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Abstract. We study the regularity of the two-phase membrane problem, with
coefficients below the Lipschitz threshold. For the Lipschitz coefficient case one
can apply a monotonicity formula to prove the C1,1-regularity of the solution
and that the free boundary is, near the so-called branching points, the union
of two C1-graphs. In our case, the same monotonicity formula does not apply
in the same way. In the absence of a monotonicity formula, we use a specific

scaling argument combined with the classification of certain global solutions to
obtain C1,1-estimates. Then we exploit some stability properties with respect
to the coefficients to prove that the free boundary is the union of two Reifenberg
vanishing sets near so-called branching points.

1. Introduction and main result

1.1. Problem. Given two strictly positive functions λ1 and λ2 and boundary data
g ∈ H1(B1) ∩ L∞(B1) we study the minimizer of the functional

(1.1) J(u) =

∫

B1

|∇u|2
2

+ λ1(x)u
+ + λ2(x)u

− dx

over the set {u : u− g ∈ H1
0 (B1)}, with its corresponding Euler-Lagrange equation

(1.2) ∆u = λ1(x)χ{u>0} − λ2(x)χ{u<0} in B1.

The existence and uniqueness of minimizers of (1.1) and solutions of (1.2) can be
obtained by standard methods, see [Wei01]. In general, if g attains both positive
and negative values, ∆u will have a jump where u changes sign, i.e. across the set
∂{u 6= 0}. We call this set the free boundary, and also we denote its two parts
∂{u > 0} and ∂{u < 0} by Γ+(u) and Γ−(u) respectively. The main purpose of
the present paper is to study the regularity of u and Γ(u). Note that in the sets
{u > 0} and {u < 0} the regularity of u is completely determined by the regularity
of the coefficients λi. The difficulty that arises, when we have coefficients that are
not Lipschitz continuous, is that we cannot directly apply the monotonicity formula
from [CJK02]. In the absence of a monotonicity formula, we use a scaling argument
combined with the classification of certain global solutions to obtain C1,1-estimates.
These arguments are elaborated versions of those introduced in [EL08]. Once the
optimal regularity is settled we exploit some stability properties with respect to the
coefficients to prove that the free boundary is the union of two Reifenberg vanishing
sets near so-called branching points. The stability arguments here are based on the
ideas in [Bla01].
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Figure 1. x1 a positive one-phase point, x2 a negative one-phase
point, x3 a branching point and x4 a non-branching two-phase
point.

1.2. Known results. The one-phase case, i.e. when the minimizer is assumed not
to change sign, is the classical obstacle problem and it has been well studied before.
In [Caf98] it is proved that minimizers are locally C1,1 and that the free boundary
is locally a C1,α-graph if the coefficients are Lipschitz and if the zero set satisfies a
certain thickness assumption. Later, in [Bla01] Blank proved that minimizers are
locally C1,1 and that the free boundary is locally a C1-graph under similar thickness
assumptions when the coefficients are only assumed to be Dini continuous.

The two-phase case (when the minimizer is allowed to change sign) has also
been studied before under stronger assumptions on the coefficients. In [Ura01] the
C1,1-regularity of minimizers is proved when the coefficients are assumed to be
constant. This result was extended in [Sha03] to the case when the coefficients
are assumed to be Lipschitz. Moreover, in [SUW04] global solutions of (1.2) is
considered and classified in the case of constant coefficients. This result is then
later used in [SUW07] to prove that in the case of Lipschitz coefficients, the free
boundary is the union of two C1-graphs close to branching points, i.e. points close
to the set ∂{u > 0} ∩ ∂{u < 0} ∩ {|∇u| = 0}.
1.3. Main result. The main result of this paper is that solutions to (1.2) are
locally C1,1 if the coefficients λi are Hölder continuous and that the free boundary,
Γ(u), is the union of two Reifenberg vanishing sets close to branching points under
the weaker assumption that the λi:s are merely continuous. In order to state our
main theorems in their precise forms we must define the class of solutions that we
consider in this paper.

Definition 1.1. We say u ∈ P1(M,ω) if

(1) ∆u = λ1(x)χ{u>0} − λ2(x)χ{u<0} in B1, in the sense of distributions.
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(2) supB1
|u| ≤M .

(3) inf λi ≥ 1/M > 0.
(4) λ1 and λ2 are uniformly continuous with ω as modulus of continuity.
(5) 0 ∈ ∂{u > 0} ∩ ∂{u < 0} ∩ {|∇u| = 0}.

Our two main theorems are the following:

Theorem 1.2. Assume that u ∈ P1(M,ω) where ω(r) ≤Mrα for some 0 < α < 1.
Then there are r0 and C depending on M , λi and the dimension such that

||u||C1,1(Br0 ) ≤ C.

Theorem 1.3. Assume u ∈ P1(M,ω). Then there are r0 and γ depending on M
and ω such that |∇u(y)| ≤ γ and dist(y,Γ±(u)) ≤ γ implies that Γ(u)+ ∩ Br0(y)
and Γ(u)−∩Br0(y) are both Reifenberg vanishing sets. In particular they both admit
Hölder parameterizations.

Remark 1.4. Interesting here is to note that the assumptions on ω are weaker
in Theorem 1.3 than in Theorem 1.2. The reason for that is that there are some
technical difficulties in Proposition 5.1 in Appendix which we need in order to obtain
C1,1-estimates. See also Remark 2.9.

2. C1,1-estimates

In this section we prove Theorem 1.2. This is done by first proving a weaker
type of quadratic growth away from branching points. The method used here is a
contradictory scaling argument very similar to the one used in [EL08]. After that
we use some properties of coercive elliptic systems to obtain C1,1-regularity close
to points on the free boundary where the gradient does not vanish. Gluing these
pieces together we finally obtain C1,1-estimates close to branching points.

2.1. Nondegeneracy. Here we present the well known-result that the solutions
does not grow too slow around free boundary points; the proof is standard.

Proposition 2.1. Let u ∈ P1(M,ω). Then there is a constant c depending on the
dimension and λi such that for all y ∈ Γ(u) ∩B1

sup
Br(y)∩{u>0}

u ≥ cr2

and

inf
Br(y)∩{u<0}

u ≤ −cr2,

for r < dist(y, ∂B1).

Proof. Let y ∈ {u > 0} ∩ B1 and w(x) = u(x) − t|x − y|2 and r so small that
Br(y) ⊂ B1. Then ∆w ≥ 0 in {u > 0} ∩ B1 if t = 2n inf λ1. Since w(y) > 0 and
w is subharmonic, there is xy ∈ ∂(Br(y) ∩ {u > 0}) such that w(xy) > 0. Now on
Γ+(u) we have w ≤ 0, hence xy ∈ ∂Br(y) ∩ {u > 0}. In other words

sup
∂Br(y)∩{u>0}

w > 0.

Taking z ∈ Γ+(u) we can find a sequence of points yn ∈ {u > 0} such that yn → z,
then by continuity we obtain

sup
Br(z)∩{u>0}

w ≥ 0,

which implies the desired result. On Γ−(u) we can argue similarly. �
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2.2. Classification of global solutions of a related problem. In order to go
through with our scaling argument we will need a classification of global solutions
to the equation

∆u = λ1χ{u>−ax1} − λ2χ{u<−ax1},

where λ1 and λ2 are constants. One major difference here is that one cannot
apply the monotonicity formula from [ACF84] to the pair of functions (∂eu)

± for
all directions e, only for those directions orthogonal to e1. Of course, translating
the function u linearly with ax1 yields a global solution to the two-phase obstacle
problem. However the gradient will not vanish at the origin, so we cannot apply
the classification from [SUW04] directly.

Lemma 2.2. Let u be a solution of the following problem

(2.1)







∆u = λ1χ{u>−ax1} − λ2χ{u<−ax1} in R
n,

u(0) = |∇u(0)| = 0,
0 ∈ ∂{u 6= 0},

where a > 0 and λ1 and λ2 are constants. Assume also that for some C > 0

(2.2) sup
Br

|u| ≤ Cr2

whenever r > 1. Then one of the following hold

(1) u(x) = λ1

2 (x+
1 )2 − λ2

2 (x−1 )2,

(2) u(x) = λ1

2 (x+
1 )2,

(3) u(x) = −λ2

2 (x−1 )2.

In particular

sup
B1

|u| ≤ 1

2
max(λ1, λ2).

Remark 2.3. A more general form of this lemma with right hand side equal to
λ1χ{u>−L(x)} − λ2χ{u<−L(x)} with L being a linear function can easily be obtained
by a change of coordinates.

Proof. We observe that

∆(∂eu) = ∂e∆u =
λ1 + λ2

|∇(u+ ae1)|
(∂eu+ ae · e1)Hn−1⌊{u = −ax1}.

Therefore with v± = (∂eu)
± for e · e1 = 0 we have

(1) v+ · v− = 0,
(2) ∆(v±) ≥ 0,
(3) v±(0) = 0.

Hence, the Alt-Caffarelli-Friedman monotonicity formula applies to v±. It states
that with

φ(r, v) =
1

r4

∫

Br

|∇v+|2
|x|n−2

dx

∫

Br

|∇v−|2
|x|n−2

dx

we have φ′(r, v) ≥ 0 for all r. Moreover, if φ′(r, v) = 0 for all r then one of the
functions v± vanishes.

Define ur(x) = u(rx)/r2. Now we wish to study the behaviour of ur as r tends
to ∞ and 0. Since the Laplacian is invariant under the quadratic scaling, ∆ur is
uniformly bounded independently of r. This allows us to extract a subsequence rj
tending either to 0 or to ∞ such that urj converges to a limit in C1,α

loc ∩W 2,p
loc for

any 0 < α < 1 and 1 < p <∞.
We first consider the case when r → ∞: We claim that urj tends to u∞ which

is a global solution to the ordinary two-phase obstacle problem.
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Indeed, in {u∞ > 0} we have ∆u∞ = λ1 and in {u∞ < 0}, ∆u∞ = −λ2.
Therefore it remains to determine what happens in the set {u∞ = 0}. Now we
can use the implicit function theorem to conclude that {u∞ = 0} ∩ {|∇u∞| 6= 0}
is locally a C1-surface and thus it has zero measure. When |∇u∞| = 0 we use that

u∞ ∈W 2,1
loc and obtain ∆u∞ = 0 a.e. in this set.

By the C1,α-convergence it follows that u∞(0) = |∇u∞(0)| = 0 and also by
Proposition 2.1 the origin must be a two-phase point also for u∞. Hence, by the
classification done in [SUW04] u∞ is a one-dimensional solution in some direction
ν and must be of form (1). Therefore, for any direction e we have φ(1, ∂eu∞) = 0
which together with the ACF monotonicity formula mentioned above implies that
φ(r, ∂ev) = 0 for all r > 0 and e orthogonal to e1. Hence ∂eu ≥ 0 (or ≤ 0) for
any direction e such that e · e1 = 0. There are (n − 1) such directions, and thus
by calculus we can reduce the dependence of u in those directions to one. So u can
only depend on two directions, say e1 and e2. Moreover we know that ∂e2u ≥ 0.

Now we consider instead the case when r → 0: We know that urj solves

∆urj = λ1χ{urj
>−(a/rj)x1} − λ2χ{urj

<−(a/rj)x1}.

In {urj > −(a/rj)x1}, ∆urj = λ1 and we can use standard estimates to conclude
that there urj ∈ C∞ uniformly. This is also true in the set {urj < −(a/rj)x1}.

Now consider the remaining set, {urj = −(a/rj)x1}. We know that we have
quadratic growth and therefore urj is bounded on every compact set. Thus in
every compact subset of {x1 > 0} we have that urj > −a/rjx1 for rj small enough.
Using the same argument in {x1 < 0} with {urj < −(a/rj)x1} we can therefore
conclude that urj → u0, where

∆u0 = λ1χ{x1>0} − λ2χ{x1<0}.

Let h be the one-dimensional solution in the x1-direction given by

h(x) =
λ1

2
(x+

1 )2 − λ2

2
(x−1 )2.

Then ∆(u0 −h) = 0. Moreover u0 has quadratic growth at infinity, 0 = |∇u0(0)| =
u0(0) and 0 ∈ ∂{u0 6= 0}. This implies that u0 − h is a quadratic harmonic
polynomial of two variables P (x1, x2) and therefore P is of the form C(x2

1 − x2
2) +

Ax1x2. Since we also know that ∂e2u0 ≥ 0 we must have

0 ≤ ∂e2P (x1, x2) = −2Cx2 +Ax1

which can only be true if C = A = 0. Thus we can conclude that P = P (e1) so
P = 0 since it must be quadratic and harmonic. Moreover, the fact that u0 only
depends on x1 and that urj → u0 in C2(Rn \ {x1 = 0}) implies

(2.3) 0 = ∂1∂2u0(x) = lim
rj→0

∂1∂2u(rjx),

for any x 6∈ {x1 = 0}. Assume now that u does really depend on x2. Then we
can apply Hopf’s lemma. We observe that ∂2u(0) = 0 and ∂2u ≥ 0, moreover ∂2u
is harmonic away from the free boundary, which has normal e1. Therefore Hopf’s
lemma says that

lim inf
x→0

∂1∂2u(x) > 0

which contradicts (2.3). Therefore u is one-dimensional and the following hold:

(1) u(x1) = λ1

2 (x+
1 )2 − λ2

2 (x−1 )2,

(2) u(x1) = λ1

2 (x+
1 )2,

(3) u(x1) = −λ2

2 (x−1 )2.
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This is a consequence of solving (2.1) in one dimension:

u′′ = λ1χ{u>−ax1} − λ2χ{u<−ax1} in R.

In {u > −ax1} every solution is of the form u(x1) = λ1x
2
1/2 + Ax + B. Using the

continuity we know that u and u′ tends to zero as x1 → 0+, thus A = B = 0 and
u(x1) = λ1x

2
1/2 is the only solution. The same arguments applied in {u < −ax1}

implies that u(x1) = −λ2x
2
1/2 is the only possible solution. In the remaining set

{u = −ax1} we only have the zero solution. The zero solution itself does not
contain a free boundary point at the origin and thus, as stated above we need to
combine the zero solution with at least one of the first two solutions to obtain a
global solution.

�

2.3. Quadratic growth. Now we are ready to prove a certain type of quadratic
growth which validity depends on the modulus of the gradient. Before proving that
we need a result that says that the gradient have to vanish on the free boundary
for global solutions having one-phase points.

Lemma 2.4. Let λ1 and λ2 be constants. Suppose u satisfies

(1) supBρ
|u| ≤ Cρ2 for ρ > 1,

(2) ∆u = λ1χ{u>0} − λ2χ{u<0} in R
n,

(3) 0 ∈ Γ+(u) \ Γ−(u),

for some constant C. Then |∇u| = 0 on Γ(u).

Proof. If the statement of the lemma does not hold then there must be a point
y ∈ Γ(u) where the gradient does not vanish. Then y must be a two-phase point.
Since we have a solution to the two-phase problem with constant coefficients the Alt-
Caffarelli-Friedman monotonicity formula applies to w±

e = (∂ev
C
0 )± as in [SUW04].

Now as in Lemma 2.2 we study the limits of the scalings

vj(x) = u(rjx)/r
2
j

for sequences rj → ∞. The functions vj satisfy

(1) supB1
|vj | ≥ c from Proposition 2.1,

(2) supBρ
|vj | ≤ Cρ2 for ρ > 1,

(3) ∆vj = λ1χ{vj>0} − λ2χ{vj<0} in R
n,

(4) 0 ∈ Γ+(vj) \ Γ−(vj).

So as before we have, passing to a subsequence if necessary, that vj → v0 in

C1,α
loc (Rn) where v0 satisfies

(1) supB1
|v0| ≥ c,

(2) supBρ
|v0| ≤ Cρ2 for ρ > 1,

(3) v0(0) = |∇v0(0)| = 0,
(4) ∆v0 = λ1χ{v0>0} − λ2χ{v0<0} in R

n.

Also, since there is a two-phase point y, any such limit v0 must by Proposition 2.1
have a two-phase point at the origin. Hence we can apply the classification of global
solutions from [SUW04] and conclude that it must be one-dimensional. This in turn
implies that the functions φ(r, we) in the monotonicity formula vanishes for all r
and all directions e, which as in Lemma 2.2 gives that u must be one-dimensional.
If u is one-dimensional it is easy to to see that ∇u vanishes on Γ(u). �

Now we can proceed with the growth result.
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Proposition 2.5. Let u ∈ P1(M,ω). For A > 0 there is an ε = εA and a r0 =
r0(A) such that if supω < ε then for any y ∈ B1/4 ∩ ∂{u 6= 0} ∩ {0 < |∇u| < Ar}
we have

Sr(y, u) ≤ CMr2,

for all r < r0. Here

Sr(y, u) = sup
x∈Br

|u(y + x) −∇u(y) · x|

and C depends on λi and the dimension.

Proof. We argue by contradiction. Assume that uj ∈ P1(M,ω) with supω < εj → 0
so that the statement of the proposition fails for uj . Then for a subsequence, again
labelled uj , we know that uj converges to a solution u0 of the two-phase obstacle
problem with constant coefficients. For this problem there are local C1,1-estimates
(see [Sha03] and [Ura01]). Therefore Sr(y, u0) ≤ C1(λi(0))Mr2 for any y ∈ B 1

4
and

any r ≤ 1/4. This implies
Sr(y, uj) ≤ 2MC1r

2

for j large enough at least when r = 1/4. For any sequence yj ∈ B 1
4
∩ ∂{uj 6= 0}

and for a constant C > 2C1 to be chosen later define

rj = sup{r : Sr(yj , uj) > 2CMr2}.
If the assertion fails for C then there is a convergent sequence yj → y0 such that
rj = rj(yj) → 0 (this is because uj → u0, where u0 is a solution to the two-phase
obstacle problem with constant coefficients). Moreover, we know that rj ≤ 1/4.
Let

vj(x) =
uj(rjx+ yj) −∇uj(yj) · rjx

r2j
.

Then

(1) supB1
|vj | = 2CM ,

(2) supBρ
|vj | ≤ 2CMρ2 for ρ > 1,

(3) vj(0) = |∇vj(0)| = 0,
(4) ∆vj = λ1(rjx + yj)χ{vj>−∇u(yj)·x/rj} − λ2(rjx + yj)χ{vj<−∇u(yj)·x/rj} in

B 1
rj

.

Note that |∇uj(yj)|/rj < A, which means that for a subsequence ∇uj(yj)/rj → ν
where |ν| ≤ A. We consider two cases: ν = 0 or ν 6= 0.

Case 1: ν 6= 0. Since |∆vj | is uniformly bounded on B1/rj
this implies that for

a subsequence vj → v0 in C1,α
loc (Rn) ∩W 2,p

loc (Rn) for some function v0 that satisfies

(1) supB1
|v0| = 2CM ,

(2) supBρ
|v0| ≤ 2CMρ2 for ρ > 1,

(3) v0(0) = |∇v0(0)| = 0,
(4) ∆v0 = λ1(y0)χ{v0>−ν·x} − λ2(y0)χ{v0<−ν·x} in R

n.

By Lemma 2.2

sup
B1

|v1| ≤
1

2
max(λ1(y0), λ2(y0)),

which will contradict (1) if 4CM > max(λ1(y0), λ2(y0)).
The second case needs to splitted into two subcases: 1) In the limit v0 has a

two-phase point at the origin or 2) in the limit v0 has a one-phase point at the
origin.
Case 2a: ν = 0 and in the limit we have a two-phase point at the origin. Since
|∆vj | is uniformly bounded on B1/rj

this implies that for a subsequence vj → v0

in C1,α
loc (Rn) for some function v0 that satisfies
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(1) supB1
|v0| = 2CM ,

(2) supBρ
|v0| ≤ 2CMρ2 for ρ > 1,

(3) v0(0) = |∇v0(0)| = 0,
(4) ∆v0 = λ1(y0)χ{v0>0} − λ2(y0)χ{v0<0} in R

n,

(5) 0 ∈ Γ+(v0) ∩ Γ−(v0).

Now we can apply the classification of global solutions done in [SUW04] and obtain

sup
B1

|v0| ≤ max(λ1(y0), λ2(y0)),

which will contradict (1) if 2C > max(λ1(y0), λ2(y0)).

Case 2b: ν = 0 and in the limit we have a one-phase point at the origin. We
treat the case when this is a positive one-phase point. As before we have vj → v0
in C1,α

loc (Rn) for some function v0 which now will satisfy

(1) supB1
|v0| = 2CM ,

(2) supBρ
|v0| ≤ 2CMρ2 for ρ > 1,

(3) v0(0) = |∇v0(0)| = 0,
(4) ∆v0 = λ1(y0)χ{v0>0} − λ2(y0)χ{v0<0} in R

n,

(5) 0 ∈ Γ+(v0) \ Γ−(v0).

By Lemma 2.4 this implies that ∇v0 vanishes on Γ(v0). Hence v±0 are solutions to
the one-phase problem, i.e. to the obstacle problem, which in turn implies that we
have

∆v+
0 = λ1(y0)χ{v+0 >0} in R

n,

and
∆v−0 = λ2(y0)χ{v−0 >0} in R

n.

Moreover, we know from (5) that 0 ∈ Γ(v0). Then Lemma 2.2 from [Bla01] applies
when |v0| is considered to be a solution in B2. This gives

sup
B1

|v0| ≤ C′(λ1(y0) + λ2(y0)),

where C′ depends only on the dimension. From (1) we know

sup
B1

|v0| = 2CM.

This is contradiction if C is chosen big enough.
�

Proposition 2.5 only gives estimates for points outside a special neighborhood of
the free boundary. In order to control the growth around free boundary where the
gradient does not vanish, we need the following proposition.

Proposition 2.6. Let u ∈ P1(M,ω) where ω(r) ≤Mrα. Then there are constants
t0 and C depending on M and the dimension such that

||u||C1,1(Bt0|∇u(y)|(y)) ≤ C

for all y ∈ Γ(u) ∩ {0 < |∇u(y)| ≤ r0}, where r0 = r0(1) is from Proposition 2.5.

Proof. Take y ∈ Γ(u) ∩ {|∇u| > 0} and define ry = |∇u(y)|. Let

v(x) =
u(ryx+ y)

r2y
.

Then Proposition 2.5 along with simple calculations give

(1) ∆v(x) = λ1(ryx+ y)χ{v>0} − λ2(ryx+ y)χ{v<0},
(2) supB1

|v| ≤ CM for ry < r0,
(3) |∇v(0)| = 1,
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(4) 0 ∈ Γ+(v) ∩ Γ−(v).

By Proposition 5.1 in Appendix this implies that ||v||C1,1(Bt0 ) ≤ C, which after
rescaling implies the desired result. �

2.4. C1,1-estimates. The result in the previous section actually implies local C1,1-
estimates under the assumption that the functions λi are C1,1-potentials, that is,
there are functions fi ∈ C1,1 such that λi = ∆fi which is of course the case if the
λi:s are supposed to be Cα. First we need the following lemma.

Lemma 2.7. Suppose that ∆v = ∆ψ in B2R and ψ ∈ C1,1(B2R), then

||D2v||L∞(BR) ≤ C

( ||v||L∞(B2R)

R2
+ ||D2ψ||L∞(B2R)

)

,

where C depends only on the dimension.

Proof. Put w = v − ψ − x · ∇ψ(0) − ψ(0). Then w is harmonic in B2R and from
classical estimates for harmonic functions we have

sup
BR

|D2w| ≤ C
supB2R

|w|
R2

≤ C

(

supB2R
|v|

R2
+ 4||D2ψ||L∞(B2R)

)

.

But v = w + ψ and thus |D2v| ≤ |D2w| + |D2ψ| which leads to

||D2v||L∞(BR) ≤ ||D2w||L∞(BR) + ||D2ψ||L∞(BR)

≤ C

( ||w||L∞(B2R)

R2
+ ||D2ψ||L∞(B2R)

)

.

�

Proposition 2.8. Let u ∈ P1(M,ω) with ω(r) ≤ Mrα. Then there are constants
ε, r1 such that supω < ε implies u ∈ C1,1(Br1/2) with

||u||C1,1(Br1/2) ≤ C,

where C depends on M , λi and the dimension.

Proof. Let ε be so small that Proposition 2.5 holds with r0 = r0(1). Take x0 ∈ Br1/2
with r1 < r0 so small that |∇u| < r0 in Br1 , and let d = dist(x0,Γ(u)). Take
y ∈ ∂Bd(x) ∩ Γ(u). Let v(x) = u(x) −∇u(y) · x. Take t0 as in Proposition 2.6 and
apply Proposition 2.5 to obtain

sup
B2d/t0

(y)

|v| ≤ CM4d2/t20,

whenever |∇u(y)| ≤ 2d/t0 and thus also

(2.4) sup
Bd(y)

|v| ≤ CM4d2/t0 = C′Md2

for C′ = 4C/t20 whenever |∇u(y)| ≤ 2d/t0. Now if |∇u(y)| > 2d/t0 then since
|∇(y)| < r0, Proposition 2.6 implies that u ∈ C1,1(B2d(y)) and therefore we also
have (2.4) in this case.

Since ∆v equals either λ1 or λ2 in Bd(x) we can use Lemma 2.7 to obtain

||D2v||L∞(Bd/2(x0)) ≤ C

( ||v||L∞(Bd(x0))

d2
+M

)

.

Using (2.4) and observing that D2v = D2u we get

||D2u||L∞(Bd/2(x0)) ≤ C (C′M +M)) .

�

Rescaling this result we obtain the correct regularity without the restriction on
the oscillation and we can then prove Theorem 1.2.
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Proof of Theorem 1.2. Take ρ so small that

sup
s<ρ

ω(s) < ε,

where ε is taken so that Proposition 2.8 is valid. Define

v(x) =
u(ρx)

ρ2
.

Then v ∈ P1(M/ρ2, ω(ρ·)). Therefore we can apply Proposition 2.8 to get

||v||C1,1(Br1/2) ≤ C/ρ2,

which is the same as

||u||C1,1(Br1ρ/2) ≤ C/ρ2.

Obviously ρ does only depend on the modulus of continuity of the ω, the dimension
and M . �

Remark 2.9. We wish to mention here that the authors strongly believe that The-
orem 1.2 is true under the weaker assumption that ω satisfies the Dini condition.
The problem here is the proof of Proposition 2.6 which uses Proposition 5.1. There
we invoke Theorem 9.3 in [ADN64] which in turn requires Cα-regularity of the coef-
ficients. Probably this theorem is possible to extend to the case where the coefficients
are only Dini continuous, which then would imply that Theorem 1.2 is true under
the weaker assumption.

3. Partial regularity of the free boundary

In this section we prove that the free boundary is the union of two Reifenberg
vanishing sets near so called branching points. We use arguments similar to those
in [Bla01]. First we start out with some comparison results which allows us to
estimate distances between different free boundaries.

3.1. Stability results.

Proposition 3.1. Let u, v ∈ P1(M,ω) with coefficients λi respectively γi and u = v
on ∂B1. Assume moreover that λ1 ≤ γ1 and λ2 ≥ γ2. Then u ≥ v in B1.

Proof. We compare ∆u and ∆v in the set {u < v}.
(1) When v < 0 then also u < 0. Therefore ∆u = −λ2 ≤ −γ2 = ∆v.
(2) When v > 0 then ∆v = γ1 ≥ λ1 = max(0, λ1,−λ2) ≥ ∆u.
(3) When v = 0 then u < 0 and so ∆v = 0 ≥ −λ2 = ∆u.

Hence ∆u ≤ ∆v in {u < v} ∩B1 and therefore {u < v} = ∅. �

Proposition 3.2. Let u and uε be the solutions of

∆u = λ1χ{u>0} − λ2χ{u<0} in B1,

and

∆uε = (λ1 + ε)χ{uε>0} − (λ2 − ε)χ{uε<0} in B1,

with u = uε = g on ∂B1 where Γ±(u) ∩ B1 and Γ±(uε) ∩ B1 are all C1-graphs.
Then

dist(Γ±(u) ∩B1,Γ
±(uε) ∩B1) ≤ C

√
ε,

where C depends on the C1-norms of Γ±(u) ∩B1 and Γ±(uε) ∩B1.
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Proof. We treat the case ε > 0 and for Γ+(u) and Γ+(uε), the other cases can be
treated similarly.

By Proposition 3.1 we have uε ≤ u. Now we claim that u+ εv ≤ uε in B1 where
v is the solution to ∆v = 1 in B1 with zero boundary data on ∂B1. Assume that
g(x0) = u(x0) + εv(x0) − uε(x0) > 0 for some x0 ∈ B1. Then we have the three
different cases:

(1) u(x0) > 0 then ∆g(x0) = λ1 + ε− ∆uε(x0) ≥ 0.
(2) u(x0) = 0 then we must have uε(x0) < 0 and so ∆g(x0) = λ2.
(3) u(x0) < 0 then again uε(x0) < 0 and so ∆g(x0) = −λ2 + ε+ λ2 − ε = 0.

So a maximum must be attained at x0 ∈ ∂B1 but there g = 0. Hence g ≤ 0. Since

v(x) = ε
|x|2 − 1

2n

this implies that uε ≥ −Cε+ u. Also, due to the fact that Γ+(u) is a C1-graph we
know that u(x) ≥ C′(dist(x,Γ+(u)))2 which gives uε(x) ≥ −Cε+C′ dist(x,Γ+(u))2

and thus uε is positive if dist(x,Γ+(u)) ≥ C′′√ε. Obviously uε(x) ≤ 0 for any x
such that u(x) ≤ 0. This yields the desired result. �

Remark 3.3. The result corresponding to Theorem 5.4 in [Bla01] we cannot match.
There one obtains linear stability but we can only prove stability of order

√
ε.

3.2. Main result.

Definition 3.4. (Reifenberg-flatness) A compact set in R
n is said to be δ-Reifenberg

flat if for any compact set K ⊂ R
n there exists an RK > 0 such that for every

x ∈ K ∩ S and every r ∈ (0, RK ] we have a hyperplane L(x, r) such that

dist(L(x, r) ∩Br(x), S ∩Br(x)) ≤ 2rδ.

We define the modulus of flatness as

θK(r) = sup
0<ρ≤r

(

sup
x∈S∩K

dist(L(x, ρ) ∩Bρ(x), S ∩Bρ(x))
ρ

)

.

A set is called Reifenberg vanishing if

lim
r→0

θK(r) = 0.

Then we have the following result:

Proposition 3.5. There are ρ, r0 and γ such that

Γ±(u) ∩ {|∇u(y)| < σρ/2} ∩ {dist(y,Γ±(u)) < σρ/2}
are Reifenberg vanishing. Here σ and r0 is taken as in [SUW07].

Proof. Take a sequence of points yk → y0 such that |∇u(yk)| ≤ σrk/2 and dist(yk,Γ
±(u)) <

σrk/2 with rk → 0. Consider the functions

vk(x) =
u(rkx+ yk)

r2k
.

Then from Lemma 2.2 and Proposition 2.5 we know that vk is bounded, and there-
fore for a subsequence it converges to a limit in C1,α

loc (Rn).
Now let f1

k = supB1
λ1(rkx+yk), f

2
k = infB1 λ2(rkx+yk), g

1
k = infB1 λ1(rkx+yk)

and g2
k = supB1

λ2(rkx+ yk). Take hk to solve

∆hk = f1
kχ{hk>0} − f2

kχ{hk<0} in B1,

and lk to solve

∆lk = g1
kχ{lk>0} − g2

kχ{lk<0} in B1,
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where lk = hk = vk on ∂B1. Then |f ik − gik| ≤ 2ω(rk) and by Proposition 3.1

hk ≥ vk ≥ lk. Moreover, since hk − vk → 0 in C1,α
loc (B1), |∇vk(0)| ≤ σ/2 and

dist(0,Γ±(vk)) ≤ σ/2 we have for k large enough say k > K0, that |∇hk(0)| ≤ σ
and dist(0,Γ±(hk)) ≤ σ. Now we can use Theorem 1.1 in [SUW07] to say that
Γ±(hk) is uniformly C1 for k > K0 in Br0 . The same reasoning applies to lk as
well. This means that there is a plane Pk such that dist(Γ±(hk), Pk) ≤ ρ(rk)rk in
Br0 and the corresponding for lk. Here ρ depends on the C1-norm of Γ±(lk) and
Γ±(hk) respectively. Moreover, by Proposition 3.2 we have

dist(Γ±(hk) ∩Br0 ,Γ±(lk) ∩Br0) ≤ C
√

ω(rk).

Therefore by rescaling we obtain that dist(Γ±(u), Pk) ≤ Cmax(
√

ω(rk), ρ(rk)) in
Br0rk

(yk) for rk < rK0 which implies the result. �

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. That Γ± are Reifenberg vanishing follows immediately from
Proposition 3.5. The second part is then implied by Reifenbegs results in [Rei60]
and the related comments on page 386 in [DKT01]. �

Remark 3.6. The reader might ask what is the weakest condition possible on the
coefficients λi to get the local C1-regularity of the free boundary. In the case of the
obstacle problem (one-phase case) the optimal assumption is that the coefficient is
Dini continuous. In Theorem 7.3 in [Bla01] Blank construct examples where the
free boundary is not C1 when the coefficient has any modulus of continuity which
is not Dini.

In our case, the authors guess that Dini continuity should be the optimal con-
dition. However, the methods employed above cannot be used in order to get C1-
regularity. The reason for that is that for the two-phase membrane with constant
coefficients one do not in general have C1,dini-regularity (see [SUW04] for an ex-
ample), and that is exactly what should need in order to use Theorem 6.7 in [Bla01]
which is the key to get C1-regularity. Of course, it might be possible to obtain this
result using other methods.

Also, one can construct examples where the free boundary is not C1 when the
coefficients have any modulus of continuity which is not Dini. This is done taking
the example described in Remark 1.10 in [BS03], which is based on ideas from
[Bla01], and making an odd reflection with respect to the xn coordinate. Then for
any modulus of continuity ω which is not Dini, we obtain a solution u ∈ P1(M,ω)
where the free boundary is not locally a C1-graph at the origin, even though Γ+(u)
and Γ−(u) will touch tangentially there.

4. Comments and remarks

It is worthwile to mention that the results of this paper (at least Theorem 1.2)
could be obtained for a more general class of elliptic operators with similar methods.

The important thing here is that the operator becomes the Laplace operator or
at least something similar after the blow-ups done in Section 2.3. For more general
linear operators this is of course true. The more intricate case is fully nonlinear
operators F . Then one could consider the perturbed operators Ft = (1− t)∆+ tF .
For t small enough, the methods of this paper would give the desired result. In order
to prove the result for general fully nonlinear operators one would have to iterate
this in some way, which indeed would need some new methods since we strongly use
the classification of global solutions which is not done for fully nonlinear operators.
This in an open problem that the authors hope to be able to treat in the future.
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5. Appendix

Here we present the result needed in the proof of Proposition 2.6.

Proposition 5.1. Assume that v has the following properties:

(1) ∆v = f1χ{v>0} − f2χ{v<0} in B1,
(2) supB1

|v| ≤ C,
(3) |∇v(0)| = 1,
(4) 0 ∈ Γ(v),

where ||fi||Cα ≤ C for some 0 < α < 1. Then there is a small ball Bt0 such that

||v||C1,1(Bt0 ) ≤ C′.

Here C′ and t0 depends on the constant C and the dimension.

Proof. We note that ∆v is bounded in B1, and therefore for any α < 1 we have

||v||C1,α(B1/2) ≤ C′.

This implies that |∇v| > 1/2 in a small ball Bt0 , and therefore by the implicit
function theorem, {v = 0} ∩ Bt0 is a C1,α-surface. In what follows we will apply
the methods from section 3.1 in [KNS78]. We can without any loss of generality
assume that ∇v(0) points in the xn-direction.

We define a new system of coordinates as yk = xk for k < n and yn = v(x). Also
we introduce the functions ψ(y) = xn and φ(y) = ψ(y1, . . . , yn−1,−yn). This is then
a one-to-one transformation of Bt0 onto some open set U in the new coordinates.
Making the necessary computations in the coordinate transformations we obtain
the two following equations for ψ and φ:

{

− 1
ψn

∑

ψkk + 1
ψ2

n

∑

ψkψkn − 1
ψ3

n
(1 +

∑

ψ2
k)ψnn = f1 in {yn > 0} ∩ U

− 1
φn

∑

φkk + 1
φ2

n

∑

φkφkn − 1
φ3

n
(1 +

∑

φ2
k)φnn = f2 in {yn > 0} ∩ U

We also have boundary conditions on S = {yn = 0} ∩ U :
{

φ = ψ
φn = −ψn

This is a system with Cα-coefficients. In order to apply Theorem 9.3 from [ADN64]
we need thus to check that this system is coercive. This can be done in the exact
same way as it is done on page 204 in [KS80]. Then Theorem 9.3 applied with
si = 0, r1 = −2, r2 = −1, l = l0 = 0 and tj = 2 implies that

||ψ||C2,α(U∩{yn>0}∪S), ||φ||C2,α(U∩{yn>0}∪S) ≤ C

and therefore going back to our original coordinates

||u||C1,1(Bt0 ) ≤ C.

�
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