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Abstract. We show that there are an abundance of non-homogeneous global
solutions to the obstacle problem, in the half-space,

∆u = χ{u>0}, u ≥ 0 in R2
+,

with a (fixed) homogeneous boundary condition

u(0, x2) = λ2(x+
2 )2 (0 < λ < 1/

√
2).

As a consequence we obtain local instability of the free boundary under C1,1

perturbation, of the Dirichlet data.

1. Introduction

1.1. Background. This paper has grown out of a recent attempt to classify global
solutions to the obstacle problem in half spaces, having homogeneous boundary
condition. To fix ideas, let us consider the global obstacle problem

(1) ∆u = χ{u>0}, u ≥ 0 in Rn (n ≥ 2).

Here χD is the characteristic function of D. A solution to this system is called a
global solution. There are an abundance of functions solving (1). E.g. u = (x+

1 )2/2,
or any rotation and translation of this function. Any non-negative, second degree
polynomial p(x) with ∆p = 1 is also a global solution. One can show (see [Sh] )
that the interior of any ellipsoid is the zero set of such a solution, and the solution
itself can be given in terms of the Newtonian potential. For appropriate constants
A,B one can show that A + B|x|2−n + |x|2/2n solves (1) outside the unit ball.

Let us now restrict the problem to the upper half space Rn
+ = {x1 > 0}, i.e., we

consider equation (1) in Rn
+. We need also to specify boundary condition u(0, x′) =

f(x′), where x′ = (x2, · · · , xn). Natural choices for f should be restriction of global
solutions to Π := {x1 = 0}. Obviously a problem of such a generality would not
be easy to approach. Therefore, in this paper we will only consider boundary data
coming from the restriction of rotations of the one dimensional solution (x+

1 )2/2.
Hence

f =
(
(α′ · x′)+)2

/2

where α′ = (0, α2, · · · ) is a unit vector.
Having set the problem as above, one can now ask whether all solutions to the

above problem, with boundary data coming from the one dimensional solution, are
also one dimensional(?). This would naturally be an ideal case, since then one can
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go on as in [SU] and prove local regularity results for the free boundary ∂{u > 0},
close to the contact point with the fixed boundary.

In this paper we shall construct a non-homogeneous global solution in R2
+ with

boundary data f = λ2(x+
2 )2. In particular our solution does not coincide with the

natural solution in the whole space.
A consequence of our construction is a local instability of the free boundary

close to the fixed one. Another consequence is that uniform regularity of the free
boundary (as in [SU] and [A]) fails in general.

1.2. The Obstacle Problem. We will call the minimizer of the following func-
tional

(2) J(u) =
∫

D

1
2
|∇u|2 + u

over the set
K = {u ∈ H1(D); u ≥ 0, u = f on ∂D},

a solution to the obstacle problem. In other texts the obstacle problem is defined in
a more general way, see for instance [C] and [F], but we will restrict ourselves to this
model case. We will also assume, for simplicity that D = B+

1 = {|x| < 1; x1 > 0},
the upper half ball.

It is well known that the solution to the obstacle problem satisfies

(3)
∆u = χ{u>0} in B+

1

u ≥ 0
u = f on ∂B+

1 .

We will call the set ∂{u > 0} ∩B+
1 the free boundary and denote it Γu.

Global solutions, in this paper, will be minimizers of the above functional for
every D ⊂ Rn

+, with prescribed boundary values.

1.3. Notation. Rn
+ is the upper half space: Rn ∩ {x1 > 0}.

Br(x0) is the open ball of radius r centered at x0:
{x; |x− x0| < r}.
B+

r (x0) is the ball intersected with Rn
+.

Ωu = {u > 0} is the non-coincidence set.
Γu denotes the free boundary of u, that is Γu = ∂Ωu ∩ {x1 > 0}.
χΩ is the characteristic function of Ω, i.e,

χΩ(x) =
{

1 x ∈ Ω
0 x /∈ Ω.

It is noteworthy that one can show that global solutions have quadratic growth.
Indeed, one can show, for universal positive constants c0, C0,

(4) c0r
2 ≤ sup

Br(x0)

u− u(x0) ≤ C0r
2,

for any r > 0, and x0 ∈ ∂{u > 0}. See e.g. [C].
The re-scaled function

ur =
u(rx)

r2
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will be a solution in B+
1/r, with the re-scaled boundary values. An important

technical tool will be to blow-up a solution u. By blow-up we mean

lim
r→0

u(rx)
r2

,

through some converging subsequence (see Section 2 for details). We can also define
the shrink down of a global quadratically bounded solution u, by taking r → ∞.
We denote the shrink down by u∞ (if there is no ambiguity).
Π is the plane {x1 = 0}.
Ωc is the complement of Ω.
By x′ we will mean the vector (x2, x3, ..., xn), and sometimes write x = (x1, x

′).
By sptu we will mean the support of u, that is the closure of {u 6= 0}.

1.4. Main Results.

Theorem 1. There exists non-homogeneous global, quadratically bounded, solutions
to the obstacle problem with boundary values

f(x′) = λ2(x2)2+,

for 0 < λ < 1√
2
.

It is noteworthy to mention that the solutions we construct are a “half space
phenomenon” and cannot be extended to the entire space. This follows easily by
the classification theorem of [CKS], which states that global solutions with large
zero set must be a half-space solutions (i.e. one dimensional).

The case λ > 1√
2

is less interesting from our point of view since if λ > 1√
2

then
the origin can’t be a contact point of the free boundary. Let’s indicate how to
prove this. If we make a blow-up at a contact point where λ > 1√

2
we should get

a homogeneous solution with the same boundary values, we must obviously prove
that the blow-up converges but we leave the details to the reader. But by writing
the Laplacian in polar coordinates it is easily seen that such a solution doesn’t
exist.

These non-homogeneous solutions have bearings on the regularity theory of the
free boundary near contact points with the fixed boundary, see [A], and also on the
stability of the free boundary as the following Corollary states. But first we need a
definition.

Definition 1. (Stability) We say the normal of the free boundary, Γu, of a solu-
tion u of the obstacle problem is stable near the origin under small C1,1 perturba-
tions, if for any sequence gj ∈ C1,1(∂B+

1 ) such that
(i) ‖gj‖C1,1 → 0,
(ii) wj the solution to the obstacle problem with boundary data u+gj has the origin
as a free boundary point,
we have, for each x ∈ R2

+,

lim
j→∞

lim
r↓0

wj(rx)
r2

= lim
r↓0

u(rx)
r2

.

Remark: The condition that the origin is a free boundary point for the pertur-
bated function wj is essential, without that condition the left limit in the definition
will not converge.



4 JOHN ANDERSSON AND HENRIK SHAHGHOLIAN

Corollary 1. Let u be a solution to the obstacle problem in R2 with boundary
values f satisfying

lim
r→0

f(rx2)
r2

= λ2(x2)2+

for any sequence r → 0, assume also that 0 ∈ Γu. Then the normal of the free
boundary is stable near the origin under small C1,1-changes in f (that leaves the
origin as a free boundary point) if u0, the blow-up of u, is the smaller solution in
Theorem 3 part 1.

The proof of this corollary will be given at the end of Section 3. It should also
be pointed out that the normal of the free boundary isn’t uniformly stable.

Finally we state a stability result in higher dimensions.

Theorem 2. Let u be a solution to the obstacle problem in Rn whose blow-up is the
homogeneous global solution with least Weiss energy Ψ (see the Weiss monotonicity
formula below). Assume also that 0 ∈ Γu. Then the normal of Γu is stable, near
the origin, under small C1,1-perturbations that leave the origin as a free boundary
point.

Obviously Corollary 1 is included in Theorem 2. But the impact of non-homogeneous
solutions on local stability is more explicitly formulated in the proof of Corollary 1,
so we have chosen to formulate the two dimensional case separately to accentuate
our ideas more clearly.

2. Technical Tools and Known Results.

2.1. Technical Tools. In this subsection we gather some known results and tools
which we will use later on in this investigation. First and foremost we state the
following Lemma essentially due to G.S. Weiss [W], see [A] for a proof in this case.

Weiss Monotonicity Function: Let u solve the obstacle problem in B+
R , with

f homogeneous of degree two, then the function

(5) Ψ(r, u) ≡ r−n−2

∫

Br(0)∩Rn
+

(|∇u|2 + 2u)− r−n−3

∫

∂Br(0)∩(R)n
+

2u2

is nondecreasing in r < R.
Remarks: Besides the monotonicity the Weiss energy functional, Ψ, has some

other important properties, which we would like to accentuate.

(1) Let u solve the obstacle problem and define ur(x) = u(rx)
r2 , then

Ψ(r, u) = Ψ(1, ur).

This is shown by a simple change of variables.
(2) By the previous paragraph we see that if u is homogeneous of second degree

then Ψ(·, u) is constant. The converse implication is also true. That is, if
Ψ(r, u) is constant in r then u is homogeneous of second degree.

(3) Ψ(r, u) is obviously continuous in C1 changes in u.

By (4) we will have, by standard estimates, that a blow-up sequence will converge
in C1,α locally to a global solution.
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2.2. Known Results. An important tool in our discussion is the following com-
parison principle. See for instance [B] for a proof.

Comparison Principle: Let u and v be two solutions to the obstacle problem
in D, and assume that u ≥ v on the boundary ∂D, then u ≥ v in D, in fact

0 ≤ u− v ≤ sup
∂D

(u− v).

We will also need the following uniqueness result for the blow-up of the obstacle
problem, see [A] for proof.

Uniqueness of Blow-up. Let u be a solution of the obstacle problem, with
the blow-up of f ∈ C1,1, f0 = λ2(x2)2+ for λ ≤ 1√

2
. Then the blow-up limit of u is

unique.
The author of [A] also gives the following classification of blow-ups and shrink

downs.

Theorem 3. Let u solve the obstacle problem and let f0 = λ2(x2)2+ be a blow-up
of boundary data f .

(1) Then

u0 ≡ lim
r→0

u(rx)
r2

=
(±

√
1
2
− λ2x1 + λx2

)2

+
,

u∞ ≡ lim
r→∞

u(rx)
r2

=
(±

√
1
2
− λ2x1 + λx2

)2

+
,

where the existence of the limit is assured by the preceding Lemma. More-
over u∞ ≥ u0

(2) If u is a homogeneous global solution then

u =
(±

√
1
2
− λ2x1 + λx2

)2

+
.

3. Proof of the Main Theorems.

To prove Theorem 1 we only have to construct a non-homogeneous global solution
for each λ. However for simplicity of notation, and definiteness, we will construct
a non-homogeneous solution for λ = 1

2 , the argument is exactly the same for any
other 0 < λ < 1√

2
.

For λ = 1√
2

there exists only homogeneous global solutions. This is an easy
consequence of Theorem 3. By that theorem the blow-up and shrink-down must
be the same function and thus homogeneous by Weiss monotonicity function.

Proof of Theorem 1: Consider u = 1
4 (x1 + x2)2+, which is a solution to the

obstacle problem in B+
1 with its restriction to the boundary as boundary values.

Let uε be the solution to the obstacle problem with (1− ε)u as boundary values.
By the comparison principle we have

(6) uε ≤ u.

If we blow up uε, we have only two possible limits by Theorem 3. By (6) we must
have the solution with “-”-sign. This means that the blow-up of uε will be the
smaller function, and this is true for every ε > 0.

This means that Γuε will approach the x2-axis in an angle of approximately π/4.
We will also have 0 ∈ Γuε . The free boundary, Γuε , will also have a contact point
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ΓuεΓu

Π

x1

x2

Figure 1

with the fixed boundary at (1/
√

2,−1/
√

2). So the free boundary of uε will have
a point on the x1-axis. Denote that point xε, and its norm |xε| = rε. By the
comparison principle uε → u, and therefore rε → 0 by the non-degeneracy lemma.

Now make the following blow-up,

ũε(x) =
uε(rεx)

r2
ε

,

and note that xε/rε = (1, 0) ∈ Γũε . A subsequence of ũε will converge to a global
solution u0, with (1, 0) ∈ Γu0 . By Theorem 3 there is no homogeneous solution with
(1, 0) ∈ Γu. So we can conclude that u0 is a global non-homogeneous solution. ¤

Instability of larger solutions: We would like to point out that uε is a small
perturbation of u in B+

1 , but still the change in the normal derivative of Γu will
be uniformly large for each ε, that is Γu is not stable near the origin when u =
1
4 (x1 + x2)2+.

We will use Weiss monotonicity formula to prove the corollary, but first we need
a lemma.

Lemma 1. Let u be the homogeneous solution of the obstacle problem in B+
1 with

least Weiss energy, and prescribed boundary data f = λ2(x2)2+ on Π. Then the
normal of Γu is stable near the origin under small C1,1 changes in the boundary
values on ∂B+

1 , that leave the origin as a free boundary point.

Proof: If we make a small C1,1 perturbation of the boundary values and find a
solution uε corresponding to the perturbed boundary values. Then by the stability
of the Weiss energy under C1 changes in u we will get |ψ(1/2, u) − ψ(1/2, uε)| is
small. Then by the monotonicity of the Weiss functional we can deduce that the
blow-up of uε is a function with Weiss energy close to the Weiss energy of u. But
this will exclude that the blow-up of uε is the larger solution in Theorem 3. ¤

Proof of Corollary 1: If we have a solution of the obstacle problem whose blow-up
is the smaller solution in Theorem 3 with a free boundary whose normal isn’t stable
under small C1,1-changes in the boundary values. Then we can find a sequence of
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C1,1(∂B1
+)-functions gj with ‖gj‖C1,1 ≤ 1

j3 such that the change in the normal
of the free boundary at the origin is larger than ε under gj-perturbations of the
boundary values.

By making a blow-up uj(x) = u(jx)/j2 and a similar blow-up of the perturbed
functions we see that this contradicts the preceding lemma. Therefore Γu must be
stable. ¤

4. Stability Results in Higher Dimensions.

In the previous section we gained some understanding of the stability behavior of
the free boundary near the origin. We will show in this section that we can deduce
the same results even for higher dimensions.

The major problem is that there is no classification of global homogeneous solu-
tions in higher dimensions so we have to deduce our results directly from the Weiss
monotonicity formula.
Proof of Theorem 2: As in the proof of Corollary 1 it is enough to show that the
global homogeneous solutions with least Weiss energy are stable near the origin.

So let u be a homogeneous solution, with least Weiss energy Ψ(1, ·), among all
functions with the same boundary values on Π. Make a small C1,1-perturbation in
the boundary values, and call the perturbed function uε. Since Ψ(1, ·) is continuous
in C1-changes in its second argument it means that |Ψ(1, u)−Ψ(1, uε)| < ρ(ε), where
ρ(·) is the modulus of continuity of Ψ(1, ·).

The proof is now very simple, since uε → u in C1,α when ε → 0. We know that
Ψ(1, uε) → Ψ(1, u). But the monotonicity in Ψ(·, uε) we know that blow-ups of uε,
call them (uε)j must converge to a function (uε)0 with less Weiss energy Ψ(1, (uε)0)
in the unit ball. But since Ψ(1, u) is the least possible energy to have in the unit
ball with the same boundary values on Π as u we can deduce that the blow-ups
(uε)0 → u as ε → 0. ¤

5. Examples in R3
+

In this section we will give some examples of global homogeneous solutions in
R3

+. Let us begin with a trivial example.

Example 1: If the boundary value on Π is x2
2
6 + x2

3
6 . We have the polynomial

solution x2
1
6 + x2

2
6 + x2

3
6 .

Example 2: In the case described we can also find another solution simply by
writing the Laplacian in polar coordinates (r, φ, θ) and assume rotational symmetry,
u(x1, x2, x3) = u(r, θ). If u is homogeneous of second degree then ∆u = χΩu

reduces to an ordinary differential equation in polar coordinates. The homogeneous
solutions to the ODE are

u1(θ) = (1− 3 cos2(θ))
u2(θ) = 1

8 (1− 3 cos2(θ)) ln
(∣∣ cos(θ)− 1

∣∣)− 3
4 cos(θ).

Now for any θ0 ∈ (0, π/2) we can choose a and b in such way that

u(r, θ) =
{

r2

6 + ar2u1(θ) + br2u2(θ) if θ > θ0

0 if θ ≤ θ0

is a solution to the obstacle problem. The zero set of this function is a cone with
opening angle θ0, vertex in the origin and the central axis is the x1-axis.
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Example 3: Let us now turn to an example of a solution which is unstable. By
the previous example we can find rotational symmetric solutions with zero set as a
cone.

If we for instance take a ≈ 0.0775 and b ≈ 0.207 in the above equation we will
get a solution to the obstacle problem with zero set Ωc

u = {θ ∈ [−0.5, 0.5]}.
This solution is in fact a solution of the obstacle problem in any domain excluding

the negative x1-axis along which it has a singularity. In particular we can rotate the
solution around the x2-axis until the free boundary contains the positive x3-axis.
Restrict this rotated function to the upper half space and call it v.

This solution v will only have C1,1 boundary data, but the boundary data is a
strict super solution to ∆u = 1 (here we have to use the particular values for a and
b). It follows from the comparison principle that there exists another homogeneous
solution to the obstacle problem with those boundary data with the x1-axis in its
zero set. So we have at least two global homogeneous solutions with those boundary
data. The one with most Weiss energy will be unstable.

References

[A] J. Andersson, On the regularity of a free boundary near contact points with a fixed boundary.
Submitted.

[B] I. Blank, Sharp Results for the Regularity and Stability of the Free Boundary in the Obstacle
Problem. Indiana Univ. Math. J. 50 (2001), no. 3, 1077–1112.

[C] L.A. Caffarelli, The Obstacle Problem Revisited. J. Fourier Anal. Appl. 4 (1998), no. 4-5
383-402.

[CKS] L.A. Caffarelli, L. Karp, and H. Shahgholian, Regularity of a free boundary with
application to the Pompeiu problem . Ann. of Math. (2) 151 (2000), no. 1, 269-292.

[F] A. Friedman, Variational principles and free-boundary problems. Robert E. Krieger publish-
ing company, Malabar Florida, 1988 .

[Sh] H. Shahgholian, On quadrature domains and the Schwarz potential. J. Math. Anal. Appl.
171 (1992), no. 1, 61–78.

[SU] H. Shahgholian, N. Uraltseva, Regularity properties of a free boundary near contact
points with the fixed boundary. Duke Math. J. 116 (2003), no. 1, 1-34

[W] G.S. Weiss, A homogeneity property improvement approach to the obstacle problem. Invent.
Math. 138 (1999), no. 1, 23-50.

Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Swe-
den

E-mail address: johnan@math.kth.se

E-mail address: henriksh@math.kth.se


