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Abstract. We introduce a new method for the analysis of singularities in the

unstable problem

∆u = −χ{u>0},

which arises in solid combustion as well as in the composite membrane problem.

Our study is confined to points of “supercharacteristic” growth of the solution,

i.e. points at which the solution grows faster than the characteristic/invariant

scaling of the equation would suggest. At such points the classical theory is

doomed to fail, due to incompatibility of the invariant scaling of the equation

and the scaling of the solution.

In the case of two dimensions our result shows that in a neighborhood of the

set at which the second derivatives of u are unbounded, the level set {u = 0}
consists of two C1-curves meeting at right angles. It is important that our

result is not confined to the minimal solution of the equation but holds for all

solutions.
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1. Introduction

In the last decade, the theory of free boundary regularity of obstacle type has
got renewed attention, owing to the seminal paper [4] of L.A. Caffarelli as well as
[6]. Many interesting old and new problems, intractable by earlier techniques, have
been solved, thanks to the ideas in [4] and [6] (see for example [15]). All these
problems share a common feature: the scaling of the solution at free boundary
points coincides with the characteristic/invariant scaling of the equation. However,
there are problems arising in applications for which this does not hold. An example
is the unstable obstacle problem

(1.1) ∆u = −χ{u>0} in Ω ⊂ Rn,

related to traveling wave solutions in solid combustion with ignition temperature
(see the introduction of [13] for more details), to the composite membrane problem
(see [8], [7], [3], [14], [9], [10]) as well as the shape of self-gravitating rotating fluids
describing stars (see [5, equation (1.26)]). Solutions of equation (1.1) may exhibit
“supercharacteristic” growth of order

r2| log r|

not suggested by the invariant/characteristic scaling u(rx)/r2 of the equation.
In this paper we introduce a new method to analyze the fine structure of singular
sets close to points of supercharacteristic growth of the solution.
Equation (1.1) has been investigated by R. Monneau-G.S. Weiss in [13]. They es-
tablish partial regularity for second order non-degenerate solutions of (1.1). More
precisely they show that the singular set has Hausdorff dimension less than or equal
to n−2, and that in two dimensions the free boundary consists close to points where
the second derivative is unbounded, of four Lipschitz graphs meeting at right an-
gles. They also show that energy-minimising solutions are in the two-dimensional
case of class C1,1 and that their free boundaries are locally analytic.
J. Andersson-G.S. Weiss have constructed a cross-shaped counter-example proving
that the solution need not be of class C1,1 (see [1]). In [13] it has been shown
that the second variation of the energy at that particular solution takes the value
−∞. In this sense the cross-solution is completely unstable. Moreover, it cannot
be obtained by naive numerical schemes.
In this paper we analyze the behavior of solutions at points at which the second
derivatives are unbounded. Difficulties in the analysis are:
(i) At cross-like singular points the solution has the “wrong scaling”, i.e. u(rx)
scales like r2| log(r)| which is different from the characteristic scaling r2 of the
equation. The lack of a suitable local Lyapunov functional/monotonicity formula
implies that methods like the Lojasiewicz inequality (see for example [16], [17])
would be hard to apply even at isolated singularities.
(ii) The cross-like singularities are unstable.
(iii) The comparison principle does not hold.
Instead we use knowledge about the Newtonian potential of the right-hand side to
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derive a quantitative estimate for the projection of the solution onto the homoge-
neous harmonic polynomials of degree 2. This leads in the case of two dimensions
to the growth estimate Theorem A (i) for the solution as well as an estimate of
order

(1.2)
∫ r

0

√
| log | log s||
s| log s|3/2

ds

for how much the projection of u(x + s·) and also the approximate tangent space
of the singular set can turn as s moves from r to 0 (see Theorem A and Remark
1.1). Our main result Theorem A shows that close to a non-degenerate singular
point, the level set {u = 0} consists of two C1-curves meeting at right angles.
We provide estimates for the modulus of the normal of the free boundary close
to singular points. Different from the (also two-dimensional) unique tangent cone
result [13, Theorem 7.1], the result in the present paper is a quantitative result valid
uniformly for a certain class of solutions. Moreover the result in the present paper
is not confined to the minimal solution.
In the paper [2] in preparation the authors extend these new methods to the case
of higher dimensions.
Our main result in the present paper is the following (cf. Corollary 5.6 and Corollary
7.1):

Theorem A. Let u be a solution of (1.1) in Ω ⊂ R2 satisfying supΩ |u| ≤ M .
Moreover let d > 0. Then there exist an r0 = r0(M,d) > 0 and a δ0 = δ0(M,d) > 0
such that if x0 ∈ Ωd = {x ∈ Ω : dist(x, ∂Ω) > d} and

(1.3) Su(x0, r) ≡
( 1

rn−1

∫
∂Br(x0)

u2dH1
)1/2

≥ r2

δ

for some δ ≤ δ0, r ≤ r0 and u(x0) = |∇u(x0)| = 0 then:
(i)

(
1
δ − C(M,d)

)
s2 + c log(r/s)s2 ≤ Su(x0, s) for every s ≤ r.

(ii) There exists a second order homogeneous harmonic polynomial px0,u = p

such that for each α ∈ (0, 1/2) and each β ∈ (0, 1),

(1.4)
∥∥∥ u(x0 + sx)

supBs(x0) |u|
− p

∥∥∥
C1,β

≤ C(M,d, α, β)
( δ

1 + δ log(r/s)

)α

.

(iii) The set {u = 0} ∩ Br(x0) consists of two C1-curves intersecting each other
at right angles at x0.

Remark 1.1. 1) By [13, Lemma 8.5] the estimate Theorem A (i) is sharp. The
inequality (1.3) is always satisfied for some r at singular points, that is, points at
which the solution u is not C1,1. Theorem A thus states that x0 is a singular point
if and only if (1.3) is satisfied for some r.

2) The left hand side in (1.4) may be estimated by the somewhat sharper term
in (1.2) (see the end of the proof of Theorem 6.3).

The proof of (i) in Theorem A is contained in Corollary 5.6, and (ii) and (iii)

will be proved in Corollary 7.1.
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2. Notation

Throughout this article Rn will be equipped with the Euclidean inner product x·y
and the induced norm |x|. We define ei as the i-th unit vector in Rn , and Br(x0) will
denote the open n-dimensional ball of center x0 , radius r and volume rn ωn . When
not specified, x0 is assumed to be 0. We shall often use abbreviations for inverse
images like {u > 0} := {x ∈ Ω : u(x) > 0} , {xn > 0} := {x ∈ Rn : xn > 0} etc.
and occasionally we shall employ the decomposition x = (x1, . . . , xn) of a vector
x ∈ Rn . Since we are concerned with local regularity we will use the set Ωd :=
{x ∈ Ω : dist(x, ∂Ω) ≥ d > 0}. We will use the k-dimensional Hausdorff measure
Hk. When considering a set A , χA shall stand for the characteristic function of A ,

while ν shall typically denote the outward normal to a given boundary.

3. Preliminaries

In this section we state some of the definitions and tools from [19], [13] and
mention some examples from [1].

First we need the monotonicity formula derived in [19] by G.S. Weiss for a class
of semilinear free boundary problems. For the sake of completeness let us state the
unstable case here:

Theorem 3.1 (Monotonicity formula, [19]). Suppose that u is a solution of (1.1)
in Ω and that Bδ(x0) ⊂ Ω . Then for all 0 < ρ < σ < δ the function

Φu
x0(r) := r−n−2

∫
Br(x0)

(
|∇u|2 − 2max(u, 0)

)
− 2 r−n−3

∫
∂Br(x0)

u2 dHn−1 ,

defined in (0, δ) , satisfies the monotonicity formula

Φu
x0(σ) − Φu

x0(ρ) =
∫ σ

ρ

r−n−2

∫
∂Br(x0)

2
(
∇u · ν − 2

u

r

)2

dHn−1 dr ≥ 0 .

The following proposition has been proved in [13, Section 5].

Proposition 3.2 (Classification of blow-up limits with fixed center, Proposition
5.1 in [13]). Let u be a solution of (1.1) in Ω and let us consider a point x0 ∈
Ω ∩ {u = 0} ∩ {∇u = 0}.
(i) In the case Φu

x0(0+) = −∞, limr→0 r−3−n
∫

∂Br(x0)
u2 dHn−1 = +∞, and for

Su(x0, r) =
(
r1−n

∫
∂Br(x0)

u2 dHn−1
) 1

2
, each limit of

u(x0 + rx)
Su(x0, r)

as r → 0 is a homogeneous harmonic polynomial of degree 2.
(ii) In the case Φu

x0(0+) ∈ (−∞, 0),

ur(x) :=
u(x0 + rx)

r2
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is bounded in W 1,2(B1(0)), and each limit as r → 0 is a homogeneous solution of
degree 2.
(iii) Else Φu

x0(0+) = 0, and

u(x0 + rx)
r2

→ 0 in W 1,2(B1(0)) as r → 0 .

Remark 3.3. 1. As observed recently by one of the authors, case (ii) is possible
even in two dimensions (cf. [2]).
2. Case (iii) is equivalent to u being degenerate of second order at x0.

In [1], the authors have obtained abstract existence of solutions in two dimensions
that exhibit cross-like singularities, at which the second derivatives of the solution
are unbounded (case (i) of Proposition 3.2), as well as degenerate singularities, at
which the solution decays to zero faster than any quadratic polynomial (case (iii)
of Proposition 3.2):

Theorem 3.4 (Cross-shaped singularity in two dimensions, Corollary 4.2 in [1]).
There exists a solution u of

∆u = −χ{u>0} in B1 ⊂ R2

that is not of class C1,1. Each limit of

u(rx)
Su(0, r)

as r → 0 coincides after rotation with the function (x2
1 − x2

2)/∥x2
1 − x2

2∥L2(∂B1(0)).

Theorem 3.5 (Existence of a degenerate point, Corollary 4.4 in [1]). There exists
a non-trivial solution u of

∆u = −χ{u>0} in B1 ⊂ R2

that is degenerate of second order at the origin.

4. A Newtonian potential and its projection

In what follows we will need the space P of second order homogeneous harmonic
polynomials and two dimensional homogeneous polynomials respectively which we
define now.

Definition 4.1. Let us first define in each dimension n ≥ 2 the space P of 2-
homogeneous harmonic polynomials, i.e. harmonic polynomials of degree 2.

Definition 4.2. (i) Let us define the projection

Π : W 2,2(B1) → P

as follows: for v ∈ W 2,2(B1), let Π(v) be the, by Lemma 4.3 unique, minimizer of

p 7→
∫

B1

|D2v − D2p|2
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on P , where |A| =
√∑n

i,j=1 a2
ij is the Frobenius norm of the matrix A.

(ii) Let us also define τ(v) ≥ 0 by

Π(v) = τ(v)p, p ∈ P, sup
B1

|p| = 1.

Lemma 4.3. (i) For each v ∈ W 2,2(B1) the minimizer of Definition 4.2 exists and
is unique. Thus Π : W 2,2(B1) → P is well-defined.
(ii) Π is a linear operator.
(iii) If h ∈ W 2,2(B1) is harmonic in B1 then Π(h(x)) = Π(h(rx)/r2) for all r ∈
(0, 1).
(iv) For every v, w ∈ W 2,2(B1),

sup
B1

|Π(v + w)| ≤ sup
B1

|Π(v)| + sup
B1

|Π(w)|.

Proof. The first and second statement follow from the projection theorem with
respect to the L2(B1; Rn2

)-inner product and the linear subspace

{f ∈ L2(B1; Rn2
) : f(x)is symmetric, constant, and trace(f) = 0}.

Writing h as the sum of homogeneous harmonic polynomials hj that are orthogonal
to each other with respect to

(v, w) :=
∫

B1

n∑
i,j=1

∂ijv∂ijw,

we see that Π(hj) = 0 for all j such that the degree of hj is different from 2, im-
plying the third statement.
The last statement follows from the linearity of Π and the triangle inequality in
L2(B1; Rn2

). ¤
In [12] L. Karp-A.S. Margulis derive eigenfunction expansions for generalized New-
tonian potentials with respect to a large class of right-hand sides. In the follow-
ing lemma we calculate explicitly a normalized generalized Newtonian potential of
−χ{x1x2>0} as well as its projections. Properties (iv), (v) and (vi) in Lemma 4.4
are crucial for what follows.

Lemma 4.4. Define v : (0, +∞) × [0, +∞) → R by

v(x1, x2) := −4x1x2 log(x2
1 + x2

2) + 2(x2
1 − x2

2)
(

π

2
− 2 arctan

(
x2

x1

))
− π(x2

1 + x2
2).

Moreover let

w(x1, x2) :=


v(x1, x2), x1x2 ≥ 0, x1 ̸= 0,

−v(−x1, x2), x1 < 0, x2 ≥ 0,

−v(x1,−x2), x1 > 0, x2 ≤ 0,

and let

z(x1, x2) :=
w(x1, x2) − π(x2

1 + x2
2) + 8x1x2

8π
.

Then, z is the unique solution to
(i) ∆z = −χ{x1x2>0} in R2,
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(ii) z(0) = |∇z(0)| = 0,
(iii) limx→∞

z(x)
|x|3 = 0,

(iv) Π(z) = 0,
(v) Π(z1/2) = log(2)x1x2/π,

(vi) τ(z1/2) = log(2)/(2π).

Proof. A calculation shows that w can be extended to a C1-function and that
∆w = −4πχ{x1x2>0} + 4πχ{x1x2<0}. We obtain that z can be extended to a C1-
function solving ∆z = −χ{x1x2>0} in R2 and satisfying (ii) and (iii).
Next we show that h := Π(z) = 0: setting

D2h =
(

a b

b −a

)
,

we obtain

0 = ∂b

∫
B1

|D2z − D2h|2 = 4
∫

B1

∂12(h − z) = 4b − 4
∫

B1

∂12z

= 4b + 2
∫

B1

1 + log(x2
1 + x2

2)
π

= 4b

as well as

0 = ∂a

∫
B1

|D2z − D2h|2 = 4a,

implying that h ≡ 0.
Rescaling z we see that

z(rx1, rx2)
r2

= z(x1, x2) −
x1x2 log r2

2π

which implies

Π(z1/2) = Π(z) − Π(
x1x2 log(

(
1
2

)2)
2π

) = − log(1/2)Π(x1x2)/π = − log(1/2)x1x2/π.

Thus (v) and (vi) are true.
Last, we show uniqueness of z satisfying (i)-(iv). Observe that (v) and (vi) are

not needed to show uniqueness. If z1 and z2 are two solutions to (i)-(iv), then
by (i), z1 − z2 is harmonic. Condition (iii) implies that z1 − z2 is a second order
polynomial. Conditions (ii) and (iv) then imply that z1 − z2 = 0. ¤

5. Growth of the Solution at Singular Points.

The next lemma is crucial for all that follows.

Lemma 5.1. Let u solve (1.1) and suppose that d > 0, supΩ |u| ≤ M < +∞,
x0 ∈ Ωd, u(x0) = |∇u(x0)| = 0 and r ≤ d/2. Then( ∫

B1

∣∣∣D2 u(x0 + rx)
r2

− D2Π
(u(x0 + rx)

r2

)∣∣∣p)1/p

≤ C(n, M, d, p)

and ∥∥∥u(x0 + rx)
r2

− Π
(u(x0 + rx)

r2

)∥∥∥
C1,β

≤ C(n,M, d, β).
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Proof. Let ur(x) = u(x0+rx)
r2 . From [18, 4.1 Proposition 1] we infer that D2u is

locally of class BMO, and that( ∫
B3/2

|D2ur − D2u3r/2|2
)1/2

≤ C1,

where

D2u3r/2 =
1

ωn(3/2)n

∫
B3/2

D2ur,

and C1 is a constant depending only on n, M and d. It follows that

C1 ≥
( ∫

B3/2

|D2ur − D2u3r/2|2
)1/2

≥
( ∫

B3/2

|D2ur −
(
D2u3r/2 −

1
n

trace(D2u3r/2)I
)
|2

)1/2

−
( ∫

B3/2

| 1
n

trace(D2u3r/2)I|2
)1/2

,

where I is the identity matrix. Next it is easy to see that∫
B3/2

| 1
n

trace(D2u3r/2)I|2 ≤ 1,

since

trace
(
D2u3r/2

)
=

1
ωn(3/2)n

∫
B3/2

∆ur

and |∆ur| ≤ 1. In particular we have

C1 + 1 ≥
( ∫

B3/2

|D2uη −
(
D2u3r/2 −

1
n

trace(D2u3r/2)I
)
|2

)1/2

.

Using the minimizing property of the projection Π we get

(C1 + 1)2 ≥
∫

B3/2

|D2ur −
(
D2u3r/2 −

1
n

trace(D2u3r/2)I
)
|2

≥
∫

B3/2

|D2ur − D2Π(u3r/2)|2.

Observe that if we set v := ur − Π(u3r/2), then∫
B3/2

|D2v|2 ≤ (C1 + 1)2, ∥Π(v)∥L2(B1) ≤ C2,

∥Π(v)∥L2(B3/2) ≤ C3 and ∥v − Π(v)∥L2(B3/2) ≤ C4.

It follows that D2
(
ur − Π(ur)

)
is bounded in L2(B3/2). Moreover, since Π(ur) is

harmonic, ∆
(
ur − Π(ur)

)
= −χ{ur>0}. Poincare’s inequality implies that∥∥ur − Π(ur) −∇ur · x − ur

∥∥
W 2,2(B3/2)

≤
∥∥D2ur − D2Π(ur)

∥∥
L2(B3/2)

≤ C5,

where ∇ur and ur denote the averages. Thus Lp-theory (see for example [11,
Theorem 9.11]) implies that∥∥ur − Π(ur) −∇ur · x − ur

∥∥
W 2,p(B1)

≤ C6.
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The embedding into Hölder spaces therefore yields∥∥ur − Π(ur) −∇ur · x − ur

∥∥
C1,β(B1)

≤ C7.

Using that u(x0) = |∇u(x0)| = 0 and the above estimates implies the statement of
the Lemma. ¤

Remark 5.2. The above Lemma implies in particular that when one of the quan-
tities ∥u∥L∞(Br(x0)), Su(x0, r) and τ(u(x0 + r·)) is large in comparison to r2 then
all these quantities are comparable. Let us indicate how to prove this: assume that
τ(u(x0 + r·)) > C̄r2 for some large constant C̄ = C̄(n,M, d) then

Su(x0, r) =
( 1

rn−1

∫
∂Br(x0)

u2dHn−1
)1/2

≥
( 1

rn−1

∫
∂Br(x0)

Π(u)2dHn−1
)1/2

−
( 1

rn−1

∫
∂Br(x0)

(u − Π(u))2dHn−1
)1/2

≥ c(n)τ(u(x0 + r·)) − C(n,M, d)r2.

It follows that if C̄ > 2C(n, M, d)/c(n) then Su(x0, r) > c(n)τ(u(x0 + r·))/2. Simi-
larly one may deduce that under the above assumptions Su(x0, r) < C(n)τ(u(x0 +
r·)) and that the corresponding relationships between the other quantities above
hold.

In what follows, we denote by z(x1, . . . , xn) := z(x1, x2) the solution of Lemma
4.4, extended to Rn.

Lemma 5.3. For each ϵ > 0, n ∈ N, d > 0,M < +∞, α ∈ [1, +∞) and β ∈ (0, 1)
there exist r0, δ > 0 with the following property:
Suppose that 0 < r ≤ r0, x ∈ Ωd and that u is a solution of (1.1) in Ω satisfying
supΩ |u| ≤ M , u(x) = |∇u(x)| = 0 and

Ln(({u(x + r·) > 0}△{x1x2 > 0}) ∩ B1) ≤ δ.

Then ∥∥∥∥u(x + r·)
r2

− Π(
u(x + r·)

r2
) − z

∥∥∥∥
C1,β(B̄1)

≤ ϵ.

Proof. Suppose that rj → 0, that

Ln({uj(xj + rj ·) > 0}△{x1x2 > 0}) → 0 as j → ∞

and that
uj(xj + rj ·)

rj
2

− Π(
uj(xj + rj ·)

rj
2

) → z̃ in C1,β
loc (Rn) and weakly in W 2,α

loc (Rn)

as j → ∞ (cf. Lemma 5.1).
Now let Ñ be the Newtonian potential of χΩd

∆uj , i.e.

Ñ(y) :=

{
1

n(2−n)ωn

∫
Rn |y − ξ|2−n(χΩd

∆uj)(ξ) dξ, n > 2,
1
2π

∫
R2 log |y − ξ|(χΩd

∆uj)(ξ) dξ, n = 2.

Next we let N(y) := Ñ(y)− Ñ(xj)−∇Ñ(xj) · (y − xj), and consider the harmonic
function h(y) := uj(y) − N(y). Since supΩ |uj | ≤ M , |h| ≤ C2 on ∂Bd(xj), and
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it follows that |D3h(y)| ≤ C3 in Bd/2(xj), where C3 depends on n, d and M .
Consequently

|uj(y) − N(y) − D2h(xj)(y − xj)(y − xj)| ≤ C4|xj − y|3 in Bd/2(xj),

where C4 depends only on n, d and M . For the scaled functions vj(y) := uj(xj +
rjy)/r2

j , Nj(y) := N(xj + rjy)/r2
j and pj(y) = D2h(xj)(y)(y) we obtain

|vj(y) − Nj(y) − pj(y)| ≤ C4rj |y|3 in Bd/(2rj).

Thus
vj − Π(vj) = Nj − Π(Nj) + o(1) as j → ∞.

Passing if necessary to another subsequence j → ∞, the functions Nj converge
locally to N0, where

∆N0 = −χ{x1x2>0}, N0(0) = 0,∇N0(0) = 0 and N0 − Π(N0) = z̃.

We need to establish that |N0(y)| = o(|y|3) as |y| → ∞. Once this is established
the uniqueness part of Lemma 4.4 implies that z̃ = N0−Π(N0) = z and the Lemma
follows. First, D2N0 ∈ BMO(Rn), so that∫

B1

∣∣∣∣∣D2(N0(Ry)) − D2(N0(R·))
supBR

|D2N0|

∣∣∣∣∣
2

dy ≤ C5
R4

supBR
|D2N0|2

for all R ∈ (0,+∞), where D2(N0(R·)) denotes the mean value of D2(N0(R·)) on
B1. Thus lim supR→∞ supB1

|D2N0(R·)|/R2 = +∞ implies that

(5.1)
N0(Rk·)/ supBRk

|D2N0| converges for a sequence Rk → ∞
to a 2-homogeneous harmonic polynomial.

Now suppose towards a contradiction that

lim sup
|y|→∞

|N0(y)|
|y|3

> 0.

Then ∆(N0 − z) = 0 in Rn and

lim sup
|y|→∞

|N0(y) − z(y)|
|y|3

> 0.

Thus N0 − z must be a harmonic polynomial of degree m ≥ 3, contradicting (5.1).
¤

Lemma 5.4. Let n = 2, d > 0 and M < +∞. Then there are r0, δ > 0 with the
following property:
Suppose that 0 < r ≤ r0, x

0 ∈ Ωd and that u is a solution of (1.1) in Ω satisfying
supΩ |u| ≤ M , u(x0) = |∇u(x0)| = 0 and

Su(x0, r) ≥ r2

δ
,

for some r ≤ r0. Then

Ln
(
({u(x0 + r·) > 0}∆{Π(u(x0 + r·)) > 0}) ∩ B1

)
≤ C

| log(Su(x0, r)/r2)|
Su(x0, r)/r2

,

where C = C(d,M, r0).
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Proof. Let ur(y) := u(x0 + ry)/r2. Then ur is a solution to (1.1) and Sur (0, 1) >

1/δ. Let τ(ur)pr = Π(ur). By Lemma 5.1, supB1
|ur−τ(ur)pr| ≤ C, and we obtain

at each point x ∈ {ur > 0} ∩ {pr ≤ 0} that

|pr(x)| ≤ C

τ(ur)
≤ C1

Sur (0, 1)
,

where we have used that Sur (0, 1) is comparable to τ(ur) (see Remark 5.2). Next
we calculate

Ln({ur > 0} ∩ {pr ≤ 0} ∩ B1) ≤ Ln({|pr| ≤
C1

Sur (0, 1)
} ∩ B1)

≤ 4Ln({(x1, x2) : 0 < x1 < 1, 0 < x2 < 1, x1x2 ≤ C1

Sr(0, 1)
})

= 4
∫ C1/Sur (0,1)

0

dx1 + 4
∫ 1

C1/Sur (0,1)

C1

x1Sur (0, 1)
dx1 ≤ C| log(Sur (0, 1))|

Sur (0, 1)
.

The Lemma follows by scaling back Su(x0, r) = r2Sur (0, 1). ¤

Lemma 5.5. Let n = 2. For each γ ∈ (0, log(2)/(2π)), d > 0 and M < +∞ there
are r0, δ > 0, depending only on γ, d and M , with the following property:
Suppose that 0 < r ≤ r0, x0 ∈ Ωd and that u is a solution of (1.1) in Ω satisfying
supΩ |u| ≤ M , u(x0) = |∇u(x0)| = 0 and for some r ≤ r0,

Su(x0, r) ≥ r2

δ
.

Then τ(4u(x0 + r · /2)/r2) ≥ τ(u(x0 + r·)/r2) + γ.

Proof. Suppose towards a contradiction that τ(4uj(xj + rj · /2)/r2
j ) < τ(uj(xj +

rj ·)/r2
j )+γ for a sequence uj satisfying the assumptions with δ = δj → 0 as j → ∞.

Let vj := uj(xj + rj ·)/r2
j . A straightforward calculation shows that vj solves (1.1)

and that
Svj (0, 1) ≥ 1

δj
.

From Lemma 5.4 it follows that

Ln({vj > 0}∆{Π(vj) > 0}) ∩ B1) → 0.

We may apply Lemma 5.3 and deduce that, after a rotation of the coordinate
system, vj − Π(vj) → z weakly in W 2,α(B1) and strongly in C1,β(B̄1) as j → ∞,
and that therefore — rotating each vj only slightly more — Π(vj) = Mjx1x2 with
Mj → +∞ as j → ∞. Defining f1/2(y) := 4f(y/2), it follows from Lemma 4.4
(v) that Π((vj)1/2 − Mjx1x2) → Π(z1/2) = log(2)x1x2/π as j → ∞. On the other
hand, τ((vj)1/2) < τ(vj) + γ, so that

(log(2)/π + Mj)/2 = τ((log(2)/π + Mj)x1x2)

= o(1) + τ((vj)1/2) < o(1) + τ(vj) + γ = o(1) + Mj/2 + γ,

a contradiction for large j. ¤
The next Corollary proves the first statement in Theorem A and is fundamental

for the rest of the paper.
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Corollary 5.6. Let n = 2. Fix a γ ∈ (0, log(2)/2π) and let u satisfy the assump-
tions in Lemma 5.5 for some r ≤ r0 (with possibly somewhat smaller δ). Then

τ(22ju(x0 + 2−jr·)/r2) ≥ τ(u(x0 + r·)/r2) + jγ for all j ∈ N.

Moreover, for each s ≤ r,

Su(x0, s)
s2

≥ Su(x0, r)
r2

+ cγ
log(r/s)
log(2)

− 2C,

where c = ∥x1x2∥L2(∂B1), and C = C(M,d, r0).

Proof. Since by Lemma 5.1

sup
B1

∣∣∣u(x0 + rx)
r2

− Π
(u(x0 + rx)

r2

)∣∣∣ ≤ C0,

it follows that for s ≤ r, us(x) = u(x0 + sx)/s2 and c = ∥x1x2∥L2(∂B1),

Sus(0, 1) −
√

2C0π ≤
(∫

∂B1

|Π(us)|2dH1

) 1
2

+
(∫

∂B1

|us − Π(us)|2dH1

) 1
2

(5.2)

−
√

2C0π ≤ cτ(us).

Similarly it follows that

(5.3) τ(us)
( ∫

∂B1

(x1x2)2
)1/2

dH1 ≤ Sus(0, 1) +
√

2C0π.

From Lemma 5.5 we infer that if Su(x0, r)/r2 ≥ 1/σ with σ < δ and δ is as in
Lemma 5.5, then τr/2 ≥ τr +γ. Here we use short hand τr ≡ τ(u(x+ r·)/r2). From
inequalities (5.2) and (5.3) we see that

(5.4)
Su(x0, r/2)

(r/2)2
≥ (τr + γ)c −

√
2C0π ≥ Su(x0, r)

r2
+ γc − 2

√
2C0π,

where c is the constant in the statement of the Corollary. In particular, if σ has
been chosen small enough, say 1/σ > 1/δ + 2C1, then u satisfies the assumptions
of Lemma 5.5 in Br/2. We may thus apply Lemma 5.5 again and deduce that

Su(x0, r/4)
(r/4)2

≥ (τr + 2γ)c − 2
√

2C0π.

Applying Lemma 5.5 j times, we arrive at

Su(x0, r/2j)
(r/2j)2

≥ (τr + jγ)c − C1 ≥ Su(x0, r)
r2

+ cγj − 2C1.

Notice that since τ2−jr is increasing in j and thus Su(x0, 2−jr) ≥ τr − 2
√

2C0π for
each j and the assumptions of Lemma 5.5 are therefore satisfied for each j.

If we put s = 2−jr then j = log(r/s)/ log(2) and we obtain the statement in the
Corollary. For general s ≤ r we may consider a j such that 2−(j+1)r < s ≤ 2−jr.
Using Lemma 5.1,∥∥∥u(x0 + 2−jrx)

(2−jr)2
− Π

(u(x0 + 2−jrx)
(2−jr)2

)∥∥∥
C1,β(B1)

≤ C2,
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and it follows that ∣∣∣Su(x0, s)
s2

− Su(x0, 2−jr)
(2−jr)2

∣∣∣ ≤ C3.

The Corollary follows with a slightly larger constant C. ¤

6. Controlling the movement of Π(u(x + r·))

In this section we will exploit the estimate in Corollary 5.6 to obtain control of
how much the projection of u(x + r·) can turn when passing to a smaller radius r.

Lemma 6.1. Let n = 2, d > 0 and M < ∞. Then there is r0, δ > 0 with the
following property:
Suppose that 0 < r ≤ r0, x0 ∈ Ωd and that u is a solution of (1.1) in Ω satisfying
supΩ |u| ≤ M , u(x) = |∇u(x)| = 0 and

Su(x0, r)
r2

≥ 1
δ
.

Let g be the solution of

∆g = χ{Π(u(x+r·))>0} − χ{u(x+r·)>0} in B1,

g = 0 on ∂B1.

Then
(i)

∥D2g∥L2(B1) ≤ C

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
.

(ii)

τ(g) ≤ C

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
,

where C = C(d,M, r0).

Proof. (i) follows from Lemma 5.4 and L2-theory (see for example [11, Theorem
8.8]).
(ii) Rotating and setting p := Π(g) = a1x

2
1 + a2x

2
2, we obtain

∥D2p∥L2(B1) ≤ C1∥D2g∥L2(B1) ≤ C2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2

and

|aj | ≤ C3

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2

for j = 1, 2. ¤
The next Proposition already contains the desired estimate for how much the pro-
jection may turn when passing from u(x0 + r·) to u(x0 + r · /2).
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Proposition 6.2. Let n = 2, d > 0 and M < +∞. Then there are r0, δ > 0 with
the following property:
Suppose that 0 < r ≤ r0, x0 ∈ Ωd and that u is a solution of (1.1) in Ω satisfying
supΩ |u| ≤ M , u(x) = |∇u(x)| = 0 and

Su(x0, r)
r2

≥ 1
δ
.

Then

sup
B1

∣∣∣∣ Π(u(x + r·))
supB1

|Π(u(x + r·))|
− Π(u(x + r · /2))

supB1
|Π(u(x + r · /2))|

∣∣∣∣ ≤ C

√
| log(|Su(x0, r)/r2|)|(
Su(x0, r)/r2

)3/2
,

where C = C(n,M, d).

Proof. Let us consider v = ur − z ◦Qr − hr − τ(ur)pr where ur(y) = u(x + ry)/r2,
Π(ur) = τ(ur)pr, the orthogonal matrix Qr has been chosen such that {Π(ur) >

0} = {(x1x2) ◦ Qr > 0} (we may assume that Qr = I, the identity matrix),
hr = h(ry)/r2, and h is harmonic and satisfies h(x) ≤ C1|x|3. It follows that
Π(v) = 0. Moreover we may express v = g + h̃ where g is the solution of Lemma
6.1 and h̃ is harmonic. Lemma 6.1 (ii) implies now that for h̃1/2(y) = 4h̃(y/2),
g1/2(y) = 4g(y/2) and v1/2(y) = 4v(y/2),

sup
B1

|Π(v1/2)| = sup
B1

|Π(h̃1/2 + g1/2)| ≤ sup
B1

|Π(g1/2)|

+ sup
B1

|Π(h̃1/2)| ≤ sup
B1

|Π(h̃1/2)| + C2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
.

Since Π(v) = 0 we also know that |Π(h̃)| ≤ |Π(g)| ≤ C2

√
| log(Su(x0,r)/r2)|

Su(x0,r)/r2 . On the

other hand, using that h̃ is harmonic and Lemma 4.3 (iii), Π(h̃) = Π(h̃1/2) so that

sup
B1

|Π
(
ur/2 − z1/2 − hr/2 − τ(ur)pr

)
| = sup

B1

|Π(v1/2)| ≤ 2C2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
.

From the linearity of Π, |h(x)| ≤ C3|x|3 and Lemma 4.4 we infer that

(6.1) sup
B1

|Π(ur/2) − (τ(ur) + log(2)/(2π))pr|

≤ 2C2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
+ sup

B1

|Π(hr/2)| ≤ C4

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
;

here we also used that supB1
|Π(hr/2)| ≤ C4r which can be absorbed in the last

term since Su(x0, r)/r2 is large by assumption.
From (6.1) we conclude that

sup
B1

∣∣∣∣ Π(ur)
supB1

|Π(ur)|
−

Π(ur/2)
supB1

|Π(ur/2)|

∣∣∣∣
≤ sup

B1

∣∣∣∣ Π(ur)
supB1

|Π(ur)|
− (τ(ur) + log(2)/(2π))pr

supB1
|Π(ur/2)|

∣∣∣∣ + C6

√
| log(Su(x0, r)/r2)|(
Su(x0, r)/r2

)3/2
,
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where we also used supB1
|Π(ur/2)| ≥ C7S

u(x0, r)/r2 (c.f. Remark 5.2). Next we
make the following estimate, which together with the previous estimate yields the
conclusion of the Proposition:

sup
B1

∣∣∣∣τ(ur)pr

τ(ur)
− (τ(ur) + log(2)/(2π))pr

supB1
|Π(ur/2)|

∣∣∣∣
≤ sup

B1

∣∣∣∣τ(ur)pr

τ(ur)
− (τ(ur) + log(2)/(2π))pr

(τ(ur) + log(2)/(2π))

∣∣∣∣ +
∣∣∣∣τ(ur) + log(2)/(2π)

supB1
|Π(ur/2)|

− 1
∣∣∣∣

≤ C8
1

Su(x0, r)/r2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
,

where we have used (6.1) to estimate

| sup
B1

|Π(ur/2)| − (τ(ur) + log(2)/(2π))| ≤ C4

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
,∣∣∣∣τ(ur) + log(2)/(2π)

supB1
|Π(ur/2)|

− 1
∣∣∣∣

≤ C9
1

Su(x0, r)/r2

√
| log(Su(x0, r)/r2)|

Su(x0, r)/r2
.

¤

Theorem 6.3. Let n = 2, d > 0 and suppose that u solves (1.1) and that supΩ |u| ≤
M < +∞. Then there exists a δ = δ(M,d) > 0 and an r0 = r0(M,d) > 0 such that
if x0 ∈ Ωd and

Su(x0, r)
r2

≥ 1
δ

for some r ≤ r0 then for each α ∈ (0, 1/2) and all s ≤ r,

sup
B1

∣∣∣ Π(u(x0 + rx))
supB1

|Π(u(x0 + rx))|
− Π(u(x0 + sx))

supB1
|Π(u(x0 + sx))|

∣∣∣ ≤ C(d,M,α)
( r2

Su(x0, r)

)α

.

Proof. For simplicity we will only prove the Theorem for s = 2−jr; for general s

we may use the estimate in Lemma 5.1 as indicated in the proof of Corollary 5.6.
Let us choose δ small enough so that Corollary 5.6 holds for some fixed γ > 0,

i.e.

(6.2)
Su(x0, 2−jr)

2−2jr2
≥ Su(x0, r)

r2
+ cγj − 2C.

Decreasing δ somewhat more if necessary, we see that (6.2) implies that the assump-
tions in Proposition 6.2 hold for every ball B2−jr(x0). Using the triangle inequality
we obtain that

sup
j

[
sup
B1

∣∣∣ Π(u(x0 + rx))
supB1

|Π(u(x0 + rx))|
− Π(u(x0 + 2−jrx))

supB1
|Π(u(x0 + 2−jrx))|

∣∣∣]

≤
∞∑

j=0

[
sup
B1

∣∣∣ Π(u(x0 + 2−jrx))
supB1

|Π(u(x0 + 2−jrx))|
− Π(u(x0 + 2−j−1rx))

supB1
|Π(u(x0 + 2−j−1rx))|

∣∣∣].
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This sum may be estimated, by Proposition 6.2, from above by

(6.3)
∞∑

j=0

√
log(Su(x0, 2−jr)/(2−2jr2))(
Su(x0, 2−jr)/(2−2jr2)

)3/2
.

Let us set k to be the smallest integer satisfying

k ≥ 1
cγ

(Su(x0, r)
r2

− 2C
)
.

For Su(x0, r)/r2 large enough we see that

(6.4) k > c1
Su(x0, r)

r2
.

Using (6.2) we may estimate (6.3) by

C2

∞∑
j=k

√
log(cγj)

(cγj)3/2
≤ C3

∫ ∞

k

√
log(cγt)

(cγt)3/2
dt ≤ C4

2 + log k√
k

≤ C5(α)k−α

for each α ∈ (0, 1/2). Using (6.4) gives the Theorem. ¤

7. Conclusion

Corollary 7.1. Under the assumptions in Theorem 6.3 the following holds:
(i) there exists a homogeneous harmonic polynomial px0,u = p of second order

such that for each α ∈ (0, 1/2) and each β ∈ (0, 1/2)∥∥∥ u(x0 + sx)
supBs(x0) |u|

− p
∥∥∥

C1,β
≤ C(d,M,α, β)

( δ

1 + δ log(r/s)

)α

.

(ii) The set {u = 0} ∩ Br(x0) consists of two C1-curves intersecting each other
at right angles at x0.

Proof. From Corollary 5.6 we know that for each s ≤ r

(7.1)
Su(x0, s)

s2
≥ c1

(1
δ

+ log(r/s)
)
.

It follows from Theorem 6.3 that

(7.2) lim
s→0

Π(u(x0 + sx))
supB1

|Π(u(x0 + sx))|
= px0,u ≡ p

exists. Using Lemma 5.1 gives

(7.3) C2 ≥
∥∥∥u(x0 + sx)

s2
− Π(u(x0 + sx))

s2

∥∥∥
C1,β

≥
∥∥u(x0 + sx)

s2
−

supBs(x0) |u|
s2

p
∥∥

C1,β −
∥∥ supBs(x0) |u|

s2
p − Π(u(x0 + sx))

s2

∥∥
C1,β

=
supBs(x0) |u|

s2

(∥∥ u(x0 + sx)
supBs(x0) |u|

− p
∥∥

C1,β

−
∥∥p −

supB1(x0) |Π(u(x0 + sx))|
supBs(x0) |u|

Π(u(x0 + sx))
supB1

|Π(u(x0 + sx))|
∥∥

C1,β

)
.
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As a direct consequence of Lemma 5.1 we obtain∣∣∣ supB1
|Π(u(x0 + sx))|

supBs(x0) |u|
− 1

∣∣∣ ≤ C3s
2

supBs(x0) |u|
.

This, together with Theorem 6.3, implies that

∥∥p −
supB1

|Π(u(x0 + sx))|
supBs(x0) |u|

Π(u(x0 + sx))
supB1

|Π(u(x0 + sx))|
∥∥

C1,β ≤ C4

( s2

Su(x0, s)

)α

.

Rearranging terms in (7.3) we get∥∥∥ u(x0 + sx)
supBs(x0) |u|

− p
∥∥∥

C1,β
≤ C5

( s2

Su(x0, s)

)α

≤ C(d,M,α, β)
( δ

1 + δ log(r/s)
)α

.

This proves (i).

Rotating the coordinate system we may assume that px0,u = p = 2x1x2. The
first part of the Corollary implies that

u(x0+s·) < 0 in
{
(x1, x2) ∈ B1 : x1x2 ≤ −C(d,M,α, β)

( δ

1 + δ log(r/s)

)α}
≡ K−

s ,

that

u(x0 + s·) > 0 in
{
(x1, x2) ∈ B1 : x1x2 ≥ C(d,M,α, β)

( δ

1 + δ log(r/s)

)α}
≡ K+

s

and that ∣∣∣∣∣∂θ
u(x0 + sx)

supBs(x0) |u|

∣∣∣∣∣ ≥ c6|x| in B1 \ (K−
s ∪ K+

s ).

From the implicit function theorem it follows that, for each ϵ > 0, {u = 0} consists
of four C1-curves in Bs(x0) \ Bs/2(x0). To show that {u = 0} consists of two C1-
curves we only need to show that these four curves are differentiable at x0 and that
their derivatives match.

The normal ν of {u = 0} will point in the same (or opposite) direction as ∇u at
any point of

(
Bs(x0) \ {x0}

)
∩ {u = 0}. Let us consider a point x0 + sx of {u = 0}

such that x2 = 1 and |x1| ≤ 1: from (i) it follows that at the point x0 + sx,

∇
(
u(x0 + sx)

)
supBs(x0) |u|

=
(∇

(
u(x0 + sx)

)
supBs(x0) |u|

− 2∇(x1x2)
)

+ 2∇(x1x2)

= 2e1 + terms of order
( δ

1 + δ log(r/s)

)α

.

By a similar argument for each of the four components of {u = 0}∩
(
Bs(x0)\{x0}

)
it follows that each component is a C1-curve with modulus of continuity σ(s) =
C7(log(r/s))−α and that each component approaches x0 tangentially relative to the
x1- or x2-axis. This proves (ii). ¤
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