FREE BOUNDARY REGULARITY FOR A PROBLEM ARISING
IN SUPERCONDUCTIVITY
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ABSTRACT. This paper concerns regularity properties of a free boundary aris-
ing in the mean-field theory of superconductivity. The problem is reminiscent
of the one studied earlier by two of the authors and L. Karp in connection
with potential theory. The difficulty introduced in this paper is the existence
of several patches, where on each patch the solution to the problem may have
different constant values. However, using a refined analysis, we reduce the
problem to the case of one-patch; at least locally near ‘regular’ free boundary
points. Using a monotonicity formula, due to Georg S. Weiss, we characterize
global solutions of a related equation. Hence earlier regularity results apply
and we conclude the C!-regularity of the free boundary.

1. INTRODUCTION

In analyzing the evolution of vortices arising in the mean-field model of pen-
etration of the magnetic field into super-conducting bodies, one ends up with a
degenerate parabolic-elliptic system (see [?] for details). A simplified stationary
model of this problem (in a local setting), where the scalar stream function admits
a functional dependence on the scalar magnetic potential, reduces to finding u such
that

(1.1) Au = uX{qu|>0}: u Z 0, in Bp(.’lfo),

where B,(x0) denotes the ball of radius p centered at { € R"), the equation is in
the sense of distribution, and appropriate boundary data are fulfilled.

Related problems have been studied in [?], [?], [?], [?]; see also the references
therein. However, less attention has been paid to the regularity nature of the
solution function v and the free boundary 8{|Vu| > 0}.

Existence of solutions of the Dirichlet Problem associated with this equation
was studied in [?], where the C1:l-interior regularity and the local finiteness of the
(n — 1)-dimensional Hausdorff measure of the free boundary was established.

In this paper, it is our prime goal to analyze the above problem in the context
of regularity theory. Using a refined analysis inspired by techniques introduced in
[?], we reduce the problem to the case of one-patch, near ‘regular’ free boundary
points. From here the (by now) classical results can be applied, to obtain the
desired regularity properties of the free boundary.
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2. DEFINITIONS AND KNOWN RESULTS

In most of the paper, we deal with functions u € C*'(B,(z0)), 0 < p < o0,
o € R™, which satisfy the differential equation

(2.1) Au = X{|vu>0}>
with
(2.2) [Vu(zo)| =0, |u(z) — u(zo)| < c(1+[af?),

where c is a fixed positive constant. We denote by P(c, p, zo) this class of functions.
The differential equation (2.1) is interpreted in the sense of distributions.
Also global solutions to (2.1)-(2.2) are denoted by P, i.e.

P = U m P(C7p7$0)

c>0p>0
for any zy € R™.
For the purpose of this paper, the most relevant results from the regularity theory
developed in [?], [?], is the following theorem.

Theorem 2.1. ([?] and [?]) For u € P(c,p,z0), the following uniform C:1-
estimate holds:
sup |Diju(z)| < C,
B, /2nN{|Vu|>0}

where C' is a constant depending only on ¢ and n.
Moreover, the free boundary 0{|Vu| > 0} has locally finite (n — 1)-Hausdorff
measure.

The proof given in [6] should be slightly changed (cf. [5]) to yield uniformly for
the class. However, the proof given in [5] works perfectly also in this case.

By Theorem 2.1, for all u € P(c,p,x0), Au = 1, in the classical sense, in the
interior of the closure of {|Vu| > 0}. In particular it will be convenient to define
Q¢ as the closure of the interior of {|Vu| = 0}, and Q = R™ \ Q°.

3. REGULARITY OF THE FREE BOUNDARY
Before establishing our main result, we need the following definition.

Definition 3.1. The minimal diameter of a bounded set D C R", denoted MD(D),
is the infimum of distances between pairs of parallel planes such that D is contained
in the strip determined by the planes.

Definition 3.2. The density function of Q¢ (at the origin) is defined by
MD(Q*nNnB
5,(u) = MPE N B,)
p

Theorem 3.3. There ezists a modulus of continuity o (0(0%) = 0) such that if
0p (1) > a(po) for some py < 1/2, then for u € P(c,1,20), the boundary 0{|Vu| >
0} is a C1 graph in B(0,copo?). Here cq is a universal constant, depending only on
¢, and the dimension n.

This theorem will be a consequence of lemmas presented in the following sections,
combined with Theorem III in [?].

It is, however, noteworthy that the regularity theory of almost all free boundaries
studied so far in the existing literatures share a common feature. Namely, one starts
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with classifying the so-called global solutions. These solutions come from the local
ones after rescaling for a closer look at the micro-local structure of the unknown set
(the free boundary). In order to scale the solutions in our problem, we need C':!-
regularity of the solution function w (to (1.1)). This property keeps the solution
invariant, i.e., the rescaled function is also a solution to (1.1), with Q replaced by
a scaled version of it. More important is though that the supremum norm remains
unchanged up to a (universal) multiplicative constant.

The classification of global solutions, in turn, is a non-easy task. Our prime goal,
will be to show that global solutions to (1.1) actually have only one patch, i.e. the
set {Vu = 0} has just one component. Once we have done this we can use [CKS]
to classify global solutions.

The novelty in this paper, besides treating a new problem with a wider applica-
tion, is the use of two completely different type of monotonicity formulas.

To apply Theorem 3.3 to solutions to (1.1) we need to use the following lemma.

Lemma 3.4. ([?], Lemma 10) Assume that u is a non negative solution to (1.1)
and xo € 0{|Vu| > 0}. Then u > 0.

Although in Theorem 3.3 we consider the case of constant right hand side (con-
stant in the set {|Vu| > 0}), our analysis works perfectly for solutions of equation
(1.1). The constant ¢o in the theorem will then depend on u(zg) as well. We leave
the small changes needed in this case to the reader, and continue our analysis in
the rest of this paper for the case of equation (2.1).

4. FURTHER DEFINITIONS AND PRELIMINARY RESULTS

Given a function u € P(c, p,xo), let us define the r-scaled function of u at zq as

(4.1) up(x) =

Set also

u(zo + r1) — u(Tg)

, 0<r<p, xz€ Bi(0).

Q ={xeR"; xg+rzeQ}.

By Theorem 2.1, {u, }o<r<, is a relatively compact family. By the Ascoli-Arzela
theorem, given any sequence of positive numbers {r} tending to zero, there is
a subsequence rp, — 0 such that u,, converges uniformly on compact sets to a
globally defined function

(4.2) uo = lim u,, € P.
k—o0

We refer to this function as blow-up of u at xy (with respect to the sequence {ry}).

Although blow-ups at a fixed point o € R™ might depend a priori on the se-
quence 7, — 0, we denote any blow-up at xzg by ug. This will cause no confusion
since we do not use several blow ups at the same time. Besides, by the analysis
that follows and Weiss’ energy decay estimate (Theorem 3 in [?]), we will eventually
show that for all ¢ fixed, u, is indeed convergent when r — 0.

If u € P, u, is defined for all » > 0, since the family {u,},¢ is also relatively
compact, we may consider blowing up at co. We denote any blow-up at co by -
As above, this will cause no confusion and eventually u, — 4o, when r — oco.

Lemma 4.1. If u € P(c, p,z0), then any blow-up ug at a free boundary point is
either:
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e q half space solution, i.e.,

uo(a) = 3l(z - o) 1%,

for some vy € S™1, or
e a Homogeneous, degree two polynomial P(x) with AP =1.

Remark 4.2. Due to the non-degeneracy of solutions (see [?]), i.e.

sup u > ar? + u(y), y € 9{|Vu| > 0},
Br(y)

blow-ups don’t vanish identically. Here the constant a depends only on the space
dimension.

Proof. (of Lemma 4.1) We apply the monotonicity formula of Alt, Caffarelli and
Friedman [?] to the positive and negative parts of a directional derivative of u. To
fix the notation, set

1 V(D,u)t|? V(D,u)"|*
(,0(7', v, u) = _4/ | ( )nflz / | ( )n,|2 )
7 JB.(z0) |T — mo| B.(z0) |T — Zo

where r > 0 and (D,u)* denotes the positive and negative parts (respectively) of
the directional derivative of u in the direction v € S"~!. Now the strong form of
the monotonicity lemma, says:

Remark 4.3. (See [5]) For ¢, u, and v as above we have
@' (r,v,u) > 0.

More exactly, if any of the sets supp(D,u)* N 8B, (2°) digresses from a spherical
cap by a positive area, then either ¢'(r) > 0 or ¢(r) = 0.

Fix a sequence r;, — 0 such that

up = lim wu,, .
k—o0

Since u,, converges in W?2?,
w(s,v,up) = kllg)lo o(8,v,ur,).
Using a change of variable we readily verify that
(1, v,u,) = @(r,v,u).
This and the monotonicity lemma imply
w(s,v,up) = klgrgo o(srr,v,u) == (0, v,u).

Hence, for any blow-up ug, (7, v, up) is constant with respect to r.

It thus follows from the strong form of the monotonicity formula (see above) that
either (r,v,ug) = 0 for all r and directions v, where in this case we immediately
conclude that ug is a half space solution, or 2¢ = (). The latter in combination with
Liouville’s theorem (applied to the second order partial derivatives of ug) implies
that wug is a polynomial of degree two. Finally, the homogeneity comes from the
fact that ug(0) = |Vue(0)| = 0. O

In the same way we can prove the following lemma.
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Lemma 4.4. If u € P, then any blow-up u at 0o is either: a half space solution
or a homogeneous, degree-two polynomial.

Using Remark 4.3 and the following
p(r,v,u0) = 9(0F, v,u) < p(r,v,u) < (0™, v,u) = (1, v, uc),

we can conclude as in the next proposition.

Proposition 4.5. For functions u € P the following hold.
o A blow-up ug at the origin is a half space solution if and only if
e(0T,v,u) =0, VYves" L
o If some blow-up uy at the origin is a half space solution, then any blow-up
at the origin is a half space solution.

e If some blow-up uoo of u at 0o is a half space solution, then u —u(xg) itself
is a half space solution, xo € €.

5. THE LOCAL STRUCTURE OF THE PATCHES
The main result of this section is the following theorem.

Theorem 5.1. Let u € P(c,1,20). Suppose that there is a sequence 1, — 0 such
that the blow-up ug of u, with respect to ry, is a half space solution. Then, there is
a p = p(u) >0 such that

Q°N By(zo) C {u=u(xo)}-

Recall that the blow-up ug was defined in (4.2).

The proof of this theorem will be divided into several lemmas. The first of them
is inspired by Lemma 4.2 in [?].

For the purpose of the next lemma we need the following definition. Given p > 0,
0<é6<1,ve S L define

C(p,d,v) = {me]R”;0<|m|§p, -V§—1+5}.

x
Jz|
Lemma 5.2. Assume that u € P(c,1,x0) and there exists a blow-up ug at xo that
is a half space solution, i.e.,
uo(a) = 5[ ) T
Then, there is p > 0 such that for all v € C(1, %, —v) NSt
2D,u —|Vul|?* >0  in B,(zo).
In particular, u is non-decreasing in B,(xo), in the direction of v, for all v €
C(1,%,—v) N Snt.
Proof. Tt follows from the hypothesis that
Dyug = (z-vo) v -v and |Vuol® = [(z - vo) )%
Hence, for all v € C(1,%,—19) N S™ 1,
2D,ug — |[Vuo|> >0 in By.
Fix a sequence r; — 0 such that

up = lim wu,,.
k—o0
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By uniform convergence, for all € > 0, there is kg € N such that for all k& > kg, and
veC(l,L —1)NS* ! we have

92
2D, ur, — |Vur,c|2 > —€ in Bj.
Since )
—A(2Dyur, — |Vur |?) = [Viu,, |2 > — I BiNQ,,
we are in position to apply the same argument as the one in the proof of Lemma
4.2 in [?] to conclude that there is a universal constant €y (independent of u,, and
v) such that e < ¢ implies
1
2D, up, —|Vu,|> >0, VzeB:, YveO(l, 3> ~%0) N st
as soon as we choose k big enough. Taking p = %, the lemma is proved. |

Lemma 5.3. Under the assumptions and notations of Lemma 5.2, for p as in
Lemma 5.2 we have

1
zo + C(p, 57’/0) C {u < u(zo)}.
Proof. For all (fixed) z € C(p, §,), the function
T u(zeg+ (1—7)x) 7€ (0,1)

is non-decreasing. Indeed,

%(u(wo + (1 —=7)z)) =—2-Vu(zo+ (1 —7)z) = |2|Dpu(zo + (1 — 7)),

where 1
—x
v=—e€C(l,=,—1) NS L
|.CL'| ( D) 0)
By Lemma 5.2, the derivative is non-negative and the lemma is proved. a

Lemma 5.4. Under the assumptions and notations of Lemma 5.2, there is p' > 0
such that

1
Zg +C(p’,§,1/0) c Q-

Proof. Suppose there is a sequence {z;} C C(1, %, v9) NQ such that py = |zx| — 0.
Fix a constant 7 > 0, such that for all k¥ € N,
1
Brpy(zk) = {93 ly — 2kl < 7pr } € C(1, 5, v0)-
By the quadratic growth of w in €, there is a sequence {y;} such that
Yk € Brp, (xk), vk,

and
(5.1) o (P61 Yr) — wpy (™ k) > 7,
for some constant v > 0, independent, of k.

Now, by Proposition 4.5, any blow up of u at xo is a half space solution. In

particular
liminfu,.(z) >0, VzeR".
r—0

On the other hand, by Lemma, 5.3,

1
limsupu,(z) <0, Vze C(c0,=,vn).
r—0 2
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Hence, for all z € C(o0, 1, 1),
ll_r)%ur(m) =0.

Since {pr ~'yi } and {p 'z} are two bounded sequences contained in C(2, £, 1),

Jm up, (e ™" yn) = upy (px ™' 21) = 0,
which is a contradiction to (5.1). O

Proof. (of Theorem 5.1) Let p" = %min(p, p'), with p as in Lemma 5.2 and p' as
in Lemma 5.4.

We claim that any point z € Q°NB,» can be joined to C(p/, %, Vo) with a segment
parallel to vy and contained in ¢. In fact, if the claim is not true, then we can
find two points, 1 € QN B, and z5 € Q°N B, such that

T2 —T1 = |IL'2 - .’L'1|I/0.
Now, take a small ball B.(z1) C 2 and denote by C the cone generated by z»
and B(z1). Move B.(z1) from z; to x5 along the axis of C, reducing its radius to

fit in C', until we touch for the first time 2¢. Let (y be a point of contact. There is
0>0and 0 <6< % such that
(52) C() + C(Q, (5, I/()) C Bp(.'L'o) naQ.
Since, by Lemma 5.2, D,u > 0 in B,(,,), for all v € C(1, 1, —10) N S™ !, then
CO + C(Q: 67 VO) C {u S U(CO)}
and
CO + C(Q: 57 _VO) - {’U, Z U(CO)} .

Let 4g be a blow up of u at (5. Then 4o can not be a polynomial solution since
Gip < 0in C(p,d,14) and G > 0 in C(p,d, —1p) and homogeneous polynomials of
degree two are even. Then, 4o should be a half space solution. In that case, the
same argument as the one in Lemma 5.4 shows that there is ¢’ > 0 and §’ > 0 such
that

CO + C(QIJ (SIJ VO) C Qe
This contradiction with (5.2) proves the theorem. O

The results of this section show that the regularity problem reduces to the one
treated in [?], at least near the seemingly-regular boundary points, i.e., boundary
points (o such that a blow-up ug at (o is a half space solution. Hence, earlier
regularity results apply (see [?]) and we conclude the C' regularity of the free
boundary claimed in Theorem 3.3.

6. GLOBAL SOLUTIONS WITH COMPACT ()¢

In this and the next section, we characterize global solutions. This characteri-
zation is useful for a further study of convexity properties. It is shown that any
global solution to equation (2.1), with quadratic growth, either solves

(61) Ay = X{u>a} > in R”,
u>a
for some a € R, or it is a degree two polynomial.

Equation (6.1) was treated by Caffarelli in relation with the obstacle problem,
see [?] and the reference there. The above shows that, as far as global solutions
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are concerned, (2.1) reduces to the one patch problem treated in [?]: Given u € P,
there is a € R, such that
Au=xq, inR"
u=a, |Vul =0, inQ°.
Theorem 6.1. Let u € P and assume that Q° is non empty and compact. Set
sup u(z) = a.
zEQ°
Then
u(z) >a, VzeR".
In particular, according to [?], Q° = {u = a} is convex.
Before we prove the theorem, we need several lemmas. Changing u by u — a, we
can assume, without loss of generality, that a = 0.

Lemma 6.2. Let u € P and assume that 2° is a non empty compact set. Further-
more assume

sup u(z) = 0.
zeQe
Then for a suitable choice of the origin, for oll x # 0 fized, the function
u(re)
(6.2) —5

is nondecreasing.

Proof. Denote by V the Newtonian potential of ¢, i.e.

cn
Ve = [ gyt
Qc

V is a bounded super-harmonic function in R™. Since V' is harmonic in 2, due
to the maximum principle there is at least one point (p € 2¢ such that

V() >V(z), VYVxeR".

Choose the origin at (p.

Since

Alu-V) =1

in the sense of distributions and all second order partial derivatives of u — V' are
bounded harmonic functions, the Hessian of u — V' is a constant matrix, by Liou-
ville’s theorem.

Hence u — V is a polynomial of degree two. Set

P(z) = u(z) — V(z) —u(0) + V(0).

Note that |VV(0)| = |Vu(0)| = 0. Hence P(0) = |VP(0)| = 0, this implies that
P is homogeneous.
Now consider the function

h(z) =z - Vu(z) — 2u(z).

h is continuous in R™ and for all x # 0 fixed,

4 (D) Ly

r2
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We will show that A is non-negative in R™. In fact
h(z) = —2u(z) >0, VzeN°.
On the other hand, by the homogeneity of P,
h(z) =z -VV(z) — 2V (z) + 2V (0) — 2u(0)

then
| llim h(z) =2V (0) — 2u(0) > 0.
&T|—00
Since h harmonic in , by the minimum principle, h is positive in Q. |

Corollary 6.3. Under the hypothesis of Lemma 6.2, for oll k > 0, the set {u < k}
is star-shaped with respect to the origin.

Remark 6.4. The family u,(z) = u(rz)/r? indexed by r is not relatively compact,
since a priori u(0) # 0. Therefore, the monotonicity given by Lemma 6.2 doesn’t
mean that the blow up at the origin is convergent.

Lemma 6.5. Let u € P and assume (6.2).
Then any blow up ug of u at T € OAg, where Ag := Q°N{u = 0}, is a half space
solution.

Before we prove this lemma, we need a result concerning a balanced energy
functional, introduced by G.S. Weiss in [?]. We shall use a slightly different version
of Weiss’ formula. Define

®(r,u,z0) = r_”_2/ (|Vul® +2u) —r="73 / 2u?.
B, (z0) 9Br(z0)
The following result is basically due to G.S. Weiss, see [?]. For the reader’s
convenience, we also give a proof.

Lemma 6.6. (Weiss) Let u € P and assume (6.2).
Then for all g € R™, ®(r,u,xq) is non decreasing with respect to r.

The hypothesis (6.2) is crucial for the proof of Lemma 6.6. The lemma, fails if
we replace u by u — u(zo), unless u(zg) > 0. We can use this lemma in conjunction
with blow-ups only when zo € Ag. Nevertheless, it is convenient to write ®(r, u, xo)
in terms of
u(zg + rz)

2

uy(z) =

s r > 0.

In that case

®(r,u,z0) = / (IVur|® + 2u,) —/ 2u,.2.
Bl(O) 831(0)

Proof. (of Lemma 6.6) We shall prove that the derivative of ®(r,u, zo) with respect
to r is non-negative.
Indeed,

®'(r) = / (2Vu, - Vu,' + 2u,’) — / du,u,’
B 9B,
where

1
u,' (x) = dirur(x) == (Vuy - — 2u,) .
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Using integration by parts,
/ 2Vu, - Vu,' =/ 2(Vu, - n)u,’ —/ 2Au,u, .
B1 dB1 B1

Vu, -z =ru,'(z) + 2u,

Since

and 7 =z on 0B,
' (r) = / 2r(u,)? +/ 2(1 — xa, )u,'.
0B1 B1

The first integrand above is non-negative. The second one is also non-negative since
we have assumed u(z) <0 for all z € Q°. O

Since u,' = 0 if and only if u is homogeneous of degree two, the above expression
leads to the following important conclusion, already found in Weiss’ paper for the
obstacle problem.

Corollary 6.7. (Weiss) Under the hypothesis of Lemma 6.6, the function
v(z) = u(zo + )
is homogeneous of degree two if and only if ®(r,u,xq) is constant with respect to r.

Remark 6.8. Let P be a degree-two homogeneous polynomial whose Laplacian is
1. Then ®(r, P,0) does not depend on r nor on P. Hence we set

1
an=<I>(r,U,0)=—/ z3.
2 /B,

where z; is the first coordinate component of z € Bj.

This is twice the value of ®(r,U,0), when U is a half space solution,

o(r,U,0) = %.

Remark 6.9. Let u € P and zo € 0. Since by uniform convergence,
(I)('f', U0,0) = q)(0+7u7x0) < (I)(T,U,.'IJ()) < q)(OO_,U,.CC(]) = q)(ra u0070)

and any blow up or blow down is homogeneous, we are left with only three possi-
bilities

(I)(O+,U,JL'0) = Q’(OO_,’LL,.Z'O) = %7
or
®(0",u, 1) = % and ®(co™,u,z0) = Qn,
or

®(r,ug,0) = P(c0™, u, o) = ap-

Proof. (of Lemma 6.5) If ug is a polynomial, then (0%, u, o) = ay,. Since ay, is
the maximum value of ®(r,u, xq),

b(r,u,z0) = an, Vr>D0.

This means that u itself is a polynomial. This contradicts the assumption ¢ #
0. O
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Proof. (of Theorem 6.1) If 0 € 0{u < 0}, then 0 € 9A¢. By Lemma 6.2 and Lemma
6.5,

. _ —un > 0.
Tll_l}T(l) ur () %r;% ur(z) =up >0

The theorem is proved in this case.

If 0 is an interior point of {u < 0}, the interior of {u < 0} is connected, by
Corollary 6.3.

By Lemma 6.5 and Lemma 5.4, A¢ contains a truncated cone. Since v is sub-
harmonic in the interior of {4 < 0} and the interior of Ag # @, by the maximum
principle,

{u <0} ={u=0}.

This completes the prove of the theorem. O

7. GLOBAL SOLUTIONS WITH UNBOUNDED {2°¢

Theorem 7.1. Let u € P such that Q2° is non empty and unbounded. Then, there
is a € R such that w > a and Q° = {u = a}. In particular, according to [?], Q° is
convez.

Proof. Suppose that some blow up uy, of u at infinity is a half space solution. Then,
by Proposition 4.5, iii), u — u(xo) is a half space solution, for any xzo € Q2¢. And
the theorem follows in this case.

Now, if no blow-up at infinity is a half-space solution, then by Lemma 4.4 we may
assume that any blow-up us is a polynomials. The assumption Q¢ # @) prevents u
of being a polynomial (by Liouville’s theorem).

Since ¢ is unbounded, there exists a sequence z7 € 01 tending to oo. In this
case we may scale by R; = |z7| so as to obtain, in the limit, a global solution with
a free boundary Z on the unit sphere. By homogeneity then the ray rZ must lie in
the free boundary. It thus follows that Deus =0, for e = £/|%|. Hence

0 S 90(7.7671’&) = (p(m7e7 u) = QO(].,G, UOO) = 07

and we conclude that D.u doesn’t change sign for e = /||, we assume D.u > 0,
otherwise we replace e by —e. Now similar to analysis in [?] we translate u(z)—u(z)
(for some zo with B,(z9) C {|Vu| = 0}) in the direction e and obtain an (n — 1)
dimensional problem; we let u., now denote the translated limit function.

First, suppose the lower dimensional function u is either a half space solution,
or falls into the hypotheses of Theorem 6.1. Then the lower dimensional solution
is convex and non-negative. Since D.u > 0 we conclude u > 0 (or more correctly
u(z) —u(zo) > 0).

Due to the convexity of uq,, positivity of u, and that D.u > 0 we must have
{|Vu| = 0} is connected. Hence we are reduced to the case of u = u(x¢) in the set
{|Vu| = 0}, and we can apply [5] to conclude u is convex.

Next, if the lower dimensional solution, u.., is neither of the above it must
fall into the third category analyzed above. Hence we repeat our argument and
translate uy, again in a new direction and reduce the dimension further. Finally,
by induction, we need to classify the one dimensional solutions. However, the one
dimensional problem is solved by z?/2, (max(0,z1))?/2, or two separated solutions
of the latter. Obviously any rotation of these are also possible solutions. And these
are all nonnegative solutions. |
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8. PROOF OF THEOREM 3.3

Now the proof of Theorem 3.3 follows in the same way as that of Theorem III in
[5]. In what follows we’ll explain the minor changes needed in the proof of Theorem
III in [5] so as to adapt it to our case.

By the classification of global solutions in our case, we already have proven that
the global solutions of our problem coincide (in nature) with that of [5] and hence
Lemma 6.2 in [5] follows in our case too. A similar statement as that of Lemma
6.2 in [5] works also for our case with the minor change of [5; (6.2)] to

sD.u — |Vul?;

cf. Lemma 4.2 in that paper and its proof. It is noteworthy that all the above
analysis (§4 —§7) seem to reduce the problem to show that Lemma 5.2 in our paper
holds in a uniform fashion for the class. Once we have this we now that u does not
change sign, the set {|Vu| = 0} is connected and the free boundary 9{|Vu| > 0} is
locally (in a uniform neighborhood, depending on the modulus of continuity o(r))
a Lipschitz graph and the rest now follows as in [5]. a
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