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Abstract. The first part of this paper is an announcement of a result to ap-
pear. We apply the Aleksandrov reflection to obtain regularity and stability
of the free boundaries in the two-dimensional problem

∆u =
λ+

2
χ{u>0} −

λ−

2
χ{u<0} ,

where λ+ > 0 and λ− > 0 .

In the second part we show that the Kelvin reflection can be used in a similar
way to obtain regularity of the classical obstacle problem

∆u = χ{u>0}

in higher dimensions.
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1. Part I

From the physical point of view, the problem

∆u =
λ+

2
χ{u>0} −

λ−

2
χ{u<0} in Ω, (1.1)

where λ+ > 0, λ− > 0 and Ω ⊂ R
n (cf. Fig. 1) arises for example as the “two-phase

membrane problem”: consider an elastic membrane touching the planar phase
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Free Boundary Points
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Figure 1. Example of a One-Dimensional Membrane

boundary between two liquid/gaseous phases with constant densities ρ1 > ρ2 in a
gravity field, for example water and air. If the constant density ρm of the mem-
brane satisfies ρ1 > ρm > ρ2, then the membrane is being buoyed up in the phase
with higher density and pulled down in the phase with lesser density, so the equi-
librium state can be described by equation (1.1). Notice that (1.1) arises also as
limiting case in the model of temperature control through the interior described
in [7, 2.3.2] as h1, h2 → 0.
Properties of the solution etc. have been derived by the G.S. Weiss in [19] and by
N. Uraltseva in [16]. Moreover, in [15], H. Shahgholian-N. Uraltseva-G.S. Weiss
gave a complete characterization of global two-phase solutions satisfying a qua-
dratic growth condition at the two-phase free boundary point 0 and at infin-
ity. It turned out that each such solution coincides after rotation with the one-

dimensional solution u(x) = λ+

4 max(xn, 0)2 − λ−

4 min(xn, 0)2. In particular this
implies that each blow-up limit u0 at so-called “branch points” (see Fig. 2),
Ω ∩ ∂{u > 0} ∩ ∂{u < 0} ∩ {∇u = 0} , is after rotation of the form u0(x) =
λ+

4 max(xn, 0)2 − λ−

4 min(xn, 0)2.
In this paper we prove (cf. Theorem 1.5) that in two dimensions the free

boundary is in a neighborhood of each branch point the union of (at most) two C1-
graphs. As application we obtain the following stability result: If the free boundary
contains no singular one-phase point for certain boundary data (B0), then for
boundary data (B) close to (B0) the free boundary consists of C1-arcs converging
to those of (B) (cf. Theorem 1.7).

Let λ+ > 0 and λ− > 0 , n ≥ 2, let Ω be a bounded open subset of R
n with

Lipschitz boundary and assume that uD ∈ W 1,2(Ω) . From [19] we know then that
there exists a “solution”, i.e. a function u ∈ W 2,2(Ω) solving the strong equation

∆u = λ+

2 χ{u>0} − λ−

2 χ{u<0} a.e. in Ω, and attaining the boundary data uD in

L2 . The boundary condition may be replaced by other, more general boundary
conditions.
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Figure 2. Example of a Branch Point

The tools at our disposition include two powerful monotonicity formulae.
One is the monotonicity formula introduced in [18] by G.S. Weiss for a class
of semilinear free boundary problems (see also [17]). The second monotonicity
formula has been introduced by H.W. Alt-L.A. Caffarelli-A. Friedman in [1]. What
we are actually going to apply in Theorem 1.4 is a stronger statement than the
one in [1].

For the sake of completeness let us state both monotonicity formulae here.

Theorem 1.1 (Weiss’s Monotonicity Formula). Suppose that Bδ(x0) ⊂ Ω . Then

for all 0 < ρ < σ < δ the function

Φx0
(r) := r−n−2

∫

Br(x0)

(

|∇u|
2

+ λ+ max(u, 0) + λ− max(−u, 0)
)

− 2 r−n−3

∫

∂Br(x0)

u2 dHn−1 ,

defined in (0, δ) , satisfies the monotonicity formula

Φx0
(σ) − Φx0

(ρ) =

∫ σ

ρ

r−n−2

∫

∂Br(x0)

2
(

∇u · ν − 2
u

r

)2

dHn−1 dr ≥ 0 .

For a proof see [18].
In Theorem 1.4 we are going to need the following stronger version of the

Alt-Caffarelli-Friedman monotonicity formula.

Theorem 1.2 (Alt-Caffarelli-Friedman Monotonicity Formula). Let h1 and h2 be

continuous non-negative subharmonic W 1,2-functions in BR(z) satisfying h1h2 = 0

in BR(z) as well as h1(z) = h2(z) = 0 .

Then for

Ψz(r, h1, h2) := r−4

∫

Br(z)

|∇h1(x)|2

|x − z|n−2
dx

∫

Br(z)

|∇h2(x)|2

|x − z|n−2
dx ,
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and for 0 < ρ < r < σ < R, we have Ψz(ρ) ≤ Ψz(σ). Moreover, if equality holds

for some 0 < ρ < r < σ < R then one of the following is true:

(A) h1 = 0 in Bσ(z) or h2 = 0 in Bσ(z),

(B) for i = 1, 2, and ρ < r < σ, supp (hi)∩∂Br(z) is a half-sphere and hi∆hi = 0

in Bσ(z) \ Bρ(z) in the sense of measures.

For a proof of this version of monotonicity see [15]. We also refer to [1], for
the original proof.

It is noteworthy that

Ψz(r, (∂eu)+, (∂eu)−) = Ψ0(1, (∂eur)
+, (∂eur)

−) and Φz(r, u) = Φ0(1, ur),

where

ur(x) =
u(rx + z)

r2
.

It is in fact possible to apply Theorem 1.2 to the positive and negative part
of directional derivatives of u : due to N. Uraltseva, the functions max(∂eu, 0) and
−min(∂eu, 0) are subharmonic in Ω (see Lemma 2 in [16]).

A quadratic growth estimate near the set Ω∩{u = 0}∩{∇u = 0} had already
been proved in [19] for more general coefficients λ+ and λ− , but local W 2,∞- or
C1,1-regularity of the solution has been shown for the first time in [16]. See also
[14]. So we know that

u ∈ W 2,∞
loc (Ω) . (1.2)

The following lemma relates the value of the density of the ACF-monotonicity
formula to the structure of the singularity:

Lemma 1.3. Let u be a solution of (1.1) in B1 and suppose that the origin is a free

boundary point. Then the following statements are equivalent:

1) Either ∇u(0) 6= 0, or limr→0 Ψ0(r, (∂eu)+, (∂eu)−) = 0 for each direction e.

2) Either ∇u(0) 6= 0, or each blow-up limit

u0(x) = lim
m→∞

u(rmx)

r2
m

is after rotation of the form

u0(x) = a1
λ+

4
max(x1, 0)

2 − a2
λ−

4
min(x1, 0)

2

where a1, a2 ∈ {0, 1} and a1 + a2 6= 0.

3) Either ∇u(0) 6= 0, or at least one blow-up limit

u0(x) = lim
m→∞

u(rmx)

r2
m

is after rotation of the form

u0(x) = a1
λ+

4
max(x1, 0)

2 − a2
λ−

4
min(x1, 0)

2
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where a1, a2 ∈ {0, 1}.

4) The origin is not a one-phase singular free boundary point, i.e. no blow-up limit

u0(x) = lim
m→∞

u(rmx)

r2
m

is allowed to be a non-negative/non-positive homogeneous polynomial of degree 2.

Let us now define the class

M∗ := {u : B1(0) → R :

u(x1, . . . , xn) = β1

(

λ+

4
max(x1, 0)

2 −
λ−

4
min(x1 − τ, 0)2

)

+ β2x1,

where τ ∈ [−1, 0], 0 ≤ β1 ≤ a, 0 ≤ β2 ≤ b, 0 < c ≤ β1 + β2,

and β2 6= 0 implies τ = 0}.

(1.3)

The class M is then defined as all rotated elements of M ∗, i.e.

M := {u : B1(0) → R : u = v ◦ U where U is a rotation, v ∈ M ∗}. (1.4)

Observe that singular one-phase solutions are excluded from M .

Theorem 1.4. Let (uα)α∈I be a family of solutions of (1.1) in B1 that is bounded in

W 2,∞(B1), and suppose that 0 ∈ Ω∩ (∂{uα0
> 0} ∪ ∂{uα0

< 0}) for some α0 ∈ I,

and either ∇uα0
(0) 6= 0 or limr→0 Ψ0(r, (∂euα0

)+, (∂euα0
)−) = 0 for each direction

e; this means by Lemma 1.3 that 0 is not a singular one-phase free boundary point.

Define further Sr by

rn−1S2
r (y, uα) =

∫

∂Br(y)

u2
α,

Then, if uα → uα0
in L1(B1) as α → α0, ∂{uα > 0} 3 y → 0 and r → 0, all

possible limit functions of the family

uα(y + r·)

Sr(y, uα)
,

belong to M for some a, b, c as above.

The following theorem contains our main result, i.e. regularity at branch
points. Unfortunately the known techniques seem to be insufficient to do a conclu-
sive analysis at branch points. One reason is that the density of the monotonicity
formula by H.W. Alt-L.A. Caffarelli-A. Friedman takes the value 0 at branch
points.
The situation is complicated by the fact that the limit manifold of all possible
blow-ups at branch points (including the case of varying centers) is not a one-
dimensional or even smooth manifold, but has a more involved structure. Also the
convergence to blow-up limits is close to the branch-point not uniform! Here we use
an intersection-comparison approach based on the Aleksandrov reflection to show
that – although the flow with respect to the limit manifold may not slow down
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when blowing up – the free boundaries are still uniformly graphs (see Proposition
1.6). The approach in Proposition 1.6 uses – apart from the reflection invariance –
very little information about the underlying PDE and so yields a general approach
to the regularity of free boundaries in two space dimensions provided that there
is some information on the blow-up limits.
The Aleksandrov reflection has been recently used to prove regularity in geometric
parabolic PDE ([10], [11], [12]). In contrast to those results, where structural con-
ditions for the initial data are preserved under the flow, our results are completely
local.

Theorem 1.5. Let n = 2, let (uα)α∈I be a family of solutions of (1.1) in B1 that

is bounded in W 2,∞(B1), and suppose that for some α0 ∈ I, a blow-up limit

lim
m→∞

uα0
(rm·)

r2
m

is contained in M∗.

Then, if uα → uα0
in L1(B1) as α → α0, Br0

∩∂{uα > 0} and Br0
∩∂{uα < 0} are

C1-graphs uniformly in α ∈ Nκ(α0) for some r0 > 0 and κ > 0; here the direction

of every graph is the same, and Nκ(α0) is a given open neighborhood of α0.

The crucial tool in the proof of the theorem is the following proposition which
uses an Aleksandrov reflection approach.

Proposition 1.6. Let n = 2, let (uα)α∈I be a family of solutions of (1.1) in B1 that

is bounded in W 2,∞(B1), and suppose that for some α0 ∈ I, a blow-up limit

lim
m→∞

uα0
(rm·)

r2
m

is contained in M∗.

Then, if uα → uα0
in L1(B1) as α → α0, there exist for given ε ∈ (0, 1/8) positive

κ, δ and ρ such that for α ∈ Nκ(α0), y ∈ Bδ ∩ ∂{uα > 0} and r ∈ (0, ρ), the scaled

function

ur(x) =
uα(rx + y)

Sr(y, uα)
(1.5)

satisfies

dist(ur,M
∗) = inf

v∈M∗

sup
B1(0)

|v(x) − ur(x)| < ε.

The idea of the proof is to reflect the solution at a plane as in Fig. 3 and to
compare the reflected solution to the original solution. As a consequence we obtain
the following stability result:

Theorem 1.7. Let Ω ⊂ R
2 be a bounded Lipschitz domain and assume that for

given Dirichlet data uD ∈ W 1,2(Ω) the free boundary does not contain any one-

phase singular free boundary point (cf. Lemma 1.3).



Aleksandrov and Kelvin Reflection and Free Boundaries 7

Reflection Plane

u > 0

u < 0

Approximate F.B.

Approximate Free Boundary

at radius r1

at radius r0

Figure 3. Turning Free Boundary

Then for K ⊂⊂ Ω and ũD ∈ W 1,2(Ω) satisfying sup∂Ω |uD − ũD| < δK , there is

ω > 0 such that the free boundary is for every y ∈ K in Bω(y) the union of (at

most) two C1-graphs which approach those of the solution with respect to boundary

data uD as sup∂Ω |uD − ũD| → 0.

2. Part II

We are going to give a sketch of how a similar approach can be applied to the
classical obstacle problem in higher dimensions.
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The solution of the classical obstacle problem u is non-negative and satisfies

∆u =
1

2
χ{u>0} . (2.1)

Classical results include local C1,1-regularity (see [8]) and non-degeneracy of the
solution. Regularity of the free boundary in higher dimensions has first been proved
by L.A. Caffarelli in [4]. Here we give an alternative proof of the fact that the free
boundary is close to regular points the graph of a differentiable function. To this
end we define the class

M∗ := {u : B1(0) → R : u(x1, . . . , xn) =
1

4
max(x1, 0)

2 }. (2.2)

The class M is then defined as all rotated elements of M ∗, i.e.

M := {u : B1(0) → R : u = v ◦ U where U is a rotation, v ∈ M ∗}. (2.3)

Moreover for any γ ∈ (0, π) the class Mγ is defined as

Mγ := {u : B1(0) → R : u = v ◦ U where U is a rotation,
v ∈ M∗, and supe∈∂B1

| arccos((Ue) · e)| ≤ γ}.
(2.4)

Lemma 2.1. Let u be a W 2,∞(B1)-solution of (2.1). If one blow-up limit u0 of the

blow-up sequence u(x0 + rj ·)/r
2
j as rj → 0 is contained in M then all blow-up

limits of u(xk + rk·)/r
2
k as xk → x0 and rk → 0 are contained in M .

Proof. This follows from the upper semicontinuity of the density x 7→ Φx(0+),

from the consequent homogeneity of blow-up limits of u(xk + rk·)/r
2
k and from

the known fact that each non-trivial homogeneous solution of degree 2 is either

contained in M or a quadratic homogeneous polynomial (cf. [4]). ¤

Theorem 2.2. Let u be a W 2,∞(B1)-solution and suppose that a blow-up limit

lim
m→∞

u(rm·)

r2
m

is contained in M∗.

Then the free boundary ∂{u > 0} is in some open neighborhood of x0 the graph of

a differentiable, Lipschitz continuous function.

Theorem 2.2 follows from the combination of Lipschitz continuity (see the
following Proposition) and flatness (see Lemma 2.1). The following Proposition
based on the Kelvin transform is crucial.

Proposition 2.3. Let u be a W 2,∞(B1)-solution and suppose that a blow-up limit

lim
m→∞

u(rm·)

r2
m
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free boundary

reflection surface

u > 0

u ≤ 0

(0, 0)

Figure 4. Reflection at a sphere cap

is contained in M∗.

Then there exist for ε ∈ (0, 1) positive δ and ρ such that for y ∈ Bδ ∩ ∂{u > 0}

and r ∈ (0, ρ), the scaled function

ur(x) =
u(y + rx)

r2
(2.5)

satisfies

dist(ur,M
γ0) = inf

v∈Mγ0

sup
B1(0)

|v(x) − ur(x)| < ε,

where γ0 = π/2 − 1/10.

Proof. First, by continuity and by Lemma 2.1, for any ε̃ > 0 there are positive κ̃, δ̃

and ρ̃ such that

dist(uρ̃,M
∗) < ε̃ for α ∈ Nκ̃(α0) and y ∈ ∂{uα > 0} ∩ Bδ̃
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and dist(ur,M) < ε̃ for α ∈ Nκ̃(α0), y ∈ ∂{uα > 0} ∩ Bδ̃ and r ∈ (0, ρ̃).

Now if the statement of the theorem does not hold, then there are positive r0 and

a rotation Uθ0
satisfying arccos((Uθ0

e) · e) ≥ π/2 − γ0 − c1ε > 0 as well as

dist(ur0
◦ Uθ0

,M∗) ≤ ε̃;

here c1 is a constant depending on (a, b, λ+, λ−). It is important for what follows

that α and y are the same for ur0
and uρ̃. In the remainder of the proof α and y are

fixed. Let us now take an arbitrary rotation V such that supe∈∂B1
| arccos((V e) ·

e)| ≤ 2(π/2− γ0), let w := uρ̃ ◦ V and define v define by the Kelvin transform (cf.

[13, Theorem 4.13], i.e.

v(x) := |x − 2e1|
2−nw(

x − 2e1

|x − 2e1|2
)

(see Fig. 4). The function v satisfies in B1 the equation

∆v(x) = |x − 2e1|
−n−2χ{v>0} .

By the C1-closeness of uρ̃ to M∗ we know that w ≥ v on ∂(B1(0)∩B1(2e1)). Thus
∫

B1(0)∩B1(2e1)

|∇max(v − w, 0)|2 =

∫

B1(0)∩B1(2e1)

∆(w − v)max(v − w, 0)

=

∫

B1(0)∩B1(2e1)

max(v − w, 0)
(

χ{w>0} − |x − 2e1|
−n−2χ{v>0}

)

≤ 0,

implying that w ≥ v in B1(0) ∩ B1(2e1). Consequently

ur0
≥ |

r0

ρ̃
x − 2e1|

2−nur0
(V (

x − (ρ̃/r0)2e1

|(r0/ρ̃)x − 2e1|2
)) in B1(0) ∩ B1(2e1) ,

a contradiction to

dist(ur0
◦ Uθ0

,M∗) ≤ ε̃

in view of arccos((Uθ0
e) ·e) ≥ π/2−γ0−c1ε > 0 and the arbitrary choice of V . ¤
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