A SINGULAR PERTURBATION PROBLEM FOR THE
p-LAPLACE OPERATOR

D. DANIELLI, A. PETROSYAN, AND H. SHAHGHOLIAN

ABSTRACT. In this paper we initiate the study of the nonlinear one phase
singular perturbation problem

div(|Vus|P~2Vu®) = Be(u®), (1<p< o)
in a domain Q of RN. We prove uniform Lipschitz regularity of uniformly
bounded solutions. Once this is done we can pass to the limit to obtain a
solution to the stationary case of a combustion problem with a nonlinearity of

power type.
The case p = 2 has been considered earlier by several authors.

1. INTRODUCTION
Our objective in this paper is to study the singular perturbation problem
(P:) Apus = B (u®), u® >0

in a domain Q of RV . Here, for 1 < p < oo, A, denotes the p-Laplace operator,
ie. Apu = div(|Vu[P~2Vu). We recall that a solution to (P.) is a function u €
WhP(Q) N L*°(Q) such that

(1.1) / |Vus[P=2Vuf - Vpdr = —/ pB:(u®) dzx
Q

for all ¢ € C§°(2). We require . to be Lip(R) and to satisfy

(1.2) 0<p6: < éX(O,s) and / Be(s)ds =

for positive constants A and M. In particular, these conditions are fulfilled when
the functions B, are constructed from a single nonnegative Lipschitz function §
supported in [0, 1] setting

(1.3) pets) = 25 (2)

Although our analysis applies to a general type of operators, as the ones considered
in [To] of the form div(A(z,u, Vu)), for simplicity and clarity of the arguments we
focus on the specific form of the p-Laplacian A,,.

The motivation of the study in this paper comes from the applications to the
one-phase case of the combustion problem, appearing in the description of laminar
flames as an asymptotic limit for high activation energy, that corresponds to the
limit as € — 0 in (P.). For the case p = 2 there is an extensive study of the problem
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and more or less a complete resolution of it; see [BCN], [LW] for the elliptic case
and [CV], [Ca], [CLW1], [CLW2], [CK], [D] for the parabolic one. However, the
nonlinear case, addressed here, has never been considered earlier. This might partly
depend on the lack of an established theory for the p-Laplace operator, and partly
on the fact that some of the earlier techniques fail in the absence of linearity.

We show that, in a sense, the limit of (P.) as € — 0 is a free boundary problem

{ Apu=0 in {u>0}

(P) [Vul|=c¢ ond{u>0}nNQ

with ¢ = (I%M )1/P. Namely, the main result of this paper (Theorem 4.3 in Section
4) asserts that the uniform limits u of u® have the asymptotic development

p 1/p
uw) = (L00) (o= 20, +offa = o,
near g € 0{u > 0}, provided d{u > 0} admits a measure theoretic normal and u
is not degenerate at zo (see Definitions 4.1-4.2).

The free boundary problem (P) for the p-Laplacian was studied earlier under
certain geometric (convexity) assumptions, by different techniques; see e.g. [AM] by
Acker and Meyer and a series of papers [HS1]-[HS3] by Henrot and Shahgholian.

To prove the main theorem (Theorem 4.3) we need a uniform bound (Theo-
rem 2.1) for the gradient of the solutions, in order to have some stability of the
problem as one passes to the limit. This type of uniform bounds of the gradient
usually constitutes the basics of the analysis to follow, and it is by no means an
obvious generalization of earlier results. Indeed, it needs to be pointed out that
one of the main difficulties in the consideration of operators that do not admit
linearization, as it is for the p-Laplacian, appears in the deduction of the uniform
gradient bound, which has its own independent interest. In this part of our analysis
we apply techniques that have been recently developed for related free boundary
problems, see [KKPS] and [CKS].

2. THE UNIFORM GRADIENT BOUND FOR SOLUTIONS

In this section we prove that solutions to u® of the singular perturbation prob-
lem (P.) are locally uniformly Lipschitz. Our main theorem in this section is the
following.

Theorem 2.1. Let u® be a nonnegative solution of (P.) in a domain Q of RN with
Be satisfying (1.2) and such that

[[uf||ee () < L.

Then for every compact K CC Q there is a constant C = C(N,p, A, L, dist(K, 00Q))
independent of € such that
IVu||pee iy < C-

It is also noteworthy that as far as the proof of Theorem 2.1 goes, one can relax
the conditions on .. An important observation is that the same technique to follow
shows that in the case of two-phase problems (see [CLW1]-[CLW2]) one may deduce
gradient bound for the non-negative part of the solution if one already knows that
the negative part of the solution is Lipschitz. In [Ca], L. Caffarelli applied this idea
in combination with the monotonicity formulas to deduce gradient bound for the
solution of the two-phase singular perturbation problem for the Laplacian; see also
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[CK]. In the absence of the monotonicity formula we are not able to prove a similar
result as that in [Ca]. It is apparent that some new technique is to be developed to
handle the sign change in the case of the p-Laplacian or any other nonlinear case.
This remains an open and tantalizing problem.

The proof of Theorem 2.1 will be based on the following lemma.

Lemma 2.2. Let v be a bounded nonnegative solution of
0 < Apv < Axjo<wv<}
in the unit ball By of RN with
v(0) < 1.
Then there is a constant C = C(N,p, A) such that

loll LB, ,.) < C.

Remark 2.3. We explicitely observe that v € C1*(Q) for some a > 0, thanks to the
results in [To]. In the case when A,v = B(v) with |B(s)| < co|s|P +c1|s[P~! for some
constants ¢g and ¢;, the conclusion of the Lemma 2.2 follows directly from Serrin’s
Harnack inequality for nonhomogeneous quasilinear operators, see [Se]. Our proof,
however, uses only Harnack inequality for homogeneous operators and is based on
compactness rather than energy methods, which allows to generalize it to a broad
range of operators.

Proof. Indeed, assume the contrary. Then there exists a sequence of functions {vy },
k=1,2,..., satisfying the assumptions of the lemma and such that

max vy (z) > élc
B4 3
Consider the sets
O ={x € By : vp(x) > 1} and I'y =090, N By.
Note that v is p-harmonic in Q. Let now
O (z) = dist(z, By \ Q)
and define

Ok:{IEEBl:(Sk(.’L‘)S (1—|.’17|)}DBl\Qk

W=

Observe that B, /4 C Ok. In particular
3
my, := sup(l — |z|)vg(x) > - maxvg(z) > k.
Ok Bi/a

Since vg () is bounded (for fixed k), we will have (1 — |z|)vg(z) — 0 as |z| — 1,
and therefore my will be attained at some point z; € Ok:

(2.1) (1~ fol)oi () = max(1 — o ().
k
Clearly,
my
= — > .
’Uk(l'k) 1—|$k| >my >k

Since z; € Oy, by the definition we will have

(2.2) 5r = Ok (k) < éu -
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Let now yi € T'y, be a point where d§;, = dist(zg, T'x) is realized, so that
(2.3) lyk — x| = O
Then we will have two inclusions

Bss, (yx) C By and  Bs,/2(yx) C O,

both consequences of (2.2)-(2.3). In particular, for z € By, /2(yx) the following
inequality holds

(1= lz) 2 (1= fax]) = [ox = 2 = (1 = |ax]) -

N

1
O > 5(1 — |zk]).
This, in conjunction with (2.1), implies that

_max v < 2ug(zg).
Bs, /2(yk)
Next, since Bj, (zr) C Q, vy satisfies Apvy = 0 in By, (zr). By the Harnack
inequality for p-harmonic functions there is a constant ¢ = ¢(N,p) > 0 such that
_ min v > cvp(zg).
Bss,, 7a(zk)
In particular,

_ max g > cvg(zg)-
Bs, /a(yr)

Further, define

vk Yk, + Ok)
vk (zk)

Summarizing the properties of vy above, we see that wy satisfies the following

system

wi(z) = for 2 € Bs.

0 < Apwy, < A(6;)?P/kP~! in By
maxg, . Wk <2, maxg Wk >c>0
w, >0, wg(0) < 1/k.
Therefore, from a priori estimates, we can conclude that a subsequence of {wy}
will converge in C**® norm on every compact subset of By /2 to a function wg that
satisfies
Ap'l,UO =0 in Bl/2
maxg, . wo >c>0
Wo 2 03 Wo (0) =0.
This, however, contradicts the strong maximum principle for p-harmonic functions.
The lemma is proved. |

Proof of Theorem 2.1. We start with the observation that it is enough to prove the
theorem in the case when 2 = B;, K = B, g, and under the assumption

u®(0) =¢ and |[|u®]|pe(B,) = 1.
Denote
QEZ{$€BlluE>6} and I'* =900° N B;.
Step 1. Prove that there is a constant C' = C'(N,p, A) such that
(2.4) |Vu(z)| < C for z € By \ Q.
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Indeed, take a point 2o € B, /2 with u®(zo) < € and consider a function
uf(xg +€x)

¥ () = ——=.

€
Direct computation shows that v satisfies
0 S Ap'UE S AX{0<;UE<1}.
All the assumptions of Lemma, 2.2 are thus fulfilled for v = v* and we can conclude

(2.5) maxv® < C(N,p, A).
Bi/a

From interior gradient estimates we obtain

|Vus(zo)| = [Vo*(0)] < C1(N, p, A) maxv® < C2(N,p, A)
Bi/a

for all zg € By /s \ ©°. Hence (2.4) is proved.
Step 2. Prove that
(2.6) [uf(z)] < e+ C(N,p, A)dist(z, B, \ Q°) forz € §1/4 nOe.
Indeed, for zq € By/4 N denote

mg = u’(xg) — € and 0o = dist(zo, By \ Q)
Notice that, since 0 € T, §p < 1/4. We want to prove that
(2.7) mg < C(N,p, A)do.

Since Bs,(xo) is contained in 0, u* — ¢ will be nonnegative and p-harmonic there.
We can thus apply the Harnack inequality to conclude

min (v®(x) —¢€) > e1m,
1350/2($0)( (@) ) 2 cimo

for ¢; = ¢1(N,p) > 0. Next, consider the p-capacitary potential ¢(z) of the ring
By \ By, which satisfies
App(z) =0 in By \El/g, ¢la, =0 and ¢lsB,,, = 1.

The function ¢ will be spherically symmetric with |Vg| = ¢g = ¢o(N,p) > 0 on
OB, . Define

r — X9

Y(z) = cimoyp (

From the comparison principle for p-harmonic functions we will have

) for z € E(;O (1'0) \Eéo/z(xo).

(2.8) P(z) <w(z) —¢ for z € Bsy(20) \ B, /2(20)-
Take yo € OB, (xo) N .. Then yo € By s, and
(2.9) ¥(yo) = u”(yo) —€=0.

We infer from (2.8), (2.9), and (2.4) that
IV (yo)| < [Vu'(yo)| < c2(N,p, A).

Observe now that |V (yo)| = c1mgco/do and therefore we obtain

Thus, inequalities (2.7) and (2.6) are proved.
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Step 3. Prove that
(2.10) [Vus(z)| < C(n,p, A) for x € BysNQ°.
Indeed, let zg € El/g N Qe, §o = dist(xo, Br \ °) and define

uf(xg + doz) — €
do

Then, from the inclusion By, (z) C Q¢ and inequality (2.6) we will have

w(z) =

for z € Bl.

0<w<C(N,p,A) in By.
Since also w is p-harmonic in Bj, from the interior gradient estimates we obtain
|VUE(:I"0)| = |V'LU(0)| < Cl(N7p7 A)J

which proves (2.10).
Now the theorem follows from (2.4) and (2.10). O

3. PASSAGE TO THE LIMIT: &5 \, 0

From now on we will assume that functions g. in (P;) satisfy (1.2)—(1.3).
This section embodies the main technical tools that one needs to establish the
main theorem (Theorem 4.3.)

Lemma 3.1. Let {u} be an uniformly bounded family of solutions to (P.). Then
for every sequence €; — 0 there exists a subsequence E;- — 0 and u € Lip(Q) such
that:

i) U = u uniformly on compact subsets of §2;
i) Apu=0inQ\o{u>0};
i) Vusi — Vu in L2 (Q).

loc

Proof. Part (i) follows by Theorem 2.1 and standard compactness argument. Let
now E CC {u > 0} be open. Then u > ¢ > 0 in E. By the uniform convergence,
we will have u¥i > ¢/2 in E for small g. Hence, if also €} < ¢/2, usi will be
p-harmonic in E. This implies that u is p-harmonic in E and since E was arbitrary,
ii) follows.

Finally, we prove iii). Let 1) be a nonnegative C§°(f2) function, and § > 0. Take
(u—8)T1 as a test function. Since A,u = 0 in the positivity set of u, integrating
by parts, we obtain

/ |VulP o = — / |VulP~2Vu - Vipu + 6 |VulP~2Vu - Vip.
{u>d} {u>6} {u>d}

Letting § — 0 we find

(3.1) / [VulP ¢ = —/ |VulP~2Vu - Vip u.
{u>0} {u>0}

On the other hand, the observation 8. (u®)u® > 0 yields

(3.2) / \Vus [Py < — / VUl P2 Vs - Vepus,
Q Q
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Using the uniform convergence of u® to u and the weak convergence of |Vu®|P~2Vu®
to |Vu[P~2Vu in Lloc (), we infer from (3.1) and (3.2) that

(3.3) iimsup [ [Vusppy < [ [Vups.

J—0o0

Since Vu® — Vu in L} (), we have
(3.4) /|Vu|p¢ < lim inf/ |Vusi|P e
j—o0

It follows from (3.3), (3.4), and a simple compactness argument that Vu® — Vu
in L} ().
The conclusion of part iii) is proved, and so is the lemma. O

We now prove that limit solutions are solutions to the free boundary problem in
a very weak sense.

Proposition 3.2. Let {u®i} be a family of solutions to (P.;). Assume that u®i — u
uniformly on compact subsets of Q as €; — 0. Then there ewists a locally finite
measure ji supported on the free boundary QNO{u > 0} such that B, (u®) — p in Q.
In particular, Apu = 1 in Q, i.e.,

(3.5) / |VulP2Vu - Vpdr = —/ wdu
Q Q
for all p € C§ ().
Proof. By definition of weak solutions to (P:), if ¢ € C§°(2), one has

(3.6) /Q VP2V - Vi = — /Q B.(uf)p

Since 49 — u uniformly on compact subsets of 2, by Lemma 3.1 we know Vu®i —
Vuin L (), and so the left-hand side of (3.6) converges to the left-hand side of

(3.5). Now let F' C Q be compact, and take ¢ € C§°(Q), ¢ > 0, ¢ = 1in F. The
sequence { [, B, (u¥)pdz} is convergent, and therefore it is bounded. Hence

/ Be, (u) dzr < / B, (u )pdz < C(y).
F Q

This implies that there exists a locally finite measure p such that, passing to a
subsequence (still denoted by ¢;) if necessary, f;;(u®’) — p as measures in €.
Passing to the limit in (3.6), we get (3.5). Moreover, since Ayu = 0in Q\ 0{u > 0}
by Lemma 3.1, we conclude that p is supported in QN d{u > 0}. The proof is thus
complete. O

Lemma 3.3. Let {u®i} be a family of solutions to (P.,) in Q such that u® — u
uniformly on compact subsets of @ ande; — 0 as j — oo. Let zo, 2, € QNO{u > 0}
be such that ©, — zo as n — oo. Let A, — 0, uy, (z) = ﬁu(xn + Anx), and
(usi)y, (z) = %usi (zn, + A\nz). Suppose that ux, — U as n — oo uniformly on
compact sets of RN . Then, there exists j(n) — oo such that for every j, > j(n)
there holds that €;, /A, = 0 and

i) (usin)x, = U uniformly on compact sets of RN ;

i) V(un)y, — VU in LY. (RN);

loc
iii) Vuy, = VU in LY (RY).
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Proof. The proof is along the lines of the one of Lemma 3.2 in [CLW1]. We discuss
here only the relevant modifications. For simplicity we assume z,, = z¢. Proceeding
as in the cited reference, one can show that i) holds. The functions (u®n),, are
solutions to

Ap(uin)x, = B, /an (W5)a,)

in By, where k is a fixed positive number. By Lemma 3.1 there exists a subsequence,
still denoted by j,,, such that V(u®i»)y, — VU in LP(By). Then also ii) holds. In
order to prove iii), let § > 0 and consider

IVux, — VU < [[Vua, = V@), [[ + V@), - VU[| =T+ 11,

where all the norms are in L?(By). By ii) we already know that IT < ¢ if j > j,
and n is sufficiently large. Moreover, by virtue of Lemma, 3.1 it holds

IP = / |Vu — Vu&i [P(zo + A\pzx) do
By,

1
= —N/ |[Vu — Vu&i |P(x) dx < 6P
/\n an;‘,(zo)
if j and n are sufficiently large. This proves iii). |

We now turn our attention to the special case when the limit function u is one-
dimensional.

Proposition 3.4. Let xy € (0, and let u®* be solutions to
Apu™ = fe, (ugk)

in Q. If u® converge to a(x — o)} uniformly on compact subsets of Q, with a € R,
and g, = 0 as k — oo, then

1

p

0<a< (LM) .
p—1

Proof. Without loss of generality, we assume zo = 0. Since u®* > 0, we readily

have o > 0. Next, let ¢ € C§°(£2). Choosing uZ* as a test function in the weak

formulation of Apu* = f,, (u°*) (see Remark 3.5 below) and integrating by parts
we obtain

1
37 -2 / V[P gy, + / VU [P2 ush Vs - Vi = / B, (4™ )b,
DbJa Q Q

Here, B, (s) = [; Be,(r)dr. Since 0 < B, (s) < M, there exists M(z) €

L>(9), 0 < M(z) < M, such that on a subsequence (still denoted by €,) Be, (u®*) —
M (z) x-weakly in L (). If y € QN {z; > 0}, then u®* > ay; /2 in a neighborhood

of y for k sufficiently large. Hence, if u**(x) > & we have, by (1.2),

u®k(z)/ep
B., (u**)(z) = /0 B(s)ds = M.

Moreover, using Proposition 3.2 it is immediate to recognize that

VB, (u*) = B, (u®*)Vu* — 0
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in LL (2N {z1 < 0}). Hence M(z) = M € [0, M] in QN {z1 < 0}. Passing to the

limit in (3.7) yields

-1 —
P yr / gy = M g dz + o, du,
p {z1>0} {z1>0} {z1<0}
and integrating by parts we find
~1 —_
P a”/ vdae' = M da' — Wda'.
p {z1=0} {z1=0} {z1=0}
The arbitrariness of ¢ € C§°(Q) allows to conclude %a” =M —M < M, because
M > 0. Hence a? < ﬁM , and the proof is complete. O

Remark 3.5. We recall that the weak solution u of the equation Apu = f in Q
with bounded f has a representative in Wlif(ﬂ) if 2<p<ooandin I/Vlif(ﬂ) for
1 < p <2, see eg. [To]. This, in conjunction with local L*> bounds on |Vu®*| in
Q, justifies the integration by parts in the proof of Proposition 3.4 above.

Proposition 3.6. Let xy € (1, and let u®* be solutions to
Apu™ = e, (u™)

in Q. If u®* converge to a(x — x0)] +v(z — z0)] uniformly on compact subsets of
Q, with a,v > 0 and g, = 0 as k — oo, then

a=7v< (LM ) ’ .
p—1
Proof. Without loss of generality we assume zy = 0. As in Proposition 3.4, u®*
satisfies (3.7), and it is immediate to recognize that B., (u*) — M in L] (Q).
Passing to the limit in (3.7), and integrating by parts in the resulting equation, we
find that a = ~.

=

1

Now we assume that o > (I%M ) " and show that this leads to a contradiction.

Step 1. Let Ry := {z = (z1,2') € RN : |z1| < 2,]2'| < 2}. Without loss of
generality, we may assume Ro CC 2. First of all, we construct a family {v%} of
solutions to (P:.) in Ro with the property

(3.8) v (z1,2") = v (—31,7") in Ra

and such that v®9 — u uniformly on compact subsets of Ro, where u(z) = a|z1|. To
this end, we let b.; = supy, |u°9 —u| and v° be the minimal solution (i.e. minimum
of all supersolutions) to (P.;) in Ry with boundary values v* = u —b.; on ORx.
By virtue of Lemma 3.1, there exists v € Lip,,.(R2) such that, on a subsequence,
v%i — v uniformly on compact subsets of Rz. From the minimality of v%i it is
immediate to recognize that u > v.

To prove the reverse inequality, we consider w € C?(R), satisfying

(jw' P 2w") = B(w) in R, w(0) =1, w'(0) =«

and let
1 bEj

€ — e o 3.
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Here 5 < 0 is a constant, determined as in [CLW1, Proposition 5.3], such that

1+ as, s> 0,
w(s) = N _
v(s —=3), s <%

Here a and v are related by of — P = I%M and therefore v > 0 under the
1

assumption a > (I%M ) r Moreover, we have w'(z1) > v for all z; € R. Observe

also that w®i < u —b.; = v on ORs. From Lemma 3.7 below, it follows that
wf < v% in Ro. Let us point out that such an implication is not immediate since,
in general, there is no comparison principle for A, — 3. As a consequence, u < v in
Ro N {z; > 0}. Using (3.8), finally, we see that v < v in R, and the construction
is complete.

Step 2. Let RT = {z:0 < 21 < 1,|2'| < 1}. Then using the weak formulation of
(P.,;) in Rt we have

E; = // 9 (1|V1}5f|”) dx = // [Vosi P72V - Vol do =
r+ 071 \ P R+
= // div(|Vv® P72 Vo®ivSi )dz — // Be,; (v )vgidx = Fj — Gj.
R+ R+

Using the divergence theorem and that vz’ (0,z') = 0 (from symmetry in the z;
variable) we find that

F; = | Vo |P~2 (057 ) da’ +/ |V [P0 vi dS,
R+ {z1=1} oR+N{|z’|=1}

where vy’ is the exterior normal derivative of v* on 9R* N {|2'| = 1}. From the
convergence v¥i — u = az] + az; in R and Lemma 3.1 it follows (at least for a
subsequence) that

Vv — ae; pointwise a.e. in R = Ry N {z1 > 0}.

Since |Vv® | are uniformly bounded, from the dominated convergence theorem we
deduce that

(3.9) lim F; = oPdz’.
J—roo aR+N{z1=1}

On the other hand

0 (1
. g — | Z|Vosi P (vSi <
E; +G; //+01( |V |P + B, (v ))d:v

1
< / (—|VUEJ' [P+ B, (UEJ')> dz'.
aR+N{z1=1} \P

Using again that v — u = az + ax] uniformly on compact subsets of R, we
have |Vv®i| — o uniformly and B, (v°) = M on OR* N {z; = 1}, and therefore

1
(3.10) limsup(E; + G;) < / (—a” + M) dz'.
j—o0 R+N{z1=1} \DP
Combining (3.9) and (3.10) we obtain

1
aP < —a?+ M
p
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1
a< (LM)P,
p—1

which is a contradiction. The proof is thus complete. [l

or equivalently

Lemma 3.7. Let w®(z1) be strictly increasing solution of (Jw® [P~2w®')" = B.(w®)
on R and v¢(x) be solution of Apv® = [ (v¥) in R = {z = (z1,2') :a < 21 <
b,|z'| < r}, continuous up to OR. Then the following comparison principle holds:
if v°(z) > w(z1) for all z € OR then v°(z) > w®(x1) for all z € R.

Proof. Without loss of generality we assume that w®(0) = 0. Since w® is strictly
increasing, we can find 7 > max{|al, |b|} such that

w®(z1 —7) <v°(z) onR.
For n > 0 sufficiently small define

W (o) = 0 (o1 — )

where ¢, (s) = s +ns? and ¢, > 0 is the smallest constant such that ¢, (s —c,) <s
on [—27,27]. By the construction we readily have w*" < w® on [—27,27] and the
straightforward computation shows that

Ay = () P(Apw) (i) + () (pa)" " Apipy > (03)PB-(wT) > B (w™)

on [—27,27]. The first inequality follows from the observation that App, > 0 on
[-27,27] (for small n > 0) and the second inequality follows from the fact that
z1 < ¢, implies B:(w™") = 0 and that for z; > ¢, we have ¢; > 1.

Summarizing the construction above, we see that on the interval [—27,27] and
for small > 0 the function w*" is strictly increasing, satisfies Apw=" > B (w®"),
and w®" < w®. Moreover, as 7 — 0, w*" converges uniformly to w®.

Let now 7* > 0 be the smallest constant with the property

wsM(z; — 1) <v°(x) on R.

Evidently, 7. < 7, and in fact, we claim that 7* = 0. Indeed, the minimality of 7*
implies that there is a point z* € R such that w®"(z} — 7*) = v*(z*). If 7* > 0,
we have w"(- — 7*) < w™" < w® < v° on OR, and hence z* is an interior point of
R. At this point we observe that the gradient of w®"(xz1 — 7*) is non-degenerate.
We can thus apply the strong comparison principle for the p-Laplacian to obtain a
contradiction, since at 2* we have Apw®"(z7 — 7*) > Apv°(2*). This shows that
7% = 0 and in particular that w®"7 < v on R. Letting n — 0, we conclude the
proof of the lemma. O

4. ASsymMPTOTIC BEHAVIOR OF LIMIT SOLUTIONS

In this section we prove the asymptotic development of solutions to (P.). We
begin with the relevant definitions.

Definition 4.1. A unit vector n € RV is said to be the inward unit normal in the
measure theoretic sense to the free boundary d{u > 0} at a point zo € d{u > 0} if

. 1
(41) }}_ﬂ% T’_N /B,.(zo) |X{u>0} - X{w|(w—wo,n)>0}| dz = 0.
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Definition 4.2. Let v be a continuous function in a domain @ C RY. We say that
v is non-degenerate at a point zo € QN {v = 0} if there exist ¢, ro > 0 such that

1

N vdx > cr for any r € (0,7¢).

B,- (wo)

The main result in this section is the following.

Theorem 4.3. Let u be solutions to (P.,) in a domain Q@ C RN such that u¥ —
u uniformly on compact subsets of Q and €; — 0. Let g € QN O{u > 0} be such
that 0{u > 0} has an inward unit normal n in the measure theoretic sense at %o,
and suppose that u is non-degenerate at xo. Under these assumptions, we have

1/p
u(z) = (I%M) (x —z0,m)" + 0|z — T0))-

The proof of Theorem 4.3 relies heavily on the following result.

Theorem 4.4. Let u be a solution to (P:;) in a domain @ C RN such that
u® = u uniformly on compact subsets of ! ase; — 0. Then

1/p
lim sup |Vu(z)| < (LM> .
T—TQ p— 1
Proof. Let o = limsup,_,, |Vu(z)|. Since u € Lip(Q), clearly a < co. If a = 0
there is nothing to prove, so we may assume a > 0. There exists a sequence
Ty, — T such that |Vu(z,)| = « and u(z,) > 0. Let z, € N J{u > 0} be such
that d,, = |zn— x| = dist(z,, 0{u > 0}). Define uq, (z) = (1/d,)u(z,+dpx). Since
u € Lip(Q) and ug4, (0) = 0 for every n, {ug,} is uniformly bounded on compact
subsets of R, and therefore for a subsequence (still denoted by d,) ug, — uo
uniformly on compact subsets of RV, where ug € Lip(RY).

Now, set T, = (x, — 2p)/dn € 0B1. We may choose the subsequence d,, so that
Tp — T € 0By. Then ug is p-harmonic and nonnegative in B;(Z). Consider now
the sequence

- Vua, () _ Vu(zy)

" Vua, @) [Vu(za)l

Passing to a subsequence, we assume, without loss of generality, that v,, — e;. At
this point we observe that By/3(T) C Bi(T,) for n sufficiently large, and there-
fore ugq, is p-harmonic in By/3(F). By interior gradient estimates, ug, — uo in
C"7(By/2(%)) for some ¢ > 0. This suffices to show that Vug, — Vuo uni-
formly in By /3(T) and thus, as a consequence, |Vu(2y)| — 0z, u0(Z). In particular,
0z, w0 (T) = .

Next, it is easy to show that |Vug| < a in RV . Indeed, let R > 1, § > 0. Then
there exists 79 > 0 such that |Vu(z)| < a + 0 for any z € B, gr(zo). Observe now
that |z, — zo| < 0R/2 and d,, < 70/2 imply By, r(,) C Bryr(zo) and therefore
|Vug, (z)| < a+ § in By for n large enough. In particular, Vug, — Vug *-weakly
in L*>°(Bpg) and thus |Vug| < a+0d in Bg. Since 6 and R are arbitrary, we conclude

|Vauo| < in RN.

Let w = 0, up, which is a weak solution to the equation

6$j (0” (Vuo)lew) =0 in By (E),
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with H,J(f) = (p - 2)|£|p74&£j + (5,’j|£|p72&j. We also know that w < a in
B1(Z), w(T) = a. By the maximum principle (recall that 0,,uo(T) = a > 0),
w = a in By (Z) and so ug(x) = a(x; — y1) in By (T) for some y € RY. It is not
difficult to recognize that

uo(z) = a(zr —y1) in {x1 > 1}
We now apply Lemma A.1 from the Appendix to ug in {1 — y1 < 0} and obtain

uo(x) =v(x —y)y +o(lz—yl)  in{z -y <0}
for some v > 0. Define, for A > 0, (ug)a(z) = (1/N)uo(Az + y). There exist a
sequence A, — 0 and a function ugo € Lip(RY) such that (ug)x, — oo uniformly
on compact sets of RY. We have ug(z) = azf + vyzy in RY. By Lemma 3.3,
there exists a sequence €} — 0 such that i is a solution to (Psg) and uS —
up uniformly on compact subsets of B;. Applying Lemma 3.3 again (the second
“blowup”) we find a sequence ¢}° — 0 and solutions us to (P.oo) converging

uniformly on compact subsets of By to ugo(z) = azi + yz;. Finally, we may
apply Proposition 3.4 or Proposition 3.6, depending on whether v =0 or v > 0, to

conclude a < (LM) l/p. O

p—1
We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Without loss of generality we may assume x¢g = 0 and n =
e;. Define, for A > 0,

ux(@) = yulre),

and let p > 0 be such that B, CC €. Since uy € Lip(B,/5) uniformly in A, and
ux(0) = 0, there exist a subsequence \; — 0 and a function U € Lip(RY) such
that uy; — U uniformly on compact subsets of RYN. From Lemmas 3.1 and 3.3 it
follows that uy is p-harmonic in its positivity set {u) > 0}. Next, rescaling (4.1)
we see that, for every fixed k > 0

|{u,\>0}ﬂ{$1<0}ﬂBk|—>0 as A — 0.

Hence, U is nonnegative in {z; > 0}, p-harmonic in {U > 0}, and vanishes on
{z1 < 0}. By Lemma A.1, there exists @ > 0 such that

U(z) = azf +o(|z]) in {z; > 0}.
By virtue of Lemma 3.3, we can find a sequence E;- — 0 and solutions u® to (Ps;)

such that u%i — U uniformly on compact sets of RV as j — oo.

On the other hand, if we define Uy (z) = (1/A\)U(\z), Uy — az] uniformly on
compact subsets of RNV as A — 0. Applying Lemma 3.3 the second time, we find
now a sequence o; — 0 and solutions u%# to (P,,) such that % — az{ uniformly
on compact subsets of RV, and

(4.2) Vu = axis>ope1 in L (RM)

loc

by virtue of Lemma 3.1.
Further, we proceed as in the proof of Proposition 3.4. Let ¢y € C§°(RY) and

choose ugi1) as a test function in the weak formulation of Apju®i = B, (u). Then
we find that By, (u%) = MX{z,>0} +MX{z, <0} *Weakly in L>(1), and (”;%)M’ =
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M — M. We now claim that either M = 0 or M = M. To this end, let K CC
{z1 < 0}. Then for any £ > 0 there exists 0 < § < 1 such that
IKN{e<By;(u”) < M-} <|KN{d<u’/o; <1-0}]
<K N{Bs; (u’) > afo;}| =0

as j — oo, where a = infj;;_5 8 > 0, since f,,(u??) = 0 in L'(K) by virtue of
Proposition 3.2. At this point we observe that, thanks to a simple compactness
argument, the latter fact also implies that the convergence of By, (u%) to M is
actually in L} ({z1 < 0}). We may thus conclude

loc
IKN{e<M<M-—e}=0

for every € > 0 and K CC {z1 < 0}. Hence, the claim is proved.
Let us see now that a > 0. By virtue of the non-degeneracy assumption on u at
0, for every r > 0 and j sufficiently large,

1
N [ W e
T B,

and passing to the limit as j — oo,

1
_N/ UZCT.
T B,

— 1/p
Clearly, this forces a > 0, and as a consequence M = 0 and a = (%M ) . We
have thus shown that

1/p
(4.3) Uz) = <,%M) zy +o(|z]), @1 >0;
0, 1 <0.

Next, it follows from Theorem 4.4 that
p 1/p
|VU| < (—M) in RV.
p—1
At this point it suffices to observe that U = 0 on {z; = 0} to conclude that
1/p
U< (I%M ) x1 in {z1 > 0}. Applying Hopf’s boundary principle we see that

necessarily

Uz) = <I%M)l/pw1 in {z; > 0}.

As an immediate consequence we finally obtain

u(z) = (I%M)W 7t + ollal),

and the proof is complete. O

APPENDIX A.

Here we prove an analogue of Corollary A.1 in [CLW1] on asymptotic develop-
ment of p-harmonic functions near flat boundary points by a slight modification of
the proof of Lemma A.1 in [CLW1].
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Lemma A.1. Let U € Lip(Ef) and assume that U is nonnegative in By, p-
harmonic in {U > 0} and vanishes on OB; N {z1 = 0}. Then in By, U has the
asymptotic development

U(z) = az1 + of|z|)
with a > 0.
Proof. Let
L :=inf{l: U(z) <lzy in B;_,C}.
Since {}, is a nonincreasing sequence of nonnegative finite numbers, there exists

a = lim ék.
k—o0

Then
U(z) < ar; +o(|z|) in By .
If & = 0, the conclusion of the lemma will follow. Assume therefore that a > 0.
Then there exists a sequence z* € B;f with r;, = |2¥| — 0 such that
U(2*) < axf — &or,
for some §y > 0. Note that z* will belong to the cone C = {|z| < (a/&)z1}, and

thus we can assume that vy, := x* /r}, converges to some v € 6Bfr N C. Next, let
U(riz
Uk (z) := Ylrse)
Tk

Since {U*} are uniformly Lipschitz, we may assume that Uy converges uniformly
on Eir to a nonnegative function V. Then from the construction we will have

V(z) < ax; in Bf
and in addition

V(z) < azy — 5} and U"(z) < lpx1 — 5 on OB N B.(vo)

for a sufficiently small € > 0 and large k.
Let now w be a p-harmonic function in B;" with smooth boundary values, such
that

w==z1 ondB; \ B.s(w),

é
w=mz — i on OB N B.4(n),

]
x — i <w<z ondBf NB. ;).

Then w vanishes on the flat boundary {z; = 0} N By, is C**? up to {z1 = 0} N By,
and by the Hopf boundary principle

w(z) < (1—p)zy in Bf

for some small pu, .

Now, from the comparison principle we will have U* < £w in Bj for large k,
and consequently U* < (1 — p)z; in BY. This implies a < (1 — p)a, which
contradicts the assumption that o > 0. The lemma is proved. O
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