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Abstract. Our prime goal in this note is to lay the ground for studying free
boundaries close to the corner points of a fixed, Lipschitz boundary. Our study
is restricted to 2-space dimensions, and to the obstacle problem. Our main
result states that the free boundary can not enter into a corner x0 of the fixed
boundary, if the (interior) angle is less than π, provided the boundary datum
is zero close to the point x0. For larger angles and other boundary datum the
free boundary may enter into corners, as discussed in the text.

1. Introduction

This note concerns analysis of the free boundary for the obstacle problem (in
2-space dimensions) close to a fixed boundary, which has corners. Our hope is that
methods and ideas in this paper can be carried over to higher dimensions, and more
general situations.

To fix the idea, let f , and g be given functions. Consider a solution to the
obstacle problem (see [F] ,[R])

(1.1) ∆u = fχ{u>0}, u ≥ 0 in B∗
1 , u = g on ∂B∗

1 ,

where χ is the characteristic function, and

B∗
r = {x : |x| < r} ∩ {x2 > ψ(x1)},

with ψ a Lipschitz function defined on the interval {−2 < x1 < +2}, satisfying
ψ(0) = 0.

For simplicity, and clarity of the exposition, we assume that for some r0 > 0

(1.2) ψ is linear on both sides of 0, f ≡ 1, g = 0, in Br0 ,

and g ≥ 0 everywhere. For (reasonably) general data f, g, and ψ one needs to work
out some technical details, that might become quite involved.

We will also need to distinguish between free boundary points inside B∗
1 and

those on the boundary of B∗
1 . Hence we define

Γ := ∂{u > 0} ∩B∗
1 ,

and
Γ∗ := {x ∈ ∂{u > 0} : lim sup

y→x
|∇u(x)| = 0, with u(y) > 0}.
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The reason for taking limit superior above is the fact that, in general, at certain
boundary points the gradient may not exist. Observe also that Γ∗ \ Γ ⊂ ∂B∗

1 .
In this paper we will show that the free boundary Γ can never enter into corners

with angle θ0 less than π. For angles strictly larger than π we show that the free
boundary always enters into the corner, provided the latter is a free boundary point.
For θ0 = π both situations may occur.

The analysis for angles less than π/2 seem to be much more easier than that of
θ0 > π/2.

Let us formulate our main result.

Theorem 1.1. Let u solve the obstacle problem (1.1), with f, g, and B∗
1 as in (1.2).

Denote the interior angle of the domain B∗
1 at the origin by θ0. Then the following

hold.
(I) If θ0 ≤ π/2. Then

(1.3) 0 /∈ Γ∗.

(II) If π/2 < θ0 < π, and 0 ∈ Γ∗, then

(1.4) 0 is an isolated point of Γ∗.

(III) If θ0 > π, and 0 ∈ Γ∗, then 0 ∈ Γ.
(IV) If θ0 = π, then all possibilities may occur.

When the boundary datum g is zero at the corner point x0, but it is not iden-
tically zero close to the corner point, then naturally the free boundary has the
possibility of entering into the corner. In this case however one may distinct be-
tween the behavior of g. Indeed one can show that if the behavior of g is better
than quadratic g(x) = o(|x−x0|2) then, in the case (I) above, the free boundary can
enter into the corner only in a tangential fashion, and in a way that the set {u > 0}
close to the corner point is tangential to the fixed boundary. If sup g(x) ≥ C|x|2
then the free boundary can enter into the corner non-tangentially. These analysis,
however, are outside the scope of this paper. It is also noteworthy that statement
(II) above can be proved to hold in a uniform fashion, i.e. for x0 ∈ Γ∗ we have
|x0| ≥ d = d(n, supB∗1

u). We hope to come back to this in a forthcoming paper.
At this point we want to discuss a simple case.

Example 1.2. Let us consider the problem in the domain D = {x1 > 0, x2 > 0}∩B1,
with f ≡ 1, g(x1, 0) = 0, g(0, x2) = 0 (for 0 < x1, x2 < 1/2). Consider a solution u
to the above obstacle problem.

Now, if the free boundary enters into the origin, then locally close to the origin,
we expect the solution to behave like a homogeneous function of degree two

u(x) = r2φ(θ);

even though it is not clear at this moment why this is the case! This is what we
will prove later on.

Once we have the above situation then we can compute the solution using polar
coordinates and reducing the equation to

φθθ + 4φ = 1, φ(0) = φ(π/2) = 0.

This, however, proves to have no solution. consequently, the free boundary could
not enter into the origin.



FREE BOUNDARIES CLOSE TO CORNER POINTS 3

2. The growth of the solution close to corners

To prove our main theorem, we need to establish two basic properties of the
solutions: non-degeneracy, quadratic growth.

First we claim the following non-degeneracy

2.1. Non-degeneracy. For a solution u to the obstacle problem we have

(2.1) sup
B(x0,r)

u ≥ u(x0) +
r2

4
, x0 ∈ {u > 0}.

The proof of this can be found in [Ca1], for the interior case. The same proof works
in the presence of a fixed boundary and zero data (see [SU]).

2.2. Quadratic growth. In order to prove the main result we need a scaling
and blow-up argument. However, our equation is invariant only under quadratic
scaling u(rx)/r2. The problem is that the solution is not necessarily of quadratic
growth, when π/2 < θ0 < π. Indeed, if we let u = x2(x2 + ax1)/2 + Im(zπ/θ0), for
appropriate a, then with correct boundary values u solves the obstacle problem and
has a growth of order π/θ0 < 2. Hence the function u(rx)/r2 will not be bounded.
For angle θ0 ≥ π the quadratic growth holds always, as shown below.

We use the idea of ”homogeneous” scaling. So let us set

Mk = sup
B2−k (0)

u(x),

then for u a solution to the obstacle problem, with 0 ∈ Γ∗, it holds that:
(i) If θ0 < π, and there exists x0 ∈ Γ(u),
then, for some C > 0, we have

(2.2) 4k0+1Mk0+1 < max{4k0Mk0 , C sup
B∗1

u},

where k0 is such that 2−k0−2 ≤ |x0| ≤ 2−k0−1.
(ii) If θ0 ≥ π then we have

(2.3) sup
B(0,r)

u ≤ Mr2.

The constant M above depends on the supremum norm of u only.
When the angle of opening of the corner is small enough, say smaller than or

equal to π/2, one can use a comparison with the harmonic function Cx1x2 (after
appropriate rotation) for large C, to conclude u(x) ≤ |x|2. For even smaller angles
θ0 < π/2 we may use harmonic barriers such as Imzπ/θ0 to conclude u(x) ≤ |x|π/θ0 .

For the general case we could not found any easy way out. However, we can prove
(2.2)-(2.3) using elaborated techniques introduced in [KS], and later developed in
[SU], and [ASU].
Proof of case (i): In order not to be repetitive we just sketch some details.

If (2.2) fails, then for every positive integer j, there exist xj ∈ Γ(u), such that

(2.4) 4kj+1Mkj+1 ≥ max{4kj Mkj , j}.
Here 2−kj−2 ≤ |xj | ≤ 2−kj−1, and kj →∞.

Now defining

uj(x) =
u(2−kj x)
Mkj+1

in Dj := {x : 2−kj x ∈ B∗
1} = 2kj B∗

1 ,
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and following the lines of the proof in [ASU], Lemma 3.1 (see also the proof of
Theorem 1.3 in [BS]) we will end up with a limit function u0 as j → ∞ (for a
subsequence). Moreover it follows that u0 is harmonic in the set D0 := lim Dj and
more importantly

(2.5) sup
B1/2

u0 = 1, u0 ≥ 0, u0 on ∂D0.

It is not hard to realize that we can assume, after rotation, that

D0 = {(r, θ) : 0 < r, 0 < θ < θ0},
where θ0 > π/2 by assumption.

Now x̃j = 2kj xj ∈ Γ(uj), and 1/4 ≤ |x̃j | ≤ 1/2. Hence the limit point (after
passing to a subsequence) x̃ := lim x̃j is a free boundary point for u0 and in par-
ticular ∇u0(x̃) = 0; the convergence is in C1,α

loc in D0 \ {0}. To this end we can
apply the strong maximum principle or the boundary Hopf lemma (depending on
whether x̃ ∈ D0 or x̃ ∈ ∂D0 \ {0}) to reach a contradiction.

Proof of case (ii): For the case θ0 ≥ π we consider a conformal map

z → zθ0/π,

and set V (z) = u(zθ0/π) in B+
r0

= {|x| < r0, x2 > 0}. The function V satisfies
|∆V (x)| ≤ C|x|2(θ0/π−1) in {x2 > 0}, and V = 0 on {x2 = 0} ∩ Br0 . Therefore to
prove a quadratic growth for u we need to prove a growth of order |x|2θ0/π for V .
Hence we need to show

4(k+1)θ0/πMk+1 < max{4kθ0/πMk, C sup
B+

r0

V } for all k = 0, 1, 2, . . .

Now going back to the start of the proof above by redoing everything we end up
with a blow up function V0 which is harmonic in the upper half plane and by local
uniform C1,α-convergence up to {x2 = 0} we conclude that |∇V0(0)| = 0, since
0 ∈ Γ∗(u). Again Hopf’s lemma applies to reach a contradiction.

Having these two basic properties in our disposal, we can now prove the main
result.

3. Proof of the main result

3.1. Homogeneous solutions in Cones of given angle. In this section we will
classify homogeneous solutions in cones with given interior angle. More exactly we
consider homogeneous solutions in D0 (see above) with quadratic growth, and we
give explicit formulas for the solutions.

Theorem 3.1. Let u be a homogeneous solution of degree two for the obstacle
problem in the set

D0 = {(r, θ) : 0 < r, 0 < θ < θ0}.
In other words u satisfies

u(x) = r2φ(θ), ∆u = χ{u>0}, u ≥ 0, in D0

and φ(0) = φ(θ0) = 0. Then the following hold.
(I) For π/2 < θ0 ≤ π we have

u(x) = x2(ax1 + x2/2) in D0.
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(II) For π < θ0 ≤ 2π we have, after rotation of the support of u,

u(x) = (max(x2, 0))2/2) in D0.

Observe that for the case 0 < θ0 ≤ π/2 we can impossibly have a solution, as
simple calculations show (see Example 1.2 above).

Proof. We assume that the support of u is connected. Otherwise we restrict the
solution to a connected part of its support.

Let also, by rotation invariance,

D̃0 = {u > 0} = {(r, θ) : 0 < r, 0 < θ < θ̃0 < θ0}.
Now by use of the polar coordinates, for the Laplacian, one can solve the ode
φθθ + 4φ = 1, to find

φ = 1/4 + A cos 2θ + B sin 2θ in D̃0.

Using boundary data it follows that for Case (I) we have a solution of the given
type above. For Case (II), one sees again that the problem has no solution with
D̃0 = D0. Indeed, in this case again the only solution is given by type (I) solutions.
But on the other hand we have u ≡ 0 in the set D0 \ D̃0. And therefore the extra
(free) boundary condition φθ(θ̃0) = 0 plays a role. The only solution that is possible
(and easily verified) is the one give in Case (II). ¤

3.2. Homogeneity of blow up solutions. If the solution function u, for the
obstacle problem behaves well, in some good sense, then one expects that the blow
up limit u0 = limj u(rj)/r2

j (when it exists) should only reflect the properties of
the second derivatives of the function u at the origin. Think of a case when u is
at least C2, then the higher order polynomials in its Taylor expansion around the
origin should vanish (in the limit) upon a quadratic scaling as above. Hence we
expect the blow up limit u0 to be a degree two homogeneous function.

A (modified) monotonicity formula of G.S. Weiss [W1]-[W2] states that the func-
tion

(3.1) W (r, u, x0) =
1
r4

∫

B∗r

(|∇u|2 + 2u
)− 1

r5

∫

∂B∗r

2u2,

is monotone increasing in r, for 0 < r < r0. Actually it is strictly increasing for
r < r0, unless it is homogeneous in B∗

r . Observe that in the original monotonicity
formula of Weiss one has integration over the complete ball Br. However, for zero
or degree-two homogeneous boundary data (on the straight part of the boundary)
the result still holds.

Suppose now we have a scaled function urj (x) = u(rjx)/r2
j and that there is a

limit function u0 = limj urj . Using the monotonicity formula of Weiss (over the
domain B∗

r ) we have, for s < 1,

Const. = W (0+, u) = lim
j

W (rjs, u) = lim
j

W (s, urj ) = W (s, u0).

Since W (s, u0) is constant we must have

(3.2) u0 is homogeneous.
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3.3. A symmetric case and its consequences. In the proof of the main theorem
case (II), we will need a barrier from below that prevents the free boundary point
coming to close to the origin.

Let P be a parallelogram generated by the vectors v1 = (0, 1), and v2 =
(cos θ0, sin θ0), where π/2 < θ0 < π. Obviously, for some t, T > 0,

Dt := {(r, θ) : r < t, 0 < θ < θ0} ⊂ P ⊂ DT := {(r, θ) : r < T, 0 < θ < θ0}
(polar coordinates). Now, for appropriate constant a, we have h := (ax1 + x2)x2/2
solves the obstacle problem in D1 := {(r, θ) : r < 1, 0 < θ < θ0} with the origin
as the only free boundary point. For ε small let

h′ =
((a + ε)x1 + x2)(−εx1 + x2)

2(1− ε(a + ε))
and

D′ = {(r, θ) : r < 1, 0 < θ < π : h′ > 0} ⊂ D1.

Obviously h′ solves the obstacle problem in D′, with boundary values h′. Extend
h′ to R2 by defining it to be zero outside D′. Now let u be the solution to the
obstacle problem in P with boundary values which is the restriction of h′ to ∂P .
By comparison principle, see [F],

(3.3) h′ ≤ u ≤ C Im(zπ/θ0), in P,

and in particular

(3.4) 0 ∈ Γ∗(u).

The idea is to conclude that for some r1 > 0, P ∩ Br1 has no free boundary
points, and the only possible free boundary points, other than the origin, are on
the boundary of P ∩ Br1 . We use the symmetry of the domain! Let now l1 =
{v2 + sv1, 0 < s < 1}, and l2 = {v1 + sv2, 0 < s < 1}, be the two (upper)
boundary segments of P . Then, since vi · ∇h′ ≥ 0 on li, (i = 1, 2) we can use
standard moving plane technique (see e.g. [GS]) to conclude that vi · ∇u ≥ 0 in P ′

(i = 1, 2), the parallelogram generated by the half-vectors v1/2,v2/2.
Now if we had a free boundary point z ∈ P ′, then due to monotonicity of u in

vi-directions, i = 1, 2, the parallelogram K bounded by the lines

{z + sv1, s ∈ R}, {z + sv2, s ∈ R}, {sv1, s ∈ R}, {sv2, s ∈ R}
must belong to {u = 0}. Hence u = 0 in K and we have a contradiction to (3.4).

As a conclusion we have the following lemma.

Lemma 3.2. Let u be a solution to the obstacle problem in P , with boundary
values greater than or equal to h′ on ∂P . Then there is a constant r1 > 0 for
which (interior of) P ∩Br1 has no free boundary points, and the only possible free
boundary points must occur on the boundary of this set.

Using this lemma in conjunction with Harnack’s inequality we can obtain the
following result.

Lemma 3.3. Let u be a solution to the obstacle problem in B∗
T , with T as above, so

that P ⊂ DT . Suppose also that for some y ∈ ∂P we have u(y) is large enough and
that there are no free boundary points in a δ-neighborhood of ∂P \ Br2 , for some
r2 > 0. Then, for some r3 > 0,

Γ∗(u) ∩Br3 = {0}.
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Proof. By Lemma 3.2 it suffices to show that u ≥ h′ on ∂P . To do so we first
observe that if u > 0 in B2r(z) then the function v(x) = u(x) + (2r)2/4− |x|2/4 is
non-negative and harmonic in B2r(z). In particular by Harnack’s inequality

inf
Br(z)

v ≥ 2c sup
Br(z)

v

for some c > 0. Hence for any point z′ in Br(z) we have u(z′) ≥ cu(z) if cu(z) ≥ r2.
Using a chain of Harnack inequality, and assuming u(y) is large enough, and

r = rδ is small enough, we can conclude that u ≥ h′ on ∂P . Here we have used
the fact that h′ = 0 on ∂P \ P ′, so that the Harnack’s chain can be terminated on
the set ∂P ∩ P ′ before reaching end points. Now Lemma 3.2 applies to deduce the
result.

The final conclusion from this part is the following lemma.

Lemma 3.4. Let u be a solution to the obstacle problem in B∗
1 , and t, T be as

above. Let now, for k large, B∗
T2−k−1 \ Bt2−k−2 be empty of free boundary points.

Then either
Mk+1 ≤ C4−k−1,

or
B∗

r32−k−1 ∩ Γ∗(u) = ∅.
Proof. Define

ũ(x) =
u(2−k−1x)

4−k−1
,

and apply the previous lemma.

3.4. Proof of the main Theorem. To prove the main result we will use a con-
tradictory argument. So suppose we are given a a function u solving the obstacle
problem with 0 ∈ Γ∗. Now define

(3.5) uj(x) :=
u(rjx)

r2
j

,

and assume that uj is locally, uniformly bounded from above.
Then {uj} solves a new obstacle problem in Drj := {x : rjx ∈ B∗

1/rj
}. Now

using compactness arguments we can deduce that a subsequence converges to a
homogeneous solution u0 in the limit-cone D0 = limj Drj (for more details of such
arguments see [SU], proof of Theorem D). Moreover, by (3.2) the limit function u0

is a homogeneous function, and 0 ∈ Γ∗(u0). Observe that by non-degeneracy (2.1),
we have u0 6≡ 0.

Let us now look at all possible cases of the main theorem.

Case (I): If θ0 = π/2, then obviously by quadratic growth (u is bounded by Cx1x2,
for large C), we have that uj in (3.5) is bounded, and hence we can argue as above
to end up with a homogeneous solution u0, which by classification of homogeneous
solutions does not exists. See the lines following Theorem 3.1, and/or Example 1.2.

If θ0 < π/2, then barriers CIm(zπ/θ0) above and non-degeneracy (see (2.1))
shows that the origin can impossibly be a free boundary point.

Case (II): Let 0 ∈ Γ∗, and suppose it is not an isolated free boundary point. Then
we have a sequence xj ∈ Γ such that xj → 0. Then, by (2.2) and Lemma 3.4, we
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have either

4k+1Mk+1 ≤ max(4kMk, C sup
B∗1

u),

or

Mk+1 ≤ C4−k−1,

for all k = 1, 2, · · · An iteration argument shows that Mk ≤ C4−k. Hence uj is
also bounded in this case. Let us now take rj = 2|xj |. It is apparent that the
point x̃j := xj/rj ∈ Drj

∩ ∂B1/2, and x̃j ∈ Γ(uj). In the limit we will then have
x0 = limj x̃j ∈ Γ∗(u0). A point of caution is that x0 may be on ∂D0 ∩ ∂B1/2, but
we still have limj ∇uj(x̃j) = 0. In other words the C1,α

loc convergence is valid up to
D0 ∩B1 \ {0}.

Hence the homogeneous solution u0 will have at least two free boundary points,
the origin and x0. This will contradict the classification of homogeneous solutions,
in the second case.

Case (III): Now if the angle of opening of D0 is larger than π, and the origin
is a free boundary point, 0 ∈ Γ∗, then, according to the classification theorem of
homogeneous solutions, the limit function u0 must be of the form (II) in Theorem
3.1. But this just implies that 0 ∈ Γ. Indeed we have a slightly better result.
Namely, vol({u = 0}∩B∗

r ) ≥ c0|B∗
r |, for some c0 depending on the ingredients, and

the angle θ0. We leave the verification of the latter to the reader.
Finally in the case θ0 = π one may show several possibilities for the behavior of

the free boundary. E.g. if we let the boundary data be small on ∂B1\{x2 = 0}, and
identically zero on {x2 = 0} then 0 6∈ Γ∗. This follows easily by the non-degeneracy
(2.1).

The example x2
2/2 + ax2 also shows the possibility of the origin being or not

being a free boundary point, depending on a = 0 or not.
For a tangential touch, we may just take any explicit example for which the

non-coincident set is convex and take a supporting line locally at the touching
point, and call it the fixed boundary. Here is how. Let u be the difference of a
multiple of the fundamental solution for the Laplacian and a touching parabola,
u = AF (x) − P (x) = −A log |x| + |x|2/4 + B. One can fix the values A,B so
that in the ball B3(0) we have ∆u = 1 − cδ0, for appropriate constant c. And
moreover u = ∇u = 0 on ∂B3(0). Now translate u upwards so that the support of
u touches x1-axis tangentially. Now in B+

1 we have (for the translated function ũ)
∆ũ = χ{ũ>0} and it solves the obstacle problem. The free boundary also touches
the origin tangentially.

4. Appendix

Our complicated argument for proving Case II in the main theorem can be
replaced by a different, still similar, approach that was kindly suggested to us by
Arshak Petrosyan.

Going back to (2.2) we may replace the condition x0 ∈ Γ(u) by a weaker one,
namely

(4.1) u(x0) < h(x0).
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Now we can argue in the same way, and since

0 ≤ h(2−kx)
Mk+1

≤ C
4−k

Mk+1
→ 0,

we obtain, as in the proof of (2.2), a limit function with a free boundary point
x̃ ∈ ∂D0

If x̃ becomes a boundary point then we need to show ∇u0(x̃) = 0, in order to
obtain the final contradiction argument. Let xj be the points for which u(xj) <
h(xj). Upon re-scaling assume |x̃j | = 1. Also x̃j are interior points, since the
inequality is strict. Let yj be the closest point on the boundary to x̃j . Let also e be
the interior unit vector orthogonal to the edge of the angle to which we approach.
Then, by the mean value theorem, there exists a point z0

j on the segment [yj , x̃j ]
such that

Deu(zj) ≤ Deh(zj),
since u(x̃j) < h(x̃j) and u(yj) = h(yj). Thus, in the limit, one will have

Deu0(x̃) ≤ 0.

This implies Deu0(x̃) = 0, since e is the interior normal. Hence ∇u0(x̃) = 0.
So we have either of the following:

a) For some small r > 0, u(x) ≥ h(x) for all x with |x| = r and, by (strong)
comparison principle (up to the boundary), we have a barrier from below, and thus
there are no free boundary points in Br, except the origin.
b) For every r > 0 there is a point x with |x| = r such that u(x) < h(x) and we
can iterate (2.2) to prove that u(x) ≤ C|x|2.
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