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Abstract

In this note we use a scaling or blow up argument to obtain estimates to
solutions of equations of p-Laplacian type.

1. Introduction

Weak solutions of equation
div(|VulP?Vu) =0, 1<p<oo,

are called p-harmonic. It is known that p-harmonic functions are in C%* for some
a > 0, where for p # 2 one cannot have a > 1 in general; see [3] for sharp regularity
in the planar case. In this note we present a blow up argument and show that if
0 < a < 1 is such that the class of p-harmonic functions are continuously embedded
into C1%, then the only entire p-harmonic functions that grow at infinity slower than
|z|'T* are the linear ones.

We formulate the proof and the growth rate result only in the p-Laplacian setting,
but the argument is more general. The only ingredients required are the following:
there is a class F of functions so that JF contains certainly rescaled versions of
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functions and F can be embedded into C**. Then nonlinear functions in F grow
at least as fast as |z|!Te,

As an application of the growth rate result we show that a nonnegative p-harmonic
function in a half space is actually linear if it vanishes on the boundary of the half
space. This gives an affirmative answer to a query of Mario Bonk, who also found
independently a different proof for this fact.

2. Growth

We prove the following two theorems:

2.1. Theorem. Let u be p-harmonic in R™. There is a number 3 > 0 depending
only on p and n so that if

u(@)] = o(|=["*") as |z — oo,
then u is (affine) linear.

The second is an immediate consequence of the first one.

2.2. Theorem. Let u be p-harmonic in R™. If
u(z)| = o(|z]) as |z| — oo,

then u s constant.

2.3. Remark. It is known that there are no entire harmonic functions (i.e. p = 2)
with noninteger growth rate. That is, if w is harmonic (i.e. 2-harmonic) in R"™ with

lim sup —log |u(m)|

=y €|0,00],

then v is an integer.

If p # 2, the situation is different. Then there are entire p-harmonic functions
whose growth rate v €]1,2[. See Krol’ [4], Tolksdorff [9] or Aronsson’s quasiradial
solutions [2].

Hence theorem 2.1 is optimal.
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PRrROOF OF THEOREM 2.1. Choose a sequence R; — oo and write

S; = sup |u.
B(0,R;)
Then the scaled functions
J Sj

are p-harmonic and |u;| < 1in B(0,1).

By a well known regularity estimate (see e.g. Lewis [5]), there is a constant
B = B(n,p) > 0 so that the C*#(B(0,1)) norms of u; are bounded, independently
of j. Hence the quantities

_ |Duy(x) = Du;(0)] _ B;™ |Du(Ryzx) — Du(0)]

C; -
o P s RaP
are uniformly bounded in B(0,1). Since the growth condition |u(z)| = o(|z[*?)
implies
1+4
li ! = o0,
jo S,
we conclude that
D — Du(0 Du(Rjx) — Du(0
sup | Duly) 3 Ol _ sup | Dul ]—Z) 5 u >|—>0 as j — 00.
yGB(O,%) |y| :EEB(O,%) | jx|

But this implies that
Du(y) = Du(0) forally € R",

and Theorem 2.1 follows. m|

2.4. Remark. Another way to prove Theorem 2.1 for the p-Laplacian goes via
the estimate

osc |Vu| <C sup |Vul <£>a
B(zo,r) B(z0,R) R

that can be found e.g. in [7, Theorem 3.44]. For more general operators the oscilla-

tion estimate might not be available but one can prove the embedding into C** by

other means. We would like to emphasize here that our method works also in those

cases where one can establish bounded embedding to C*® even though there is no

oscillation estimate for the gradient.
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As an application of Theorem 2.1 we prove the following result.

2.5. Theorem. If u is a nonnegative p-harmonic function on a half space H and
u=0 on OH, then u is (affine) linear.

Theorem 2.5 follows by combining the following lemma with Theorem 2.1, when
we observe that u in Theorem 2.5 can be reflected through the hyperplane 0H and

the resulting function is p-harmonic in tho whole space R™ (this can be easily verified
by a direct computation, see [8]).

2.6. Lemma. Letu be a nonnegative p-harmonic function in the upper half sapce
RY = {(z1,22,...,2,) : 2, > 0}.

If w =0 on OR'}, then
u(z)] = O(lz]) as  [z] — oo.

PRrROOF: We first show that there is a constant ¢ = ¢(n,p) > 0 so that

(2.7) u(Re,) < cRu(e,) forall R>2;

here e, = (0,0, ...,0,1) is the nth unit vector in R"™. For this, we write o = Re,, =
2re, and observe that by Harnack’s inequality

u(z) ~ cu(zy) for all z € B(wo,7),

where ¢ = ¢(n,p) > 0. Now, let v be the p-capacitary potential in B(xg, 2r)\ B(zo,7),
Le. )
t(=n)/(p=1) 44

|z —2o
U(l’) - 27"0

f t(1=n)/(p=1) J¢

Then since v is p-harmonic in B(zg, 2r) \ B(xg, ), we have by comparison principle
that )
u(z) > cu(xg)v(z) for all x € B(xg, 2r) \ B(zo,7),
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where ¢ = ¢(n,p) > 0. The claim (2.7) follows from this estimate evaluated at
x = ey, for

2r
f +(1-n)/(p—=1) J¢

2r
vien) H1=n)/(p—1) gy
1

2r—
2r—1
f +(1=n)/(p—=1) J¢

where ¢ = ¢(n,p). The estimate (2.7) is proved.

To complete the proof the lemma, we employ the boundary Harnack principle (see
[1] or [6]) which states that there is a constant ¢ depending on n and p only so that

“;x) < c“(%n) for all z € B(0,2R) NR" and R > 0;

here x, is the nth coordinate of x. Next we combine this with (2.7) and have

u(z) < cu(};:")xn < culey)z, < c|zlule,)
for x € B(0,2R) and R > 2. The lemma follows. m
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