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Abstract

For a given convex ring Ω = Ω2 \ Ω1 and an L1 function f : Ω × R → R+ we show,
under mild assumptions on f , that there exists a solution (in the weak sense) to





∆pu = f(x, u) in Ω
u = 0 on ∂Ω2

u = M on ∂Ω1,

with {x ∈ Ω : u(x) > s} ∪ Ω1 convex, for all s ∈ (0,M).

1 Introduction and statement of the problem

1.1 The mathematical setting

We start with the mathematical setting of the problem. Let us be given two convex
domains Ω1 ⊂⊂ Ω2 ⊂ RN and the function f(x, y). We study the following boundary
value problem:





∆pu = f(x, u) in Ω := Ω2 \ Ω1

u = 0 on ∂Ω2

u = M on ∂Ω1,
(1)
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†Third author was supported by the Swedish Research Council. He also thanks Wolfgang Pauli Institute
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where M is a given constant and ∆p, 1 < p < ∞ is the p-Laplace operator defined by

∆pu := div(|∇u|p−2∇u).

The differential equation in (1) will be understood in the weak sense, i.e. for every
η ∈ C∞0 (Ω)

∫

Ω

|∇u(x)|p−2∇u(x) · ∇η(x)dx = −
∫

Ω

f(x, u(x)) · η(x)dx. (2)

The differential equation in problem (1) is the Euler equation for the following minimiza-
tion problem:





∫

Ω

(
|∇u(x)|p + F (x, u(x))

)
dx → inf

u ∈ K := {v ∈ W 1,p(Ω) : u = 0 on ∂Ω2, u = M on ∂Ω1},
(3)

where

F (x, t) := p ·
∫ t

0

f(x, z)dz.

Our objective is to prove the existence of a solution, with convex level sets, to problem
(1) (with some restrictions on the right hand side of the equation, of course). For our
proof, we require convex solutions to the multi-layer free-boundary problem, which occurs
in fluid dynamics (see [AHPS]). Our solutions are obtained by passing to the limit as
the number oflayers (and free boundaries) becomes infinite.

This approach was realized in [LS], where those authors have proved the existence of
the weak solution with convex level lines (in R2) of the following problem:





∆u = f(u) in Ω := Ω2 \ Ω1

u = 0 on ∂Ω2

u = M on ∂Ω1,
(4)

where Ω1 and Ω2 are as above and the function f satisfies

f ∈ L1(−∞,∞), f(x) ≥ 0, and f(x) = 0 on (−∞, 0).

It should be added that recently, the third author and R. Monneau [MS] have con-
structed a solution u, with non-convex level sets, to the above problem with f ≤ 0 and
smooth.

Definition 1.1 (The class of functions F) We will always assume, unless otherwise
stated, that the function f(x, y) on the right hand side of (1) belongs to the class F of
functions having the following four properties:

(F1): f(x, y) : Ω× R→ R is continuous and f(x, y) ≥ 0 for every (x, y) ∈ Ω× R.
(F2): For every α, β ∈ [0,M ] with α < β, the function:

gα,β(x) :=

(∫ β

α

f(x, y)dy

)− 1
p

is concave in Ω.
(F3): There exists a number C, s.t.

∫ M

0

(
sup
x∈Ω

f(x, y)
)

dy ≤ C.

(F4): For y → 0+, we have

y1−p

(
sup
x∈Ω

f(x, y)
)
→ 0.
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1.2 Main result

The body of this paper is devoted to the proof of the following result:

Theorem 1.2 Let M > 0 be a given constant, and let f(x, y) ∈ F . Then there exists a
weak solution u(x) of Problem (1) with convex level sets, for which

0 ≤ u(x) ≤ M, x ∈ Ω.

In addition, if f(x, y) is non-decreasing function with respect to its second argument,
then the solution is unique.

We remark that an alternate uniqueness result not requiring the monotonicity of f
relative to y appears in Section 5.

The continuity of f(x, y) and the last two assumptions in Definition 1.1 of the class F
are actually not critical to the validity of our convex existence results, although they fa-
cilitate the proof. In fact Theorem 1.2 directly generalizes by an approximation argument
(see [DPS], Section 3) to the following result:

Theorem 1.3 The assertion of Theorem 1.2 continues to hold when f(x, y) ∈ F ′, where
F ′ denotes the closure of F in ÃL1.

We observe that F ′ consists of the L1 functions f(x, y) : Ω× R→ R with properties
(F1) and (F2).

Example. The above existence theory applies to any function of the form

f(x, y) =
n∑

i=1

fi(x)φi(y) ∈ L1(Ω),

where the functions fi(x) : Ω → R, φi(y) : R → R are all non-negative, and (fi(x))−
1
p

are concave in Ω.
To show this, it suffices to show that if g, h are non-negative L1 functions and satisfy

the concavity condition F2, then so does f = (g + h). Observe that a sufficiently
regular function g satisfies the concavity condition F2 if and only if gg′′ ≥ C(g′)2, where
C = (1 + (1/p)) and g′ and g′′ refer to 1st and 2nd order directional derivatives at any
point and in any direction. Thus, if f, g are sufficiently regular, then

ff ′′ = (g + h)(g′′ + h′′) = gg′′ + gh′′ + hg′′ + hh′′ = (1 + (h/g))gg′′ + (1 + (g/h))hh′′

≥ C((1 + (h/g))(g′)2 + (1 + (g/h))(h′)2 ≥ C((g′)2 + 2g′h′ + (h′)2) = C(f ′)2,

where we have used the fact that 2f ′g′ ≤ (h/g)(g′)2 +(g/h)(h′)2. Now an approximation
argument gives the result for non-negative L1-functions.

2 The multilayer free boundary problem

We start with the following multilayer free boundary problem.
Let T = {t0, t1, ..., tn} be a partition of [0,M ], i.e. 0 = t0 < t1 < ... < tn = M , and

let τi = M − ti, so that M = τ0 > τ1 > · · · > τn = 0. Also let

F (x, t) := p ·
∫ t

0

f(x, z)dz.

We consider the following (n− 1)-layer problem:
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Problem 2.1 Find convex domains K1,K2, ..., Kn−1 such that

K0 ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ .... ⊂⊂ Kn−1 ⊂⊂ Kn,

where K0 := Ω1,Kn := Ω2, with the property that the p-capacitary potentials ui for each
annular convex region Ki \Ki−1 satisfies a nonlinear joining Bernoulli condition

|∇ui(x)|p− |∇ui+1(x)|p =
1

p− 1
[F (x, τi−1)−F (x, τi)] on ∂Ki, i = 1, . . . , n− 1. (5)

By p-capacitary potential of the annular region Ki \Ki−1 we mean the solution of the
following Dirichlet problem





∆pui = 0 in Ki \Ki−1

ui = τi−1 on ∂Ki−1

ui = τi on ∂Ki.
(6)

Theorem 2.2 For every partition T of [0,M ] and every function f(x, y) ∈ F Problem
2.1 has a (Lipschitz) solution, where the joining condition (5) is satisfied strongly.

Remark We will define the function uT (x) : Ω → R by

uT (x) := ui(x), x ∈ Ki \Ki−1.

Proof of Theorem 2.2
We only need to verify that if f(x, y) ∈ F and α, β ∈ [0,M ] with α < β, then the

function q(x, y), defined by

q(x, y) :=

(
1

p− 1

∫ β

α

f(x, z)dz + yp

) 1
p

(7)

satisfies conditions (A1)-(A4) of Definition 2.3 in the paper [AHPS], which are the fol-
lowing:

(A1): q is continuous and ∃ c0 > 0 such that q(x, 0) ≥ c0 for all x ∈ Ω,

(A2): q is non-decreasing with respect to second argument,

(A3): q satisfies the following concavity property: x 7→ 1
q(x, h(x))

is concave whenever

h is a given function such that 1/h is concave, and

(A4): for any given value y0 > 0, there exist constants 0 < C1 < C2 such that C1 ≤
(q(x, y)/y) ≤ C2, uniformly for all x ∈ Ω and all y ≥ y0.

The conditions (A1) and (A2) are obvious, the condition (A3) can be easily verified
if we use Lemma 2.1 of the above mentioned paper and the concavity property (F2) of
f ∈ F . The last condition (A4) follows from the fact that

q(x, y)
y

→ 1, y → +∞ uniformly in Ω.

3 Passage To Limit

For a partition T = {t0, t1, ..., tn} we denote |T | := max{ti+1 − ti : i = 0, 1, ..., n− 1}.
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Theorem 3.1 For a given convex annular domain Ω := Ω2\Ω1, there exist a continuous,
(strictly) increasing function ϕ(s) : [0,∞) → R with ϕ(0) = 0, and a strictly-positive
function P (x) : Ω → R, such that for any partition T of [0, M ] with |T | sufficiently small,
and any solution uT (x) of the multilayer free boundary problem (2.1), corresponding to
T , we have

|∇uT (x)| ≤ ϕ(dist(x, ∂Ω1)) + |T |
dist(x, ∂Ω1)

(8)

and
|∇uT (x)| ≥ (P (x)− |T |)dist(x, ∂Ω2), (9)

both wherever ∇uT (x) exists.

Proof. We break the proof into the following 5 steps.
Step 1. (Estimates for a family of multilayer subsolutions) Let the function V (x)
solve the Dirichlet problem





∆pV (x) = 0 in Ω
V (x) = 0 on ∂Ω1

V (x) = 1 on ∂Ω2.
(10)

For any ρ ∈ (0, 1), we define

Vρ(x) :=
V (x)

ρ
and Ωρ := {x ∈ Ω : V (x) < ρ}, (11)

observing that Vρ(x) is the p-capacitary potential in the domain Ωρ. Let T = {t0, t1, · · · , tn}
be a given partition of [0,M ], and let A = {α0, α1, . . . αn}, 0 = α0 < α1 < . . . < αn = 1,
denote a partition of [0, 1] which is to be determined. In terms of ρ ∈ (0, 1) and A, we
define the convex domains ωi := Ω1 ∪ {x ∈ Ωρ : Vρ(x) < αi}, i = 0, · · · , n. Let the
functions Ui(x), i = 1, · · · , n, solve the Dirichlet problems:





∆pUi(x) = 0 in ωi \ ωi−1

Ui(x) = τi−1 on ∂ωi−1

Ui(x) = τi on ∂ωi.
(12)

Then it is clear that

Ui(x) = τi−1 +
τi − τi−1

αi − αi−1
· (Vρ(x)− αi−1) , i = 1, · · · , n. (13)

Now (ω1, · · · , ωn−1) will be a subsolution of the multilayer problem relative to the annular
domain Ωρ and corresponding to the given partition T (see [AHPS], section 4.2.2), if the
partition A is chosen such that

|∇Ui(x)|p ≥ |∇Ui+1(x)|p +
F (x, τi−1)− F (x, τi)

p− 1
, x ∈ ∂ωi (14)

for i = 1, · · · , n− 1. Set

δ̂i := ti − ti−1 = τi−1 − τi > 0 and δi := αi − αi−1 > 0

for i = 1, · · · , n. Then we must have

δ̂1 + · · ·+ δ̂n = M, (15)
δ1 + · · ·+ δn = 1. (16)

By (13) and (14), (ω1, · · · , ωn−1) is a subsolution if
(

δ̂i

δi

)p

≥
(

δ̂i+1

δi+1

)p

+
F (x, τi−1)− F (x, τi)
(p− 1) · |∇Vρ(x)|p , x ∈ ∂ωi (17)
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for i = 1, · · · , n − 1, where (1/|∇Vρ(x)|) is uniformly bounded from above in Ωρ. It is
suffices to require for a fixed value ε ≥ 0 that

(
δ̂i

δi

)p

≥
(

δ̂i+1

δi+1

)p

+ ∆i + ε (18)

for i = 1, · · · , n− 1, where

∆i := C0 · sup
x∈Ω

(F (x, τi−1)− F (x, τi)) (19)

and C0 = C0(ρ) = supx∈Ωρ
(1/((p− 1)|∇Vρ(x)|p)). Let the values µi, i = 1, · · · , n be

chosen such that µi − µi+1 = ∆i + ε ≥ 0, i = 1, · · · , n− 1, and µn = 0. Then

0 = µn ≤ µn−1 ≤ · · · ≤ µ1 = CT + (n− 1)ε ≤ C∗ + (n− 1)ε, (20)

where CT :=
∑n−1

i=1 ∆i and C∗ = C∗(ρ) = p · C0(ρ)
∫ M

0
(supx∈Ω f(x, y)) dy (due to

Assumption (F3). To define a subsolution (ω1, · · · , ωn−1) satisfying (17), it suffices to
choose

δi = δ̂i · (µi + λ)−1/p

(
⇐⇒

(
δ̂i

δi

)p

= µi + λ

)
, (21)

for i = 1, · · · , n, where λ > 0 is a constant determined by (15). Namely, the continuous

function ψ(s) :=
n∑

i=1

δ̂i · (µi + s)−1/p is such that ψ′(s) < 0 for all s > 0, ψ(s) → ∞ as

s ↓ 0, and ψ(s) → 0 as s → ∞. Therefore, there exists a unique value λ > 0 such that
ψ(λ) = 1. Assuming (15), we have

1 = ψ(λ) =
n∑

i=1

δ̂i · (µi + λ)−1/p ≤
n∑

i=1

δ̂i · λ−1/p =
M

λ1/p
, (22)

from which it follows that λ ≤ Mp.
Now let us consider the case ε = 0. Due to Property (F4) of f , we can choose a

function z(y) such that t1−pf(x, t) ≤ z(y) for all x ∈ Ω and 0 < t ≤ y, and such that
z(y) → 0+ as y → 0+. For any m = 1, · · · , n, we have ∆i ≤ C0η

p−1z(η)(τi−1 − τi) for
all i = m + 1, · · · , n− 1, where η = τm. Thus

µk =
n−1∑

i=k

∆i ≤ C0η
p−1z(η)

n−1∑

i=k

(τi−1− τi) ≤ C0η
p−1z(η)(τk−1− τn−1) ≤ C0η

pz(η), (23)

for k = m + 1, · · · , n− 1, with η = τm. Thus

1 ≥
n∑

i=m+1

δ̂i

(λ + µi)1/p
≥

n∑

i=m+1

δ̂i

(λ + C0ηpz(η))1/p
=

η

(λ + C0ηpz(η))1/p
. (24)

Thus λ ≥ ηp(1 − C0z(η)), from which it follows that λ ≥ (1/2)ηp, provided η > 0 is
small enough so that 2C0z(η) ≤ 1. By (20), (21), and the fact that (1/2)ηp ≤ λ ≤ Mp,
we have

η

21/p
≤ λ1/p ≤ δ̂i

δi
= (µi +λ)1/p ≤ (CT +(n−1)ε+λ)1/p ≤ (C∗+(n−1)ε+Mp)1/p (25)

for all i = 1, · · · , n, provided that |T | is sufficiently small and 2C0z(η) ≤ 1.
Step 2. (Inner barriers for multilayer solutions) For any ρ ∈ (0, 1) and partition
T = {t0, t1, ..., tn} of [0,M ], we let (ω1(ρ), · · · , ωn−1(ρ)) denote the explicit subsolution
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constructed in Step 1 for the n-layer problem (Problem 2.1) corresponding to the parti-
tion T , the annular domain Ωρ, the function Vρ, and the value ε = 0. Let (K1, · · · , Kn−1)
denote any (fixed) solution of the n-layer problem in the original domain Ω corresponding
to the same partition T . Then

(ω1(ρ), · · · , ωn−1(ρ)) ⊂ (K1, · · · ,Kn−1) (26)

for any ρ ∈ (0, 1), where ”⊂” is interpreted componentwise.
For proof of this claim, let (ω1(ρ, ε), · · · , ωn−1(ρ, ε)) denote the (strict) subsolution

constructed in Step 1 corresponding to the partition T , the annular domain Ωρ, ρ ∈
(0, 1), and a small value ε > 0. There is an r ∈ (0, 1) so small that

(ω1(r, ε), · · · , ωn−1(r, ε)) ⊂ (K1, · · · ,Kn−1)

for all small ε > 0. We assert that the same inequality holds for all r ∈ (0, 1) and all
sufficiently small ε > 0. Clearly, the domains ωi(r, ε) depend continuously on r ∈ (0, 1)
and ε ≥ 0. Therefore, if this claim is false, then for some small ε > 0, there is a
largest value ρ = ρ(ε) ∈ (0, 1) such that (ω1(r, ε), · · · , ωn−1(r, ε)) ⊂ (K1, · · · , Kn−1) for
all r ∈ (0, ρ). Then (ω1(ρ, ε), · · · , ωn−1(ρ, ε)) ⊂ (K1, · · · , Kn−1) by continuity, and there
exists a point x0 ∈ ∂ωi(ρ, ε)∩∂Ki for some i ∈ {1, · · · , n−1}. This leads to the following
contradiction: By maximum and comparison principles for p-harmonic functions, we have

τj ≤ uj(x) ≤ Uj(x) ≤ τj−1

in ωj(ρ, ε) \ Kj−1 for j = i, i + 1, where uj (resp Uj) solves the Dirichlet problem (6)
(resp. (12)) with i := j. Thus

|∇Ui(x0)| ≤ |∇ui(x0)| and |∇Ui+1(x0)| ≥ |ui+1(x0)|

at x0 ∈ ∂ωi(ρ, ε)∩∂Ki, contradicting the fact that (K1, · · · ,Kn−1) is a classical solution
while (ω1(ρ, ε), · · · , ωn−1(ρ, ε)) is a strict C2-subsoluton. Finally, our assertion follows in
the limit as ε → 0+.
Step 3. (Estimates for multilayer inner solutions.) Let uT correspond to any solution
(K1, · · · ,Kn−1) of the n-layer problem (Problem 2.1) in Ω, corresponding to the parti-
tion T . Then for any ρ ∈ (0, 1), there exist positive constants A = A(ρ), B = B(ρ)
(independent of the particular partition) such that

M −B · Vρ(x)− |T | ≤ uT (x) ≤ M in Ωρ. (27)

A ·Wρ(x)− |T | ≤ uT (x) ≤ M in Ωρ, (28)

where we define Wρ(x) := 1− Vρ(x).
Proof: Although our development of the multilayer subsolutions in Step 1 depends
on the partition T , the estimate (25) is independent of T (provided only that |T | is
sufficiently small to permit a suitable choice of η in (25)). Thus, we have

A · δi ≤ δ̂i ≤ B · δi (29)

for i = 1, · · · , n, independent of T (with |T | sufficiently small), where A = A(ρ) > 0 and
B = B(ρ) := (C∗(ρ) + Mp)1/p are independent of T (as follows from (25) with ε = 0).
By summation of (29), we have

τm = τm − τn =
n∑

i=m+1

δ̂i ≥ A ·
n∑

i=m+1

δi = A · (1− αm), (30)

M − τm = tm =
m∑

i=1

δ̂i ≤ B ·
m∑

i=1

δi ≤ B · αm, (31)
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both for any m ∈ {1, 2, · · · , n}. It follows that:

|T |+ inf{uT (x) : x ∈ Km+1 \ Ω1} ≥ inf{uT (x) : x ∈ Km \ Ω1} ≥ uT (∂Km) (32)

= UT (∂ωm) = τm ≥ A · (1− αm) = A ·Wρ(∂ωm) ≥ A · sup{Wρ(x) : x ∈ Ω2,ρ \Km},
|T |+ inf{uT (x) : x ∈ Km+1 \ Ω1} ≥ inf{uT (x) : x ∈ Km \ Ω1} = uT (∂Km) (33)

= UT (∂ωm) = τm ≥ M−B ·αm = M−B ·Vρ(∂ωm) ≥ M−B ·inf{Vρ(x) : x ∈ Ω2,ρ\Km},
both for any partition T of [0,M ] and any m ∈ {0, · · · , n−1}, where Ω2,ρ = Cl(Ω1)∪Ωρ.
Therefore, the asserted estimates (27) and (28) both hold relative to Ωρ ∩ (Km+1 \Km)
for each m ∈ {1, · · · , n− 1}.
Step 4. Proof of Theorem 3.1, eq. (8). It is easily seen, using the continuity of the
function Vρ (for any fixed ρ ∈ (0, 1)), that B(ρ) · Vρ(x) ≤ φ(dist(x, ∂Ω1)) relative to Ωρ,
where ϕ(s) : [0,∞) → R denotes a suitable continuous, monotone increasing function
such that ϕ(0) = 0. In view of this, it follows from Step 3 that

M ≥ uT (x) ≥ M −B · Vρ(x)− |T | ≥ M − ϕ(dist(x, ∂Ω1))− |T |, (34)

for any partition T of [0,M ], any solution uT (corresponding to T ) in Ω, and any x ∈ Ωρ.
By enlarging φ if necessary, we can assume (34) holds for all x ∈ Ω. Therefore

|∇uT (x)| · dist(x, ∂Ω1) ≤ |∇uT (x)| · |γ| ≤
∫

γ

|∇uT (y)|ds (35)

≤ M − uT (x) ≤ ϕ(dist(x, ∂Ω1)) + |T |
for any partition T of [0,M ], any solution uT of Problem 2.1 in Ω corresponding to T ,
and any point x ∈ Ω \ (∂K1 ∪ · · · ∪ ∂Kn−1), where γ is the arc of steepest ascent of uT

joining x to ∂Ω1. Here, we have used the fact that |∇uT (x)| is weakly increasing (with
increasing uT (x)) on γ. The assertion (8) follows.
Step 5. Proof of Theorem 3.1, eq. (9). In view of (28), we have

uT (x) + |T | ≥ P (x) := sup{A(ρ)Wρ(x) : ρ ∈ (0, 1), x ∈ Ωρ} > 0, (36)

for any x ∈ Ω. Therefore

|∇uT (x)| ≥
∫

γ

|∇uT (y)|ds = uT (x)|γ| ≥ uT (x)dist(x, ∂Ω2) (37)

≥ (P (x)− |T |)dist(x, ∂Ω2)

for any partition T of [0,M ], any solution uT of Problem 2.1 in Ω corresponding to T ,
and any point x ∈ Ω \ (∂K1 ∪ · · · ∪ ∂Kn−1), where γ is the arc of steepest ascent of uT

joining x to ∂Ω2. The assertion (9) follows.

Theorem 3.2 Let T k be the sequence of partitions of [0,M ] such that |T k| → 0 when
k → +∞. Then there exists a subsequence {uT km } which converges in W 1,p(Ω)∩C0,α(Ω)
to a limit u0 ∈ W 1,p(Ω). Also, due to equicontinuity, the convergence holds true in C(Ω).

Proof The proof follows from Theorem 3.1.
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4 Proof of Theorem 1.2

In case f(x, z) is monotone nondecreasing in z, the uniqueness follows by classical ar-
guments. Next, we will show that the function u0(x), defined in Theorem 3.2, solves
problem (1) in the weak sense, i.e. for every η ∈ C∞0 (Ω)

∫

Ω

|∇u0(x)|p−2∇u0(x) · ∇η(x)dx = −
∫

Ω

f(x, u0(x)) · η(x)dx. (38)

For simplicity we denote un(x) := uT n

(x) and we assume, that un → u0 in W 1,p(Ω).
Let {Kn

i , i = 0, ..., n} be the corresponding solution of the multilayer free boundary
problem for the partition Tn := {tn0 , tn1 , ..., tnn}, and let un

i := un|(Kn
i \Kn

i−1)
.

Let η ∈ C∞0 (Ω). By the divergence theorem we have

∫

Ω

|∇un(x)|p−2∇un(x) · ∇η(x)dx =
n−1∑

i=1

∫

Γn
i

(|∇un
i+1(x)|p−1 − |∇un

i (x)|p−1
) · η(x)dx

(39)
where Γn

i = ∂Kn
i .

¿From the free boundary conditions we get
∫

Ω

|∇un(x)|p−2∇un(x) · ∇η(x)dx =

= −
n−1∑

i=1

∫

Γn
i

F (x, tni )− F (x, tni−1)
p− 1

· |∇un
i+1(x)|p−1 − |∇un

i (x)|p−1

|∇un
i+1(x)|p − |∇un

i (x)|p · η(x)dx =

= −
n−1∑

i=1

∫

Γn
i

∫ tn
i

tn
i−1

p · f(x, y)
p− 1

· |∇un
i+1(x)|p−1 − |∇un

i (x)|p−1

|∇un
i+1(x)|p − |∇un

i (x)|p · η(x)dydx =

= −
n−1∑

i=1

∫ tn
i

tn
i−1

∫

Γn
i

p · f(x, y)
p− 1

· |∇un
i+1(x)|p−1 − |∇un

i (x)|p−1

|∇un
i+1(x)|p − |∇un

i (x)|p · η(x)dxdy (40)

It is easy to see that for every λ > 0 there exist δ = δ(p, λ) > 0 and C = C(p, λ) > 0
such that ∣∣∣∣

bp−1 − ap−1

bp − ap
− p− 1

pa

∣∣∣∣ ≤ C|b− a| (41)

for every a, b ≥ λ satisfying |b− a| < δ.
We have that |∇un

i (x)| = q(x, |∇un
i+1(x)|) on Γn

i (see (7)). Using the fact, that the

function q(x, y) is increasing by y, and the function
1

q(x, 0)
is concave, we can claim that

q(x, y) is bounded from below, that is, there exists a constant C0 > 0 such that

|∇un
i (x)| ≥ C0, x ∈ Γn

i .

¿From (5) and (41) we can conclude, that there exists a δ > 0 such that if |Tn| < δ
then on Γn

i

∣∣∣∣
|∇un

i (x)|p−1 − |∇un
i+1(x)|p−1

|∇un
i (x)|p − |∇un

i+1(x)|p − p− 1
p|∇un

i (x)|

∣∣∣∣ ≤ C||∇un
i (x)| − |∇un

i+1(x)||.

Using the last inequality, we can get the following estimate:
∣∣∣∣∣
∫

Γn
i

p · f(x, y)
p− 1

· |∇un
i+1(x)|p−1 − |∇un

i (x)|p−1

|∇un
i+1(x)|p − |∇un

i (x)|p · η(x)dx−
∫

Γn
i

f(x, y)
|∇un

i (x)| · η(x)dx

∣∣∣∣∣ ≤
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≤ C1 · sup
x∈Γn

i ∩suppη
f(x, y) · sup |η(x)| ·

∫

Γn
i

||∇un
i (x)| − |∇un

i+1(x)||dx (42)

for y ∈ [tni−1, t
n
i ], where C1 depends only from p and C0.

Using the inequality

||∇un
i (x)| − |∇un

i+1(x)|| ≤ ||∇un
i (x)|p − |∇un

i+1(x)|p|
min(|∇un

i (x)|p−1, |∇un
i+1(x)|p−1)

≤ F (x, tni )− F (x, tni−1)

(p− 1) · Cp−1
0

from (42), we conclude that

∣∣∣∣∣
∫

Γn
i

p · f(x, y)
p− 1

· |∇un
i+1(x)|p−1 − |∇un

i (x)|p−1

|∇un
i+1(x)|p − |∇un

i (x)|p · η(x)dx−
∫

Γn
i

f(x, y)
|∇un

i (x)| · η(x)dx

∣∣∣∣∣ ≤

≤ C2(y) ·
∫

Γn
i ∩suppη

(∫ tn
i

tn
i−1

f(x, t)dt

)
dx ≤ C2(y) · |Γn

i | · max
x∈Γn

i ∩suppη

∫ tn
i

tn
i−1

f(x, t)dt ≤

≤ C2(y) · |∂Ω2| ·
∫ tn

i

tn
i−1

f(x0, t)dt (43)

for some x0 ∈ Γn
i ∩ suppη, where |Γn

i | denotes the length of Γn
i , and

C2(y) := C1 · sup
x∈Γn

i ∩suppη
f(x, y) · sup |η(x)|.

Now from the compactness of the set Γn
i ∩ suppη we can obtain, that for any small ε > 0

we can choose δ1 > 0 such that for all Tn satisfying |Tn| < δ1 (η is fixed)
∫ tn

i

tn
i−1

f(x0, t)dt < ε (44)

for all x0 ∈ Γn
i ∩ suppη.

Finally, from (40), (43) and (44) we obtain
∣∣∣∣∣
∫

Ω

|∇un(x)|p−2∇un(x) · ∇η(x)dx +
n−1∑

i=1

∫ tn
i

tn
i−1

∫

Γn
i

f(x, y)
|∇un

i (x)| · η(x)dxdy

∣∣∣∣∣ ≤

≤ ε · |∂Ω2| ·
∫ M

0

C2(y)dy ≤ C3 · ε, (45)

where in the last inequality we have used the property 3) of the definition of the class F .
Just like in [LS] (see pp. 494-495) we can prove, that for small |Tn|

∣∣∣∣∣
∫

Γn
i

f(x, y)
|∇un

i (x)| · η(x)dx−
∫

un(x)=y

f(x, y)
|∇un(x)| · η(x)dx

∣∣∣∣∣ ≤ ε, y ∈ [tni−1, t
n
i ] (46)

Combining (45) and (46), we obtain

∫

Ω

|∇un(x)|p−2∇un(x) · ∇η(x)dx = −
n−1∑

i=1

∫ tn
i

tn
i−1

∫

un(x)=y

f(x, y)η(x)
|∇un(x)| dxdy + o(1) =

= −
∫ M

0

∫

un(x)=y

f(x, y)η(x)
|∇un(x)| dxdy + o(1) = −

∫

Ω

f(x, un(x)) · η(x)dx + o(1). (47)
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Since f(x, y) is uniformly continuous in suppη × [0,M ], we can claim that
∣∣∣∣
∫

Ω

f(x, un(x)) · η(x)dx−
∫

Ω

f(x, u(x)) · η(x)dx

∣∣∣∣ ≤ ε

for n > n0. For the first integral in (47), we have, due to local-uniform Lipschitz
estimates of un, that, for a subsequence, |∇un|p−2∇un converges weakly (in Lp/(p−1))
to |∇u|p−2∇u.

5 A uniqueness result

Theorem 5.1 Let u(x) : Ω → R denote a classical solution of the Dirichlet problem (1)
with f ≥ 0, and let v(x) : Ω → R denote a classical solution of the same Dirichlet problem
(1) with f replaced by a function g ≥ 0 (we assume 0 < u, v < M , from which it follows
that |∇u|, |∇v| > 0, both in Ω). Then u ≤ v in Ω provided that 0 < g(x, y) ≤ f(x, y) and
that g(x, y) < tpg(tx, y) for all x ∈ Ω, 0 < y < M , and t > 1 for which the inequality is
meaningfull.

Proof. (See [A].) We set vt(x) = v(x/t) in Ωt = t · Ω for any t > 0, observing that
∆pvt = (1/t)pg(x/t, vt(x)) in Ωt by change of variables. It is easy to see that vt > u
(resp. vt < u) in Ω ∩ Ωt for any sufficiently large (small) t > 0. Since vt depends
continuously on t, we can choose t > 0 to be minimum subject to the requirement that
vτ ≥ u in Ω ∩ Ωτ for all τ ≥ t. We claim that t ≤ 1. Assuming that t > 1, it is easy
to see that vt > u on ∂(Ω ∩ Ωt) and that vt(x0) = u(x0) for some point x0 ∈ (Ω ∩ Ωt).
Thus ∆pvt(x0) ≥ ∆pu(x0), and we conclude using the final assumption on g that

g(x0, y0) > (1/t)pg(x0/t, vt(x0)) = ∆pvt(x0) ≥ ∆u(x0) = f(x0, u(x0)) = f(x0, y0),

where y0 = u(x0) = vt(x0). However, this violates the assumption that g ≤ f .
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