
1.  INTRODUCTION

The aim of this benchmark is to compare different

black box identification methods to model nonlinear

systems. The aim of the benchmark is not to setup a

competition. It is well known that it is always possible

to create experimental conditions that favourite a giv-

en modelling approach. The goal is to get a better un-

derstanding about the capabilities of different

modelling and identification methods. From this point

of view it is not only interesting to see how well a

method is doing, also from a failure to model the data

can be learned a lot! 

We deliberately did not include an ‘extrapolation’ part

where the model is used outside the range where it was

estimated (in amplitude or frequency range). It is al-

ways possible to construct a test system that behaves

in an undesirable way for a given model, while it per-

fectly fits the extrapolation for another model class.

A real-life data set is made available. A description of

the nonlinear system, the measurement setup, and the

data is given. Finally we describe how the results

should be reported.

This benchmark continues a series of tests on the sil-

verbox-system which is a system with a static nonlin-

ear feedback. That study was presented at the 6th

IFAC symposium NOLCOS 2004 - Stuttgart: Sympo-

sium on Nonlinear Control Systems, in the session

“Identification of nonlinear systems: The silverbox

case study”.

2.  NONLINEAR SYSTEM

To emphasize the non-competitive aspects, we give a

much more detailed description of the test-system than

what is needed for a black-box modelling approach.

The reason for that is to make clear to all participants

that there are no hidden pitfalls. The reader should be

aware that the actual system does not perfectly match

this idealized description, due to interactions between

the different building blocks and the use of non ideal

components. For example, the behaviour of the ‘static

nonlinearity’ will be affected by the interaction with

the output impedance of the first linear system, and the

input impedance of the second linear system.

The system to be modelled is an electronic nonlinear

system with a Wiener-Hammerstein structure that was
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built by Gerd Vandersteen (Vandersteen, 1997). The

general structure is shown in Fig. 1.

The first filter  is designed as a third order

Chebyshev filter (pass-band ripple of 0.5 dB and cut

off frequency of 4.4 kHz). 

The second filter is designed as a third order inverse

Chebyshev filter (stop-band attenuation of 40 dB start-

ing at 5 kHz). This system has a transmission zero in

the frequency band of interest. This can complicate the

identification significantly, because the inversion of

such a characteristic is difficult. 

The static nonlinearity is built using a diode cir-

cuit(Fig. 2).

An impression of the overall characteristic is given in

Fig. 3 

3.  EXPERIMENT

The Wiener-Hammerstein system was excited with a

filtered Gaussian excitation signal (cut-off frequency

10 kHz). 

The input is generated using an HPE1434A arbitrary

waveform generator. This is a zero-order-hold (ZOH)

generator, followed by an analog low-pass filter to fil-

ter the high frequency components of the ZOH-recon-

struction, so that the resulting signal is a band-limited

signal. 

The input and output were measured with a

HPE1433A data acquisition card using a sample fre-

quency of 51200 Hz. An internal anti-alias filter is

present in this card. 

The measured signals are shown in Fig. 4. An impres-

sion of the disturbing noise levels can be found by

zooming in on the non-excited parts. It turns out that

the disturbing noise levels (measurement noise) are

very low, and about 70 dB below the signal levels (see

also Fig. 6).

The amplitude distribution of the input and output sig-

nal (leaving out the zero-parts) is given in Fig. 5. From

this figure it can be seen that the input is Gaussian dis-

tributed, while the output is clearly skew. 

The discrete Fourier transform (DFT, with hanning

window) of the input and output is shown in Fig. 6.
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 Fig. 1: Wiener-Hammerstein system consisting of

the cascade of a linear dynamic block ,

a static non-linear block  and a linear

dynamic block 
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 Fig. 2: Circuit used to built the static nonlinear

system.
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 Fig. 3: The Wiener-Hammerstein system.
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 Fig. 4: Measured input and output signal. Black part:

estimation data (user available data to built the

model); gray part: test data: to be used only for

bench marking).
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 Fig. 5: Histogram of the measured input and output.



Also the FRF (frequency response function) of the

nonparametric best linear approximation that is ob-

tained from these data is shown. From the input spec-

trum, it can be seen that the input signal is low-pass

filtered. In the FRF, the transmission zero of the sec-

ond filter is clearly visible.

4.  THE BENCHMARK

We split the data record in two parts: the estimation

data, and the test data. The estimation data are the

only data to be used to estimate and validate the mod-

el, while the test data will be used to bench mark the

quality of the estimated model. The test data should

not be used for any purpose during the tuning of the

model (parameter estimation, model selection, early

stopping, ...). Algorithms that need two or more sepa-

rate data sets during the identification step should split

the estimation data.   

In this benchmark the estimation data are the first part

of the measured input and output data 

( ) plotted in black in Fig. 4, the

test data are given by the remaining part

( ) that is plotted in gray in

Fig. 4.

The goal of the benchmark is to identify a nonlinear

model (discrete or continuous time) using the estima-

tion data.

Next this model is used to simulate the output 

of the system on the validation set. Simulation is de-

fined as calculating the output, using only the meas-

ured input data. No past values of the measured output

should be used (= prediction error), see Ljung (1999)

for more details. 

Besides a description of the identification method, and

the model, the following results on the test data set

should be given in order to allow a comparison of the

results:

- A plot with the modelled output and the simula-

tion error  in the time domain (linear plot) 

and in the frequency domain (semi-logarithmic 

plot, or plot in dB).

- The mean value of the simulation error (time 

domain):

 . (1)

In (1), the sum is started at  instead of 

 to eliminate the influence of tran-

sient errors at the beginning of the simulation.

- The standard deviation of the error (time 

domain)

(2)

- the root mean square (RMS) value of the error 

(time domain)

(3)

Give also the same results for the estimation data, cal-

culating the sums over , for ex-

ample:

. (4)
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 Fig. 6: Top: the amplitude of the Discrete Fourier

transform of the measured input and output.

Bottom: The FRF of the best linear

approximation. Left: amplitude; right: phase.
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