Memory Management in C++
Introduction to Object Oriented Paradigm
Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Passing Arguments by Reference

� Standard function calls are by value
� Value of the variable is copied into the function
� Pointers offered a way in C to do this call by reference
� Call by reference avoids the need to copy all the data
� Ex: Not so good to copy an entire 10Mpixel image into a

function, better to give a reference to it (i.e. tell where it is)
� In C++ we can use references

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Passing Arguments by Reference, Cont’d

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:

void fcn(int &x)
{
x = 42;

}

int main()
{
int x = 1;
fcn(x);
cout << "x=" << x << endl;

}
� Will change value of x in the scope of main to 42

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Dynamic Memory Allocation in C++

� In C we used malloc and free
� In C++ the new and delete operators are used
� Ex:
int *p = new int;

*p = 42;
...
delete p;

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Dynamic Allocation of Arrays

� If you allocate an array with new you need to delete with
delete []

� Ex:
int *p = new int[10];
p[0] = 42;
delete [] p;

� A typical mistake: forgotten []

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Memory Management in C++

Task 1

� Please open cpp.sh from your web browser
� Dynamically allocate a 5 by 5 double matrix using C++
� Set the matrix[4][3] to a random value and then print the value

by accessing to the matrix
� delete the matrix

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Introduction to Object Oriented Paradigm

Lecture 12: Memory Management, OOP and Classes in C++
Wrap Up
Memory Management in C++
Introduction to Object Oriented Paradigm
Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Introduction to Object Oriented Paradigm

The Object-Oriented Paradigm

Motivation:
� We are trying to solve complex problems

� Complex code with many functions and names
� Difficult to keep track of all details

� How can we reduce the complexity?
� Grouping related things
� Abstracting things away
� Creating hierarchies of things

� Advantages:
� Re-usable and reliable code
� Ease of debugging

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Introduction to Object Oriented Paradigm

Key Concepts of OOP

� Classes (types)
� Instances (objects)
� Functions (Methods)
� Interfaces
� Encapsulation
� Polymorphism
� Inheritance
� Access protection - information hiding

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Introduction to Object Oriented Paradigm

Object Oriented Programming (OOP)

� Inheritance
� Support for hierarchies (most knowledge can be structured by

hierarchical classifications)
� Ex: A car is a motor vehicle which is a vehicle which is a

transportation system which is a . . .
� Subclass to inherit the properties of the base class

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Lecture 12: Memory Management, OOP and Classes in C++
Wrap Up
Memory Management in C++
Introduction to Object Oriented Paradigm
Classes

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Classes

� A class is an “extension” of a struct
� A class can have both data member and function members

(methods)
� Classes bring together data and operations related to that data
� Like C structs, classes define new data types

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier specifying that everything below

can be access from outside the class
� private is an access specifier specifying that everything

below is hidden from outside of the class
Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Classes and Objects

� Classes define data types
� Objects are instances of classes
� Objects correspond to variables
� Instantiating a class (Declaring an object):
ClassName variableName;

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Your First Class

#include <iostream>
#include <string>
using namespace std;
class Gradebook {

public:
void displayMessage(){
cout<<"Welcome to Gradebook Class!!"<<endl;

}
};
int main() {

Gradebook gradebook;
gradebook.displayMessage();
return 0;

}

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Task2

� Please open cpp.sh from your web browser
� Use the previously created Gradebook class
� Modify the member function displayMessage to accept a string

as an argument and output ”Welcome to Gradebook class for
X” where X is the input string.

� Ask the user for a string input and pass the inputted string to
displayMessage function

� Ex output: ”Welcome to Gradebook class for EL2310”

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Access specifiers

� There are three access specifiers:
� public
� private
� protected

� No access specifier specified ⇒ assumes it is private
� Data and function members that are private cannot be

accessed from outside the class
� protected will be discussed later

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Constructor

� Constructor is a special kind of function.
� The constructor tells how to “setup” the objects
� default constructor:

� It is a constructor without arguments
� Implicitly defined by compiler when it is not explicitly defined by the

user
� When an object of a certain class is created (instantiated), the

so-called constructor is called first
� The constructor has the same name as the class and has no

return type
class A {
public:
A() {}

};
Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Constructor Example

class A {
public:
A(int x){

m X = x;
}
int getValue() { return m X; }

private:
int m X;

};
Now assume you are in main function:
A a;
std::cout << a.getValue() << std::endl;

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Multiple Constructors

� You can define several different constructors
� class MyClass {
public:
MyClass() {}
MyClass(int value) {
m X = value;

}
int getValue() { return m X; }

private:
int m X;

};
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue() << std::endl;
std::cout << aa.getValue() << std::endl;Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming



Lecture 12: Memory Management, OOP and Classes in C++

Classes

Task3

� Please open cpp.sh from your web browser
� Use the previously created Gradebook class
� Write a constructor for Gradebook class that takes a string as

an argument and calls its member function displayMessage
with that string argument

� In the main function create a Gradebook object with the
constructor that you have just created

Hakan Karaoguz KTH - Royal Institute of Technology

EL2310 – Scientific Programming


	Overview
	Overview

	Content
	Lecture 12: Memory Management, OOP and Classes in C++
	Wrap Up
	Memory Management in C++
	Introduction to Object Oriented Paradigm
	Classes



