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Abstract. In this paper we study the question of uniqueness of
an inverse problem, arising in the (thermal) linear and/or nonlin-
ear potential theory. The overdetermined problem we’ll study is
represented by(

div(|∇u|p−2∇u)−Dtu− χΩ + µ
)
u = 0,

where

supp(µ) ⊂ Ω ⊂ Rn × (0,∞), 1 < p <∞, µ ∈ L∞,
and Ω ∩ {t = τ} is bounded for τ > 0.

The problem has applications in shape-recognition in under-
ground water/oil recovery, subject to shape-change during time
intervals. The particular case u ≥ 0, Dtu ≥ 0 is an example of the
well-known Stefan problem with nonlinear governing equation.
Draft version August 16, 2001.

1. Introduction

1.1. Problem setting. Suppose we are given two (unknown) domains
Ω1,Ω2 in Rn × (0,∞), with bounded t-sections, i.e., Ωi ∩ {t = τ} is
bounded for all τ ≥ 0. Assume also both domains enjoy the property
that their exterior thermal volume-potentials, with uniform distribu-
tion, coincide outside their union as well as at time t = 0. Can we
conclude that Ω1 = Ω2? Obviously a question of such a general nature
is very hard to answer and one expects to find examples violating the
above conclusion. This would then suggest to restrict the problem to
the class of domains having certain geometric configurations, such as
convexity or starshapedness in the space variables, say. These restric-
tions have successfully been considered in the linear elliptic case by
many mathematicians in the eastern part of the Europe; see [I1-2], [P-
O-V], and the references therein. On the other side both the parabolic
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and nonlinear cases have gain little favor. This of course depends on
the peculiarity that nonlinear/parabolic case introduces.

For the above domain-problem, in the elliptic case, there is a dif-
ferent approach, based on partial differential equations [G], [S], [B-S].
Interestingly, this approach leads to free boundary problems of obstacle
type in the absence of obstacle. To explain this in more details let us
set

UΩ(x, t) =

∫ ∫
K(x− y, t− s)χΩdyds,

where
K(z, τ) = (4πτ)−n/2 exp

(
−|z|2/(4τ)

)
,

for τ > 0, and K(z, τ) = 0 for τ ≤ 0. Next suppose we are given the
domains Ω1,Ω2 such that

UΩ1(x, t) = UΩ2(x, t), in R
n × [0,∞) \ (Ω1 ∪ Ω2).(1.1)

Now let us set U(x, t) = UΩi(x, t) in Rn × [0,∞) \ Ωi with i = 1, 2.
Obviously this definition is consistent due to the assumption (1.1).
Next, extend U to the Rn × [0,∞) as a continuous function, and set
−µ = ∆U −DtU . Then µ has support in Ω1∩Ω2. Since the potentials
UΩj are C1 in the spatial variable we can assume that this continuation
is C1 in the spatial variables and in some neighborhood of ∂Ωi ∩ Ωj

(i 6= j). Finally, defining uj = U − UΩj , for j = 1, 2, we see that uj
satisfies the following overdetermined problem

∆uj −Dtuj = χΩj − µ in Rn+1
+ ,

uj = 0 in Rn+1
+ \ Ωj,

uj(x, 0) = 0,
suppµ ⊂ Ωj,

(1.2)

where
R
n+1
+ = Rn × (0,∞),

and the differential equation is in the weak or distributional sense.
This new formulation gives us a better starting point, since the en-

tire machinery of partial differential equations are now available. An-
other, and a more important, advantage of this formulation is that
we can now consider general operators, linear as well as nonlinear.
This formulation, subject to the restriction u ≥ 0, is also known as a
variational inequality or complementary problem, expressed in Euler-
Lagrange equations.

It is also noteworthy that (1.2), with or without the non-negativity
assumption u, appears in several applications such as mathematical
physics, fluid dynamics, mathematical finance (American put option),
filtration problem in reservoirs, and many other problems.
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1.2. Some basic questions. With this formulation at hand one can
ask several questions concerning existence, regularity and stability as
well as geometric properties inherited by the solutions.
Q1: Given a bounded function µ(x, t) ≥ 0 with compact support, can
we find a domain Ω admitting a solution u to (1.2)?

Readers, familiar to the theory of variational inequality, will see im-
mediately that we can, indeed, solve the problem provided the function
µ is concentrated enough. In other words if the source function µ is
large enough at its support. The only difference between our problem
(1.2) and the standard parabolic variational inequality (see [F]) is the
extra requirement on the support of µ. It is also noteworthy that vari-
ational techniques produce nonnegative unique solution, which is not
required by our problem.
Q2: A more general problem is the consideration of the initial data
u(x, 0) = f(x) with f not necessarily zero, and a weight function
g(x, t) > 0

∆u−Dtu = g(x, t)χΩ − µ in Rn+1
+ ,

u = 0 in Rn+1
+ \ Ω,

u(x, 0) = f(x),
suppµ ⊂ Ω.

(1.3)

The reader should notice that when the function µ can be split into
two parts, one supported in Ω and the other one supported on {t = 0}
then it automatically creates the initial data mentioned above. In the
above, one may also allow the source functions µ to be identically zero,
provided f 6≡ 0.

An interesting case is when µ = 0, g = 1, and f(x) is a multiple of
the Dirac mass concentrated at the origin, Cδ0(x) (C > 0). Obviously,
if we could find such a domain Ω and a solution u to (1.2), then using
integration by parts (Green’s identity) we can have the mean value
property∫ ∫

K(x− y, t− s)χΩ dyds = CK(x, t) (x, t) 6∈ Ω,

where K is the fundamental solution introduced earlier. Observe that
for t < 0 both sides of the above equality are zero.
Q3: Other questions such as the regularity of the solution u near the
boundary, away from the support of µ, is also of fundamental impor-
tance. Indeed, by classical results, one knows that u ∈ C1,α

x ∩ C0,α
t

(0 < α < 1), locally and away from the support of µ, (actually also on
the support of µ provided µ is a bounded function). A question that
arises directly is whether u ∈ C1,1

x ∩ C
0,1
t . When, in addition to (1.2),
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u ≥ 0 then one can apply Harnack’s inequality to obtain this optimal
regularity. A recent result of the second author, L. Caffarelli, and A.
Petrosyan [C-P-S] shows that even without the non-negativity assump-
tion for u one can deduce the optimal regularity mentioned above.
Q4: A final question we’d like to address is the question of the regular-
ity of the so-called free boundary ∂Ω away from the support of µ. The
particular case u ≥ 0 and Dtu ≥ 0, which amounts to the melting of ice
(the Stefan problem), has been considered earlier by several authors.
It is known [C] that for (x, t) ∈ ∂Ω there is a universal neighborhood
Qr(x, t) such that ∂Ω is regular, provided the complement of Ω is thick
enough near the point (x, t).

1.3. The p-parabolic case. To come back to the main topic of this
paper ”nonlinear potential theory”, we depart from the formulation
given in (1.3), and consider a more general type of operators with
power-law nonlinearity. Namely, the p-parabolic operator. In this case
we’ll have the following problem: For given bounded functions µ, g > 0
and f find

u ∈ C(0, T ;L2(Rn)) ∩ Lp(0, T ;W 1,p(Rn)); for all T > 0

(see [D; page 2 and 7] for a definition of these spaces) such that
∆pu−Dtu = g(x, t)χΩ − µ(x, t) in Rn+1

+ ,
u = 0 in Rn+1

+ \ Ω,
u(x, 0) = f(x),
suppµ ⊂ Ω,

(1.4)

where

∆pu = div(|∇u|p−2∇u), (1 < p <∞).

Here the differential equation is in the following weak sense[
−
∫
Rn
uv
]t=T
t=0
−
∫ T

0

∫
Rn

(|∇u|p−2∇u · ∇v − uDtv) dx dt

=
∫ T

0

∫
Rn

(gχΩ − µ) v dx dt ,
(1.5)

for all T > 0 and any function

v ∈ W 1,2(0, T ;L2(Rn)) ∩ Lp(0, T ;W 1,p(Rn))

(see [D; page 2 and 7] for a definition of these spaces).
We refer the reader to the book of E. DiBenedetto [D] for back-

grounds about this operator. The basic properties that we will require
for any operator, in order for our technique to go through, is the weak
maximum principle and the rotation invariance in x. We also need to
find barriers such as that in Lemma 2.2, below. The strong maximum
principle (Lemma 2.3 below) is then obtained as a consequence of a
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barrier argument. Observe that even though there is no strong max-
imum principle for the p-parabolic operator we obtain this using the
weak maximum principle and a barrier function. The existence of the
barrier function, in turn, is due to the positivity of g.

2. Uniqueness

The question of uniqueness to problem (1.4), provided a solution
exists, is the main topic of our study. In general, this is a very hard
question and by no means elementary; at least our experiences say so.
In the elliptic case such questions have been studied very thoroughly
during several decades. There have also been several successful ap-
proaches to the study of the uniqueness property. It is our intention
in this section to apply some of the techniques, adopted and modified
from the elliptic case; see [B-S].

By imposing geometric conditions, such as convexity, we hope to be
able to prove some uniqueness results for our problem.

An undesirable situation that may happen with solutions to (1.4) is
the case when locally the boundary is flat in t-direction. By this we
mean that the solution behaves like −(t − t0)+ near a point (x0, t0) ∈
∂Ω. This behavior is usually avoided by a simple assumption such as:
For each r > 0, and small enough, we assume

sup
Q−r (x0,t0)

u > 0 ∀ (x0, t0) ∈ ∂Ω,(2.1)

where Q−r (x0, t0) = B(x0, r)× (−r + t0, t0). The reason for this state-
ment is the non-degeneracy lemma below (Lemma 2.4). Also, in the
presence of strong maximum principle for subsolutions (e.g., when
p = 2) this assumption is superfluous.

Notation: We set Ωi(τ) = Ωi ∩ {t = τ} and recall that Ω1(τ) ∩Ω2(τ)
(for τ > 0) is assumed to be convex in this paper. For a point

(x1, t1) ∈ Ωi(t
1) ∩ ∂Ωj(t

1), (i 6= j; i, j = 1, 2)

we denote by Π(x1, t1) a supporting plane (which might not be unique)
to Ω1(t1) ∩ Ω2(t1) at (x1, t1). We also denote Π+(x1, t1) to be the
n-dimensional half-space in Rn × {t = t1} that has Π(x1, t1) as its
boundary and such that it doesn’t intersect the set Ω1(t1) ∩ Ω2(t1).
Now for (x1, t1) ∈ Ωi(t

1) ∩ ∂Ωj(t
1), (i 6= j) we set

di(x
1, t1) = sup dist

(
(x, t1),Π(x1, t1)

)
,

where supremum has been taken over all points

(x, t1) ∈ Π+(x1, t1) ∩ Ωi(t
1)
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and all possible Π(x1, t1) (in case Π(x1, t1) is non-unique). Here, the
distance is the usual Euclidean one in Rn. We also set

di(t
1) = sup

(x,t)

di(x, t),

where supremum has been taken over all possible

(x, t) ∈ Ωi(t) ∩ ∂Ωj(t) : 0 < t ≤ t1, (i 6= j).

Theorem 2.1. Let µ be a bounded function with compact support and
suppose that functions uj ∈ C(0, T ;L2(Rn+1)) ∩ Lp(0, T ;W 1,p(Rn+1))
(1 < p < ∞; j = 1, 2) are solutions to (1.4), with g ≡ 1, and Ωj(τ)
bounded, for all τ ≥ 0. Assume moreover that each Ωj is non-decreasing
in t, Ω1(τ)∩Ω2(τ) is convex for each τ > 0, and (2.1) is verified. Then
Ω1 ≡ Ω2 and u1 = u2.

It is known, that solutions to (1.4) are C1,α
x ∩C

0,α
t in Rn+1

+ , for some
0 < α < 1, j = 1, 2; see [D].

First we need to prove some lemmas. For simplicity we set q =
p/(p− 1) (the conjugate of p).

It is well known that the strong maximum (and comparison) principle
fails for the p-parabolic equation. The standard Hopf’s boundary point
lemma also fails for the p-parabolic case. However, in presence of a
positive right hand side one may introduce barriers that can help us to
prove such results. Here is how we do it.

Lemma 2.2. (Hopf’s boundary point lemma) Let Qr,τ = Br × (0, τ)
be a cylinder in Rn+1, where Br is the ball of radius r and center at the
origin. Let u(x, t) ∈ C1,α

x ∩ C0,α
t (Qr,τ ) (0 < α < 1) satisfy u ≤ 0 and

∆pu−Dtu ≥ γ, for some γ > 0. Suppose also there is a point z ∈ ∂Br

such that u(z, τ) = 0. Let also ν be any unit (spatial) vector on ∂Br at
(z, τ), directed inward Br. Then ∂u

∂ν
(z, τ) < 0, provided r << τ . Indeed

τ >
1

q

( γ
2n

)1/(p−1) 2rq

3γ
,(2.2)

will suffice.

Proof. Define the function h(x, t) = A(|x|q − rq) − B(t − τ), where

A = 1
q

(
γ
2n

) 1
p−1 and B = 3

2
γ). One readily verifies that ∆ph−Dth = γ.

Thus in Qr,τ , ∆ph−Dth ≤ ∆pu−Dtu.
It is obvious, that h = −B(t − τ) ≥ 0 ≥ u on ∂Br × (0, τ ] and

h = A(|x|q−rq)+Bτ ≥ −Arq+Bτ ≥ 0 ≥ u on Br×{0}, provided (2.2)
is satisfied. In particular h ≥ u on ∂pQr,τ (parabolic boundary). Hence
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by comparison principle1 h ≥ u in Qr,τ . Since h(z, τ) = u(z, τ) = 0, we
obtain

∂u

∂ν
(z, τ) ≤ ∂h

∂ν
(z, τ) = Aqrq−2z · ν = −Aqrq−1| cos(z, ν)| < 0.

As a consequence of the above lemma we obtain the strong maximum
principle whose obvious proof is omitted.

Lemma 2.3. (Strong Maximum Principle) Let α, γ be given constants
with 0 < α < 1, and γ > 0, and D ⊂ Rn+1 be an open set. Suppose
u(x, t) ∈

(
C1,α
x ∩ C

0,α
t

)
(D) satisfy ∆pu−Dtu ≥ γ in D. Then u doesn’t

attain a local maximum value in D.

Lemma 2.4. Recall the hypotheses in Theorem 2.1, and assume, for
some t1 > 0, Ω1(t1)\Ω2(t1) 6≡ ∅. Fix (x1, t1) ∈ Ω1(t1)∩∂Ω2, and define

T = T (x1, t1) :=
{

(x, t) : x ∈ Π(x1, t1), 0 < t ≤ t1
}
,

where Π(x1, t1) denotes a supporting plane to the convex set Ω1(t1) ∩
Ω2(t1) at (x1, t1). Then

sup
T
u1 ≥

1

q
dq1(x1, t1).

The same conclusion holds for u2 analogously.

Proof. Let (z1, t1) ∈ ∂Ω1 \ Ω2 be a point that realizes the distance
d1(x1, t1). Let also (z, τ) ∈ Ω1 \ Ω2 be a point close to (z1, t1) and
such that u1(z, τ) > 0 (the existence of such a point is guaranteed by
assumption (2.1)). Using translation and rotation around the t-axis,
along with the convexity of Ω1(t1) ∩ Ω2(t1) and the non-decreasing
character of the domains Ωi (i = 1, 2) in the t-variable, we may, as we
do, assume that

Ω1 ∩ Ω2 ∩ {t < t1} ⊂ {x1 < 0} .
Set v(x) = (1/q) |x1 − z1|q, where x1, z1 are the first coordinate of x

and z, respectively. Next, one verifies that ∆pv −Dtv = 1 and

v(x) ≥ 0 > w(x, t) := u1(x, t)− u1(z, τ)

2

on ∂D\{x1 = 0}, where D is the connected component of Ω1∩{x1 > 0}
with (z1, t1) on its boundary. Now, if also

v(x) ≥ w(x, t), on {x1 = 0},
1A proof of this for cylindrical domains can be found in [KL]. The same proof

works for domains that are increasing in time. Cf. also [D; Lemma 3.1].
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then by the comparison principle v ≥ w in D. This contradicts the
simple fact that v(z) = 0 < w(z, τ) = u1(z, τ)/2. Therefore we con-
clude

v ≤ sup
D
u1(x, t)− u1(z, τ)

2
≤ u1(x1, t1)− u1(z, τ)

2
.

Now, using (2.1), we let (z, τ)→ (z1, t1), to arrive at the conclusion of
the lemma.

By varying the boundary point (x1, t1) in the setD′ := ∂Ω2∩Ω1∩{t ≤
t1}, we can conclude

sup
D′
≥ 1

q
dq1(t1).(2.3)

Lemma 2.5. Under the hypotheses of Theorem 2.1 and Lemma 2.4,
suppose Ω1(t1) 6= Ω2(t1) and d1(t1) ≤ d2(t1), for some t1 > 0. Then
there exists (z0, t0) ∈ Ω1 \ Ω2 (t0 ≤ t1) such that

−u1(z0, t0) >
1

q
dq1(t1) and |∇u1(z0, t0)| = 0.

Similar conclusions hold if d2(t1) ≤ d1(t1), analogously.

Proof. Let D := (Ω1 \ Ω2) ∩ {t ≤ t1}, a = − infD u1 ≥ 0 and (z0, t0) ∈
Ω1 \ Ω2 be such that u1(z0, t0) = −a. Then in the weak sense

∆p(u1 + a)−Dt(u1 + a) ≤ ∆pu2 −Dtu2 in Ω2 ∩ {t ≤ t1},
and u1 + a ≥ u2 on ∂p

(
Ω2 ∩ {t < t1}

)
.

Therefore, by the comparison principle u1 + a ≥ u2 in Ω2 ∩ {t < t1}.
Also in (Ω1 \ Ω2) ∩ {t < t1}, u2 = 0 and u1 + a ≥ 0. We thus observe
that

u1 + a− u2 ≥ 0 in (Ω1 ∪ Ω2) ∩ {t ≤ t1}.(2.4)

In particular u2 ≤ a in (Ω2 \ Ω1) ∩ {t ≤ t1} and consequently by the
assumption (2.1) we must have a > 0. Hence sup

Ω2\Ω1∩{t<t1}
u2 ≤ a. We

now prove, that

sup
Ω2\Ω1∩{t<t1}

u2 < a.(2.5)

Suppose on the contrary that there is a point (z, τ) ∈ Ω2 \ Ω1 such
that u2(z, τ) = a. Then by (2.4), u1 + a− u2 ≥ 0 in Ω2, and therefore
u1 +a−u2 has a minimum value at (z, τ), and consequently a vanishing
gradient at this point. Since (z, τ) ∈ Ω2 \ Ω1, also u1 must have a
vanishing gradient at (z, τ). Therefore we conclude that |∇u2|(z, τ) =
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0. By the non-decreasing property of Ω1 and Ω2 we may take a cylinder
Q in Ω2\Ω1 with (z, τ) on its boundary and apply Lemma 2.2 (to u2−a)
to obtain a contradiction. This proves (2.5).

Now (2.5) in conjunction with (2.3) implies

a = −u1(z0, t0) > sup
Ω2\Ω1∩{t<t1}

u2 ≥
1

q
dq2(t1) ≥ 1

q
dq1(t1),

which proves the first part of the lemma. To prove the second state-
ment, observe that by (2.4) u1 +a−u2 ≥ 0 in Ω1. Also by the definition
of a and since (z0, t0) /∈ Ω2 we may conclude that u1 + a − u2 has a
minimum value at (z0, t0) and thus ∇u1(z0, t0) = ∇u2(z0, t0) = 0.

Remark 2.6. We remark that if Ω1(T ) 6= Ω2(T ), for some T > 0, then
min(d1(T ), d2(T )) > 0. Indeed, if min(d1(T ), d2(T )) = 0 then Ω1(T ) ⊂
Ω2(T ) (or the reverse). To see this observe that by (1.5)∫

Rn×T
u1 +

∫ T

0

∫
Rn

gχΩ1 =

∫
Rn×T

u2 +

∫ T

0

∫
Rn

gχΩ2 .(2.6)

Next Ω1(T ) ⊂ Ω2(T ) can be used in combination with the comparison
principle to conclude u1 ≤ u2 in Ω2 ∩ {t < T}. Hence (2.6) can be
reduced to ∫ T

0

∫
Rn

gχΩ1 ≥
∫ T

0

∫
Rn

gχΩ2 .

Since g > 0, we have a contradiction.

Proof of Theorem 2.1. Suppose the statement in the theorem
fails. Then there exists t1 > 0 such that the symmetric difference
Ω1(t1)4Ω2(t1) is nonempty.

By Remark 2.6 we may, as we do, assume 0 < d1(t1) ≤ d2(t1). Now
by Lemma 2.5, there is a point (z0, t0) ∈ Ω1 \ Ω2 (t0 ≤ t1) such that

a := − inf
(Ω1\Ω2)∩{t<t1}

u1 = −u1(z0, t0) >
1

q
dq1(t1),

|∇u1(z0, t0)| = 0.(2.7)

By translation we may assume that (z0, t0) is the origin. By the
convexity of Ω1(t0) ∩ Ω2(t0) and by the non-decreasing property of Ω1

and Ω2 we also assume, using rotation around the t-axis and translation
in t-direction, that Ω1∩Ω2∩{t < 0} ⊂ {x1 < 0}. Now, choose (z, τ) ∈
∂Ω1(0)\Ω2(0) with largest distance to {x1 = 0}. Then z1 ≤ d1(t1) and
by (2.7), zq1/q < a. Let ε > 0 be such that (z1 + ε)q/q ≤ a, and define

w(x, t) = u1(x, t) + a , v(x, t) = (x1+ε)q−εq
q

.
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Then ∆pw−Dtw = ∆pv−Dtv = 1 in D := Ω1∩{x1 > 0}∩{t < 0}.
It is obvious that w ≥ v on ∂pD, because w ≥ 0 = v in {x1 = 0} and
w = a ≥ v on ∂Ω1 ∩ ∂D. Then we’ll have (by comparison principle)
w ≥ v in D. Since also w(0, 0) = 0 = v(0, 0), it follows that

∂w

∂x1

(0, 0) ≥ ∂v

∂x1

(0, 0);

i.e.

∂u1

∂x1

(0, 0) ≥ ∂v

∂x1

(0, 0) = εq−1,

which contradicts (2.7). This proves the theorem in the case d1(t1) ≤
d2(t1). If d2(t1) ≤ d1(t1) we interchange Ω1, Ω2 and repeat the same
argument. The proof is now completed.
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