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Abstract

In this note we use a scaling or blow up argument to obtain estimates to
solutions of equations of p-Laplacian type.

1. Introduction

Weak solutions of equation

div(|∇u|p−2∇u) = 0 , 1 < p < ∞ ,

are called p-harmonic. It is known that p-harmonic functions are in C1,α for some
α > 0, where for p 6= 2 one cannot have α ≥ 1 in general; see [3] for sharp regularity
in the planar case. In this note we present a blow up argument and show that if
0 < α ≤ 1 is such that the class of p-harmonic functions are continuously embedded
into C1,α, then the only entire p-harmonic functions that grow at infinity slower than
|x|1+α are the linear ones.

We formulate the proof and the growth rate result only in the p-Laplacian setting,
but the argument is more general. The only ingredients required are the following:
there is a class F of functions so that F contains certainly rescaled versions of
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functions and F can be embedded into C1,α. Then nonlinear functions in F grow
at least as fast as |x|1+α.

As an application of the growth rate result we show that a nonnegative p-harmonic
function in a half space is actually linear if it vanishes on the boundary of the half
space. This gives an affirmative answer to a query of Mario Bonk, who also found
independently a different proof for this fact.

2. Growth

We prove the following two theorems:

2.1. Theorem. Let u be p-harmonic in Rn. There is a number β > 0 depending
only on p and n so that if

|u(x)| = o(|x|1+β) as |x| → ∞,

then u is (affine) linear.

The second is an immediate consequence of the first one.

2.2. Theorem. Let u be p-harmonic in Rn. If

|u(x)| = o(|x|) as |x| → ∞,

then u is constant.

2.3. Remark. It is known that there are no entire harmonic functions (i.e. p = 2)
with noninteger growth rate. That is, if u is harmonic (i.e. 2-harmonic) in Rn with

lim sup
|x|→∞

log |u(x)|
log |x| = γ ∈]0,∞[ ,

then γ is an integer.

If p 6= 2, the situation is different. Then there are entire p-harmonic functions
whose growth rate γ ∈]1, 2[. See Krol’ [4], Tolksdorff [9] or Aronsson’s quasiradial
solutions [2].

Hence theorem 2.1 is optimal.
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Proof of Theorem 2.1. Choose a sequence Rj →∞ and write

Sj = sup
B(0,Rj)

|u| .

Then the scaled functions

uj(x) =
u(Rjx)

Sj

are p-harmonic and |uj| ≤ 1 in B(0, 1).

By a well known regularity estimate (see e.g. Lewis [5]), there is a constant
β = β(n, p) > 0 so that the C1,β(B(0, 1)) norms of uj are bounded, independently
of j. Hence the quantities

Cj(x) =
|Duj(x)−Duj(0)|

|x|β =
R1+β

j

Sj

|Du(Rjx)−Du(0)|
|Rjx|β

are uniformly bounded in B(0, 1
2
). Since the growth condition |u(x)| = o(|x|1+β)

implies

lim
j→∞

R1+β
j

Sj

= ∞ ,

we conclude that

sup
y∈B(0,

Rj
2

)

|Du(y)−Du(0)|
|y|β = sup

x∈B(0, 1
2
)

|Du(Rjx)−Du(0)|
|Rjx|β → 0 as j →∞ .

But this implies that

Du(y) = Du(0) for all y ∈ Rn ,

and Theorem 2.1 follows.

2.4. Remark. Another way to prove Theorem 2.1 for the p-Laplacian goes via
the estimate

osc
B(x0,r)

|∇u| ≤ C sup
B(x0,R)

|∇u|
( r

R

)α

that can be found e.g. in [7, Theorem 3.44]. For more general operators the oscilla-
tion estimate might not be available but one can prove the embedding into C1,α by
other means. We would like to emphasize here that our method works also in those
cases where one can establish bounded embedding to C1,α even though there is no
oscillation estimate for the gradient.
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As an application of Theorem 2.1 we prove the following result.

2.5. Theorem. If u is a nonnegative p-harmonic function on a half space H and
u = 0 on ∂H, then u is (affine) linear.

Theorem 2.5 follows by combining the following lemma with Theorem 2.1, when
we observe that u in Theorem 2.5 can be reflected through the hyperplane ∂H and
the resulting function is p-harmonic in tho whole space Rn (this can be easily verified
by a direct computation, see [8]).

2.6. Lemma. Let u be a nonnegative p-harmonic function in the upper half sapce

Rn
+ = {(x1, x2, . . . , xn) : xn > 0}.

If u = 0 on ∂Rn
+, then

|u(x)| = O(|x|) as |x| → ∞.

Proof: We first show that there is a constant c = c(n, p) > 0 so that

(2.7) u(Ren) ≤ cR u(en) for all R > 2 ;

here en = (0, 0, . . . , 0, 1) is the nth unit vector in Rn. For this, we write x0 = Ren =
2ren and observe that by Harnack’s inequality

u(x) ≈ c u(x0) for all x ∈ B̄(x0, r) ,

where c = c(n, p) > 0. Now, let v be the p-capacitary potential in B(x0, 2r)\B̄(x0, r),
i.e.

v(x) =

2r∫
|x−x0|

t(1−n)/(p−1)dt

2r∫
r

t(1−n)/(p−1)dt

.

Then since v is p-harmonic in B(x0, 2r) \ B̄(x0, r), we have by comparison principle
that

u(x) ≥ cu(x0)v(x) for all x ∈ B(x0, 2r) \ B̄(x0, r) ,
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where c = c(n, p) > 0. The claim (2.7) follows from this estimate evaluated at
x = en, for

1

v(en)
=

2r∫
r

t(1−n)/(p−1)dt

2r∫
2r−1

t(1−n)/(p−1)dt

= 1 +

2r−1∫
r

t(1−n)/(p−1)dt

2r∫
2r−1

t(1−n)/(p−1)dt

≤ 1 +
(r − 1)r(1−n)/(p−1)

(2r)(1−n)/(p−1)

≤ 1 +
r − 1

2(1−n)/(p−1)

≤ c2r = cR ,

where c = c(n, p). The estimate (2.7) is proved.

To complete the proof the lemma, we employ the boundary Harnack principle (see
[1] or [6]) which states that there is a constant c depending on n and p only so that

u(x)

xn

≤ c
u(Ren)

R
for all x ∈ B(0, 2R) ∩Rn

+ and R > 0 ;

here xn is the nth coordinate of x. Next we combine this with (2.7) and have

u(x) ≤ c
u(Ren)

R
xn ≤ c u(en)xn ≤ c |x|u(en)

for x ∈ B(0, 2R) and R > 2. The lemma follows.
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