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Abstract

We study the limit cases p →∞ and p → 1 of the functionals

Ep(u) :=
∫

Rn

{
1
p

( |∇u|
a

)p
+ p−1

p χ{u>0}
}

dx, (1)

where u ≡ 1 on a given compact set K ⊂ Rn, and a > 0 is also given.
Minimizers up of these functionals have uniformly bounded support
Ωp := {up > 0} and satisfy

−∆pup = 0 in Ωp, up ≡ 1 on K, |∇up| = a on ∂Ωp. (2)

Keywords: Bernoulli free boundary problem, Gamma convergence, p-har-
monic, viscosity solution.

AMS classification: 35R35, 35J60, 49J45.

1 Introduction

For p = 2 this problem is known as Bernoulli’s free boundary problem, and
since the early treatments of Friedrichs [11] and Beurling [5] this problem and
its generalizations have repeatedly attracted the attention of mathematicians,
e.g. in [2], [13], [16] etc.

The problem has several applications in that it models non-Newtonian
fluid flow problems, galvanization processes and so on. A list of applications
and appropriate references can be found in [1].
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Of some interest was the question if the shape of K is somehow reflected
in the shape of Ωp. If K is a ball, then so is Ωp, if K is starshaped, then
so is Ωp, see for instance [20], [1], and if K is convex, then so is Ωp, see e.g.
[1] or [14]. As soon as ∂Ωp is smooth enough in the sense that it satisfies a
certain flatness condition from [2], it has a uniquely defined normal and the
boundary condition |∇u| = a is satisfied in the classical sense

lim
Ωp3y→x∈∂Ωp

|∇u(y)| = a.

But non-smooth free boundaries can also occur for non-starlike K, and then
this boundary condition can only be derived in its weak form, see [2], [16]

lim
ε↘0

∫

∂{u>ε}
{|∇u|p − ap} η · ν dHn−1 = 0 (3)

for every vector field η ∈ C∞
0 (Ωp;Rn). Here ν denotes the exterior normal to

∂{u > ε}.
From comparison results it follows that the sets Ωp are all contained in a

1
a
–neigbourhood of the convex hull of K, so that all domains of integration

can be limited to a sufficiently large ball B ⊂ Rn. Throughout this paper
B is fixed. In [22] the authors investigated the limits p → ∞ and p → 1
for problem (2) in the case of convex K. In this case the solutions of (2)
are known to be unique, and thus they are also unique minimizers of Ep.
Moreover, they have convex level sets, and this implies that the sequence
up is pointwise monotone nondecreasing in p. So its pointwise limits u∞ =
limp→∞ up and u1 = limp→1 up exist, and they were identified as

u∞(x) = (1− a dist(x, K))+ and u1(x) = χK(x). (4)

In the present paper we study the case of general, i.e. also non-convex
K, in which problem (2) can have more than one solution, and we focus on
the minimizers of Ep rather than on (2). We show that after extending their
domain of definition, the functionals Ep Γ–converge, as p →∞ to

E∞(u) :=

∫

B

{
I[0,a](|∇u(x)|) + χ{u>0}(x)

}
dx (5)

for any q > n on W 1,q
0 (B) ∩ {u ≡ 1 on K}, and as p → 1 the functionals Ep

Γ–converge in L1(B) ∩ {u ≡ 1 on K} to

E1(u) := 1
a

∫

B

|Du(x)| dx. (6)
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To avoid misunderstandings, let us recall that the indicator function IC of a
set C vanishes on C and is +∞ elsewhere, while the characteristic function χC

is identically 1 on C and vanishes elsewhere. An inspection of these limiting
functionals shows that minimizing (5) amounts to minimizing the support of
u under the side constraint |∇u| ≤ a a.e., so that u∞(x) = 1− dist(x,K) is
one (of possibly several) minimizers of E∞. For details we refer to Section 2.
So in this limit problem, a volume is minimized.

In contrast to this, minimizing E1 amounts to finding sets D ⊃ K of
minimal perimeter, because according to the coarea formula the characteristic
function of such sets minimize E1. Clearly, if K is convex, ∂K is the only
minimal surface that encloses K, and this recovers the result from [22], but
for nonconvex simply connected K and n = 2 characteristic function of the
convex hull of K constitutes the unique minimizer of E1. There are also cases
of nonuniqueness described in Section 3. So in this limit problem, a surface
area is minimized.

It is interesting that studying the limit problems leads to such simple ge-
ometric questions. A similar effect occurred in the study of optimal Poincaré
constants Λp in the estimate ||∇u||p ≥ Λp||u||p for functions in W 1,p

0 (Ω).
Clearly Λp depends on Ω, but Λ∞(Ω) is the inverse of the radius of the
largest ball inside Ω, a simple geometric quantity (see [19] and [4]), and

λ1(Ω) = infD⊂⊂Ω
|∂D|
|D| is the so-called Cheeger constant of Ω which involves

only perimeter and volume of subsets, see [10].
The usefulness of our Γ-convergence results are apparent when we recall

the definition of- and a principal result on Γ–convergence, see [8] or [6].
Let X be a metric space and Fε : X 7→ [0,∞] a family of mappings. Then

F is the Γ-limit of Fε as ε → 0, if and only if the following statements a)
and b) hold.

a) For every u ∈ X and every sequence uε → u in X

lim inf
ε→0

Fε(uε) ≥ F (u) . (7)

b) For every u ∈ X there exists a sequence uε such that uε → u in X and

lim sup
ε→0

Fε(uε) ≤ F (u) . (8)

Theorem 1 [[6]-[8]] If F is Γ–limit of Fε and if uε is a minimizer of Fε,
then every cluster point u of {uε}ε>0 minimizes F .

The proof of Γ–convergence or the existence of a cluster point can be
difficult, as we shall see. In our situation, however, the following observation
will be very helpful.
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Proposition 1 The family of functionals Ep is monotone nondecreasing in
p, that is Ep(v) ≤ Eq(v) for q ≥ p.

This follows from a simple application of Young’s inequality AB ≤ Ar

r
+Bs

s

with s = r/(r− 1) and the identification A = (|∇v|/a)p, B = 1 and r = q/p.

2 The case p →∞
In this case we fix q > n, choose Xq = {v ∈ W 1,q

0 (B); v ≡ 1 on K} and
define Ep as follows

Ep(u) =

{∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p

χ{u>0}
}

dx if u ∈ W 1,p
0 (B) ∩Xq,

+∞ if u ∈ Xq \W 1,p
0 (B).

(9)

To prove Γ-convergence of Ep to E∞ let us verify the inequalities (7) and (8)
with ε = 1/p.

To verify (7) let u ∈ W 1,q
0 (B) and suppose that up is a sequence converging

to u in W 1,q
0 (B). If |∇u| ≤ a a.e. in B, then E∞(u) = |{u > 0}| and

E∞(u) ≤ lim inf Ep(up) provided lim inf |{up > 0}| ≥ |{u > 0}|. But this
is clearly so, since if x is in the support of u, and up converges uniformly
to u, then x is in the support of up for sufficiently large p. If, however,
|∇u| > a + ε on a set of positive measure, then since ∇up converges in Lq to
∇u, also ∇up > a + ε/2 on a set of positive measure uniformly for large p.
Therefore the left hand side in (7) becomes infinite.

To verify (8) we set uε = u. If |∇u| > a on a set of positive measure,
then E∞(u) = +∞ and there is nothing to prove, and if |∇u| ≤ a a.e. in B
then E∞(u) = |{u > 0}| is the volume of the support of u and

Ep(u) ≤ 1
p
|{u > 0} \K|+ p−1

p
|{u > 0}| < |{u > 0}|.

This proves (8), and hence we have shown the following theorem.

Theorem 2 As p →∞, for each q > n the functionals Ep defined by (9) on
Xq Γ-converge to the functional E∞ given by (5) on Xq.

In view of Theorem 1 it is instructive to study minimzers of E∞. They
satisfy |∇u| ≤ a a.e. in B and they must minimize the volume of their
support under this constraint in Xq. One minimizer is given by u∞(x) =
(1 − a dist(x,K))+, but this is not necessarily the only minimizer. To see
that E∞ can in general have more than one minimizer, suppose that n = 2
and that K is the union of two disjoint balls B1 and B2 of distance b < 1/a.
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If u1 = (1 − a dist(x,B1))
+ and u2 = (1 − a dist(x,B2))

+, then u∞ = (1 −
a dist(x,K))+ = max{u1(x), u2(x)}.

Now consider the set D := {u1 > 0} ∩ {u2 > 0} where the supports of u1

and u2 overlap each other. In this set we can modify u∞ to v∞ := u∞(x) +
εη(x) with η ∈ C∞

0 (D) nonnegative, and still get a minimizer, because the
support of v∞ and u∞ coincide and v∞ still satisfies the gradient constraint
|∇u| ≤ a a.e. in B.

If, however, the union U of all fall lines of u∞ emanating from ∂K and
ending in a boundary point of its support equals {u∞ > 0}\K, as is the case
for convex K, then E∞ has only u∞ as a minimizer.

To apply Theorem 1 we should check if the family of minimizers up of Ep

has a cluster point in Xq.
First we observe that

Ep(up) ≤ Ep(u∞) = 1
p
|{u∞ > 0} \K|+ p−1

p
|{u∞ > 0}| < |{u∞ > 0}|,

so that
||∇up||p ≤ a (p|{u∞ > 0}|)1/p → a as p →∞. (10)

This proves that the sequence up is uniformly bounded in every W 1,r(B) for
sufficiently large p > r. In fact, using Cauchy Schwarz inequality and (10)

||∇up||r ≤ ||∇up||p |B|
1
r
−1

p → a |B|1r as p →∞. (11)

Therefore {up} has a subsequence that converges weakly in W 1,q(B) and
strongly in C(B) to a limit v.

Notice that v is NOT necessarily a cluster point of up in Xq, because
the sequence does not converge in the strong topology of Xq. Therefore we
cannot apply Theorem 1, and changing the definition of Xq to C(B) might
be helpful here, but creates problems when checking Γ-convergence.

What can be said about v, anyway? Since the bound (11) is uniform as
r →∞, for any ε > 0 and any sufficiently large r we obtain ||∇v||q ≤ a + ε,
i.e. v satisfies the gradient constraint |∇v| ≤ a a.e. in B for minimizers of
E∞ so that E∞(v) is finite.

Is E∞ minimal at v? To see this we observe

Ep(up) ≤ Ep(v)
≤ 1

p
|{v > 0} \K|+ p−1

p
|{v > 0}|

< |{v > 0}|
≤ ∫

B
χ{up>0}dx + ε

= Ep(up)− 1
p

∫
B

(
|∇up|

a

)p

dx + ε.

(12)
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This chain of inequalities holds for sufficiently large p and it shows that for
any u ∈ Xq

E∞(v) ≤ lim inf
p→∞

Ep(up) ≤ lim inf
p→∞

Ep(u).

Together with Proposition 1 we may conclude that E∞(v) ≤ E∞(u) for any
u ∈ Xq, that is v minimizes E∞. This proves the first part of the following
result.

Theorem 3 After passing to a subsequence, if needed, up converges weakly in
W 1,q(B) and strongly in C(B) to a minimizer v of E∞ as p →∞. Moreover,
this minimizer is ∞–harmonic so that it satisfies the differential equation

∆∞v :=
∑
i,j

vxi
vxj

vxixj
= 0 on {0 < v < 1} (13)

in the sense of viscosity solutions.

Proof. To prove that v is∞–harmonic one can appeal to a stability result for
viscosity solutions, which says that if up is a viscosity solution of Fp(Du, D2u :
) = 0 and both Fp and up converge to F∞ and v, then v is a viscosity solution
of F∞ (see Exercise 8.2 in [7]). Another way of proving this, is to use direct
computations as done in [18] (proof of Theorem 1.22), [22] (Theorem 9.1) or
[17] (proof of Proposition 5.4).

3 The case p → 1

In this case we set Y := {v ∈ L1(B); v ≡ 1 on K} and extend the domain
of definition of Ep to Y , so that under slight abuse of notation

Ep(u) =

{∫
B

{
1
p

(
|∇u|

a

)p

+ p−1
p

χ{u>0}
}

dx if u ∈ W 1,p
0 (B) ∩ Y

+∞ if u ∈ Y \W 1,p
0 (B)

(14)

The limit functional

E1(u) =

{
1
a

∫
B
|Du(x)| dx if u ∈ BV (B) ∩ Y

+∞ if u ∈ Y \BV (B)
(15)

can be rewritten, using the coarea formula (see [9]), as

E1(u) =
1

a

∫ 1

0

|∂{u > t}| dt
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and has minimizers, almost all of whose level sets have minimal perimeter
among all subsets of B that contain K. To show that Ep is Γ–convergent to
E1, rather than checking (7) and (8) again, we can refer to [8], Proposition
5.7, which says in our case that a sequence Ep which decreases pointwise in
Y to E1, also Γ– converges to a limit functional, and that its Γ–limit can be
identified as the lower semicontinuous envelope sc−E1 of E1.

So to prove Γ–convergence of Ep to E1 as p → 1 it suffices to show that
E1 is lower semicontinuous on L1(B). To this end suppose that u ∈ L1(B)
and that there is a sequence uk → u in L1(B). We have to show

E1(u) ≤ lim inf
k→∞

E1(uk), (16)

and without loss of generality we may assume that every element uk is in
BV (B), because otherwise E1(uk) = ∞ and there is nothing to show. But
then (16) is the well-known semicontinuity property of the BV -seminorm,
see [12], p.7 or [9], p.172. This proves the following theorem.

Theorem 4 As p → 1 the functionals Ep defined by (14) on Y Γ-converge
to the functional E1 given by (15) on Y .

Combining Theorem 4 with Theorem 1 we can now show

Theorem 5 After passing to a subsequence, if needed, up converges strongly
in L1(B) to a minimizer w of E1 as p → 1. Moreover, the boundary of almost
each level set of w minimizes perimeter among sets containing K.

Proof. To get uniform bounds on the minimizers up of Ep let K̂ be a
perimeter minimizing set containing K (there may be several) and set u1 =
χK̂(x). We would like to estimate Ep(up) by Ep(u

ε
1), where uε

1 is close to u1

but in W 1,p(B). Therefore we set uε
1 = (1− 1

ε
dist(x, K̂))+ and find out that

Ep(up) ≤ Ep(u
ε
1) =

∫

0<dist(x,K̂)<ε

1
p

(
1
aε

)p
dx + p−1

p
(|K̂|+ O(ε)).

Notice that the last term becomes smaller than any given δ as p → 1, while
the integral term can be estimated from above by

1
p
(|∂K̂|+ δ)a−pε1−p.

If we choose ε = p− 1, we see that

||∇u||p ≤ 1
a
(|∂K̂|+ δ) (17)

7



provides a uniform bound for up as p → 1. This bound implies in particular
that up is bounded in BV (B), because

∫

B

|Dup| dx ≤ ||∇up||p |B|
p−1

p

so that it has a weakly convergent subsequence and a limit w as p → 1.
Using the compact embedding of BV into L1, for this subsequence up → w
in L1(B) and thus the assumptions of Theorem 1 are verified and w must be
a minimizer of E1.

Incidentally, without having to appeal to Theorem 1 this estimate and
and (17) show that

lim sup
p→1+

Ep(up) = 1
a
|∂K̂| = inf

v∈X
E1(v), (18)

so that w is indeed a minimizer of E1. Consequently, the boundary of almost
each level set of w minimizes perimeter among sets containing K. In partic-
ular, if there is only one set K̂ that minimizes perimeter and contains K, as
in the case where K is convex and K̂ = K, then w(x) = χK̂(x).

Remark. It should be noted that there are situations in which more than
one set can minimize perimeter and contain K. Suppose that n = 2 and
that K is the union of two disjoint unit balls of distance d from each other.
For small d the convex hull conv(K) of K will minimize perimeter, while
for large d the set K will minimize perimeter. For continuity reasons there
is a particular d at which both sets minimize perimeter. In that case it is
conceivable (although unlikely) that the function w from above, which was
the L1–limit of a subsequence of up as p → 1, could be a step function, e.g.
w = tχconv(K) + (1 − t)χK with t ∈ (0, 1). The fact that this K has two
components is not relevant here. Another example of nonuniqueness can be
constructed in R3 by taking a torus and varying its radii.

It is natural to ask if the limit w of up satisfies the limit differential
equation div(∇u/|∇u|) = 0 by applying general stability results for viscosity
solutions as in the proof of Theorem 3. Notice that p-harmonic functions up

satisfy Fp(Dup, D
2up) = 0 with

Fp(q,X) = −|q|p−4 {(p− 2) 〈Xq, q〉+ |q|2 traceX} (19)

and that Fp is not well-defined (and discontinuous) at q = 0. If we define
Hp(q,X) := |q|2+εFp(q, X), then up solves also the equation

Hp(Dup, D
2up) = 0
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in its support and Hp is continuous at q = 0. Now we can apply a stability
result from [7] (Proposition 8. 2) or [3] (Exercise on p. 74) to conclude that
the upper semicontinuous function w is a viscosity subsolution of H1 = 0,
i.e. a solution of H1 ≤ 0, while the lower semicontinuous function w is a
supersolution of H1 = 0. Here the upper weak limit w(x) is defined as

w(x) = lim sup∗p→1 up(x)
= lim supr→1{up(y) : r ≥ p, |y − x| ≤ p− 1, w(y) > 0, y 6∈ K}

and the lower weak limit w is given by −(−w). It is in this sense that our
sequence up converges to a particular minimizer w of E1.
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