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Abstract. In this paper we analyze the free boundary for the
inhomogeneous obstacle problem with zero obstacle governed by
the degenerate operator

div(A(∇u)) = fχ{u>0},

where f is a positive, Lipschitz function, and A(∇u) is of the p-
Laplacian type, i.e.,

A(∇u) ≈ |∇u|p−2∇u, (2 < p <∞).

As a result of our analysis we obtain stability and finite (N −
1)-Hausdorff dimension of the free boundary. Our technique is
a modified version of that of L. Caffarelli, who obtained similar
results for p = 2.

1. introduction

The obstacle problem, describing the equilibrium position of a stretched
membrane, consisting of homogeneous material, is a well-known and
well-studied problem. A particular form of this problem can be formu-
lated as to find a function u which solves the following complementary
problem 

∆u− f ≤ 0,

u ≥ ψ,

(∆u− f)(u− ψ) = 0,

a.e. in Ω, and with the Dirichlet condition u− g ∈ H1
0 (Ω). Here f , ψ,

and g are given functions with certain properties, and Ω is a bounded
domain in RN .

This problem has been the subject of investigation in several decades.
As a result, today, there is a complete theory available for this prob-
lem. The regularity of the solution-function u and the free boundary
∂{u > ψ} is completely described and known, due to works of many
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mathematicians; here we particularly mention the work of L. Caffarelli
and D. Kinderlehrer [CK], for C1,1 regularity of u, and also the work
of L. Caffarelli [C1], for the regularity of the free boundary ∂{u > ψ}.
However, a particular work that has been less in focus is a short note
by L. Caffarelli [C2] which asserts that the free boundary in the above-
mentioned obstacle problem has finite (N − 1)-Hausdorff dimension,
provided f is a positive Lipschitz function, and ψ = 0.

Although the case of the Laplacian operator, above, is a good model
for describing variational problems with constraints, that appear in na-
ture, there are many other nonlinear phenomena of the obstacle type
that can’t be linearized and/or approximated by linear models. One
such problem arises when the material density (or any other physi-
cal quantity involved) is inhomogeneous. The problem becomes more
intrigue when the inhomogeneity is such that the operator becomes
degenerate; the singular case is not treated in this paper. The specific
type of operator we have in mind, in this paper, is the following

div(A(∇u)) = fχ{u>0},(1.1)

where f is a positive Lipschitz function, andA(∇u) is of the p-Laplacian
type, i.e.,

A(∇u) ≈ |∇u|p−2∇u, (2 < p <∞).

We refer to the book [HKM] for backgrounds and the type of opera-
tors that can be treated with our techniques. Basically, we need the
operator to satisfy a strong maximum principle (this is for Lemma 2.1
below), and a uniform C1,α estimate (this is for the compactness argu-
ments used in the analysis). Two more properties that are needed are
the homogeneity

A(λ∇u) = λp−1A(∇u), (for λ > 0),

and the differentiability of A. However, for clarity and simplicity we’ll
only treat the case

A(∇u) = |∇u|p−2∇u, (2 < p <∞),

and

f(x) ≡ 1.

The general case follows in a similar fashion and with obvious changes.
A fundamental problem that arises with the study of the obstacle

problem for degenerate operators as in (1.1) is the optimal regularity
of the solution u. The solutions are known to be C1,α, for some α > 0,
but the exact value for α is unknown. Of course the example

u(x) = c(max(x1, 0))
p
p−1 ,
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for appropriate c, shows that the best expected α can’t exceed 1/(p−1).
In [KKPS], the authors obtained the correct growth rate for u away
from the free boundary, and as expected it is of order p

p−1
.

Finally, with the above remark in mind, we describe the results ob-
tained in this paper. To do so, we’ll consider the following (local)
formulation of the obstacle problem.

Definition 1.1. We say that a function u in W 1,p(B1), where B1 =
B1(0) is the unit ball in RN , belongs to the class G = G(p,N) (2 < p <
∞) if 

div(|∇u|p−2∇u) = χ{u>0}, in B1

0 ≤ u ≤ 1 in B1,

0 ∈ ∂{u > 0} .
(FB)

Here the first equation is in the weak sense∫
|∇u|p−2∇u · ∇φ dx = −

∫
φχ{u>0} dx

for all φ ∈ W 1,p
o (B1), were the latter is the completion of C∞o (B1)-

functions in the W 1,p-norm. It will be apparent from the proofs, pre-
sented here, that we can replace B1 in (FB) with any bounded domain
Ω by using a finite covering of the set

Ω−ε := {x ∈ Ω : dist(x, ∂Ω > ε} .

It is also noteworthy that our approach works perfectly for the case
p = 2. But for clarity of the argument we exclude this case; which is
already proved by L. Caffarelli [C2].

With (FB) as our departing point we’ll show that the volume of the

set {u < ε
p
p−1}∩Br(x), for any x on the free boundary, can be estimated

in terms of εHN−1(∂Br(x)), where HN−1 is the (N − 1)-dimensional
Hausdorff measure. From here a standard covering argument implies
that the free boundary has finite (N−1)-Hausdorff measure. A second
implication is the stability of the coincidence set {u = 0}. Namely, we
show that the L∞-norm of two solutions in G will control the measure
theoretical difference of their coincidence sets.

2. Growth rates

In this section, we establish the correct growth rates for u(x), and
∇u(x), away from the free boundary. We also show that

1

|Br(0)|

∫
Br(0)

[|∇u(x)|p−2|D2u(x)|]2dx ≤M,
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which together with a non-degeneracy argument (Lemma 2.5) will pave

the way for the estimate of the volume of the set {u ≤ ε
p
p−1}, later in

Section 3.
We will employ standard homogeneous blow-ups of the solution that

was introduced in [KS], and later developed in [KKPS]. Cf. also [CKS]
and [LS]. Now, for a non-negative function v, we define

S(r, v, z) = sup
x∈Br(z)

v(x), and S(r, v) = S(r, v, 0).

In [KKPS] it was shown that for functions u in the class G one has a
growth rate

S(r, u) ≤ C0r
p
p−1 .

Using a similar argument as in [KKPS], we will obtain a growth rate
of order 1/(p−1) for the gradient of functions in G. Indeed, we’ll show
that there exists a constant C0 such that for all positive integers j one
has

S(2−j−1, |∇u|) ≤ max
(
C02−j(1/(p−1)), 2−1/(p−1)S(2−j, |∇u|)

)
.

By iteration then we’ll have the actual growth rate.

Remark 2.1. We need to mention that capital letters such asM,C,C0, C1

are generic constants changing their value from one appearence to an-
other. They all depend on the quantities p, and N .

Lemma 2.2. [KKPS] There is a positive constant M = M(p,N) such
that for every u ∈ G, there holds

|u(x)| ≤M |x|p/(p−1) ∀x ∈ B1.(2.1)

Using this we can prove the growth rate for the gradient.

Lemma 2.3. There is a positive constant M = M(p,N) such that for
every u ∈ G, there holds

|∇u(x)| ≤M |x|
1
p−1 ∀x ∈ B1.(2.2)

Proof. As remarked earlier it suffices to show

S(2−j−1, |∇u|) ≤ max
(
C02−j(1/(p−1)), 2−1/(p−1)S(2−j, |∇u|)

)
,(2.3)

for all positive integers j and a large constant C0 = C0(p,N). To prove
this we argue by contradiction. So suppose (2.3) fails. Then there
exists uj ∈ G such that

S(2−j−1, |∇uj|) ≥ max
(
j2−j(1/(p−1)), 2−1/(p−1)S(2−j, |∇uj|)

)
,(2.4)

Set

ũj =
uj(2

−jx)

2−jS(2−j−1, |∇uj|)
,
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where x ∈ B1(0). Then by (2.1), and (2.4)

|ũj| ≤
M(2−j)

p
p−1

2−jS(2−j−1, |∇uj|)
≤ M

j

in B1(0). On the other hand

sup
B 1

2

|∇ũj| = sup
B 1

2

|∇u(2−jx)|
S(2−j−1, |∇uj|)

= 1,

sup
B1

|∇ũj| = sup
B1

|∇u(2−jx)|
S(2−j−1, |∇uj|)

=
S(2−j, |∇uj|)
S(2−j−1, |∇uj|)

≤ 2
1
p−1 .

One also has
‖∆pũj‖∞ ≤ j1−p.

Hence the uniform C1-estimate for the p-Laplacian implies that

1 = sup
B 1

2

|∇ũj| ≤ C(sup
B1

ũj + j1−p) ≤ C(j−1 + j1−p),

which makes a contradiction for a large j > 0.
A similar technique works in estimating the L2-norm of

|∇u(x)|p−2|D2u(x)|,
which doesn’t necessarily exist pointwise.

Lemma 2.4. There is a positive constant M = M(p,N) such that for
every u ∈ G, and x0 ∈ ∂{u > 0} ∩B1/2 there holds

1

|Br(x0)|

∫
Br(x0)

[|∇u(x)|p−2|D2u(x)|]2dx ≤M ∀ r ≤ 1

2
.(2.5)

Proof. By translation and scaling we may assume x0 is the origin.
Set S̃(r, u) =

∫
B1(0)

[|∇u(rx)|p−2|D2u(rx)|]2dx. Then it suffices to show

that there exists a constant C0 such that, for all non-negative integers
k, there holds

S̃(2−k−1, u) ≤ max
(
C0, S̃(2−k, u)

)
.(2.6)

As in Lemma 2.2 the proof is based on a contradictory argument. So
once again let’s assume that there are uk ∈ G, and positive integers jk
such that (2.6) fails, i.e.,

S̃(2−jk−1, uk) ≥ max
(
k, S̃(2−jk , uk)

)
.(2.7)

Set now

ũk(x) =
uk(2

−jkx)

S̃(2−jk−1, uk)
,
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where x ∈ B1(0). Then one easily verifies

‖ũk‖B1,∞ ≤
M

k
, S̃(

1

2
, ũk) = 1, S̃(1, ũk) ≤ 1, ‖∆pũk‖ ≤ k1−p.

Uniform C1-estimates and L2-bound of the second derivatives imply

sup
B 1

2

|∇ũk| ≤ C(k−1 + k1−p), and

∫
B1(0)

|D2ũk(x)|2dx < C <∞,

which, for large k > 0 and p > 2, results in the following contradiction

1 = S̃(
1

2
, ũk) < C(k−1 + k1−p)p−2 < 1.

We would like to remark that the final line of the proof of Lemma
2.3, and also later in Lemma 3.1, are the only places, in this paper, were
the restriction p > 2 has been used. It seems that the generalization to
the case below the value p = 2 needs a refinement the argument and
most probably to use a different norm in Lemma 2.3. Note also that
by known results u ∈ W 2,p

loc when p < 2. This somehow suggests the
change of the above-mentioned norm.

Our next lemma shows that the norm S̃(r, u) is uniformly bounded
away from zero.

Lemma 2.5. (Non-degeneracy) For every u ∈ G, there holds

1

(p− 1)2
≤ [|∇u(x)|p−2|D2u(x)|]2, a.e. in {u > 0}.(2.8)

Proof. We notice that the L2-bound of D2u implies the a.e. existence
of D2u; see [T]. Hence

1 =
1

|Br(x0)|

∫
Br(x0)

(∆pu(x))2dx

=
1

|Br(x0)|

∫
Br(x0)

[(
|∇u(x)|p−2δij + (p− 2)|∇u(x)|p−4ui(x)uj(x)

)
uij(x)

]2
dx

≤ 1

|Br(x0)|

∫
Br(x0)

[
|∇u(x)|p−2|4u|+ (p− 2)|∇u(x)|p−4|ui(x)||uj(x)||uij(x)|

]2
dx

≤ (p− 1)2 1

|Br(x0)|

∫
Br(x0)

[|∇u(x)|p−2|D2u(x)|]2dx .

3. Hausdorff dimension and stability

In this section we will establish an estimate on {u(x) ≤ ε
p
p−1} based

on the growth rates given in Section 2. For this purpose we let

Oε = {|∇u(x)| ≤ ε
1
p−1} and Oi

ε = {|uxi(x)| ≤ ε
1
p−1}.
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Denote also by LN the N -dimensional Lebesgue measure. Then we
have the following lemma.

To state our first lemma in this section we need to notify the reader
about a general property shared by the solutions to the obstacle prob-
lem. Namely, if x0 ∈ ∂{u > 0} ∩ B1−ε then there exists y0 ∈ {u > 0}
and c > 0 (c = c(N, p)) such that

Bcε(y0) ⊂ Bε(x0) ∩Oε.(3.1)

For p = 2 we refer to [C2], the general case follows in the same fasion.

Lemma 3.1. For any ball Br(x0) ⊂ B1 with x0 ∈ ∂{u > 0}∩B1/2 and
r < 1/2, there holds∫ 1

0

LN(Oε ∩Brs(x0)ds ≤ CεrN ,(3.2)

were ε > 0 is arbitrary.

Proof. Let

G(η) =


ε η > ε

1
p−1 ,

|η|p−1sign(η) − ε
1
p−1 ≤ η ≤ ε

1
p−1 ,

−ε η < −ε
1
p−1 .

(3.3)

Then G′(η) = (p − 1)|η|p−2χ
{|η|<ε

1
p−1 }

. Since, in {u > 0}, ∆pu = 1 in

the weak sense, we’ll have

De∆pu = 0 in {u > 0};

again in the weak sens. Here De is a directional derivative. Expanding
this, in the weak sense, we’ll have

0 = ∇ · (|∇u|p−2∇ue + (p− 2)|∇u|p−4∇u∇u · ∇ue),

which, after multiplication by G(ue) and integration (by parts) over
Brs(x0), results in

∫
Brs(x0)

[
|∇u|p−2∇ue + (p− 2)|∇u|p−4∇u∇u · ∇ue

]
· ∇G(ue)

=

∫
∂Brs(x0)

[
|∇u|p−2Dνue + (p− 2)|∇u|p−4∇νu∇u · ∇ue

]
G(ue)dS .

(3.4)

Here we have used the notations ue = Deu, and Dν as the outward nor-
mal derivative. Next integrating the right hand side over the variable
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s ∈ (0, 1) and using the Schwarz inequality, and Lemma 2.4, we arrive
at

∫ 1

0

∫
∂Brs(x0)

[
|∇u|p−2Dνue + (p− 2)|∇u|p−4∇νu∇u · ∇ue

]
G(ue)dSds

≤ (p− 1)

∫
Br(x0)

|∇u|p−2|D2u||G(ue)|dx

≤ (p− 1)εrN/2
(∫

Br(x0)

[
|∇u|p−2|D2u|]

]2
dx

) 1
2

≤ εCrN ,

(3.5)

were C = C(N, p). Here we have also used the fact that D2u ∈ L2
loc,

so that the integral∫
∂Brs(x0)

[
|∇u|p−2Dνue + (p− 2)|∇u|p−4∇νu∇u · ∇ue

]
G(ue)dS,

exists for a.e. s ∈ (0, 1).
Now the left hand side in (3.4) can be estimated from below. For

this purpose we take e = ei for i = 1, · · · , N , and with ei directed in
the standard coordinate axis. Then we have

N∑
i=1

[∫
Brs(x0)

|∇u|p−2∇uxi + (p− 2)|∇u|p−4∇u∇u · ∇uxi
]
· ∇G(uxi)

= (p− 1)

∫
Brs(x0)∩Oεi

|∇u|2(p−2)

(
|D2u|2 + (p− 2)

N∑
i=1

(
∇u
|∇u|

· ∇uxi
)2
)

= (p− 1)2

∫
Brs(x0)∩Oεi

[
|∇u|p−2|D2u|

]2
dx ≥

≥ LN(Brs(x0) ∩Oεi) ≥ LN(Brs(x0) ∩Oε),

(3.6)

were in the final steps we have used Lemma 2.5, and the fact that
Oε ⊂ Oεi . Now putting (3.4)-(3.6) together we arrive at (3.2).

Corollary 3.2. Retain the hypothesis of Lemma 3.1. Then

LN(Oε ∩Br(x0)) ≤ CεrN−1 for all r <
1

4
.

Proof. If the conclusion of the corollary fails, then there exists Br(x0)
with center on the free boundary and such that

LN(Oε ∩Br(x0)) ≥ C0εr
N−1,
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with C0 arbitrarily large. Now by Lemma 3.1 we have

CεrN ≥
∫ 1

0

LN(Oε ∩B2rs(x0))ds ≥ 1

2
LN(Oε ∩Br(x0)) ≥ C0εr

N−1

which is a contradiction for large C0.

Theorem 3.3. For u ∈ G, x0 ∈ ∂{u > 0} ∩ B1/2, and 0 < r < 1/4,
there holds

HN−1(∂{u > 0} ∩Br(x0)) ≤ C1r
N ,

for a generic constant C1 = C1(p,N).

Proof. Let {Bε(x
i)}i∈I be a finite covering of ∂{u > 0} ∩Br(x0) with

xi ∈ ∂{u > 0}, with at most n overlappings at each point. Then, by
(3.1) and Corollar 3.2∑
i∈I

εN ≤ C
∑
i∈I

LN(Oε ∩Bε(x
i)) ≤ nCLN(Oε ∩Br(x0)) ≤ C1εr

N−1.

This proves the theorem.
Next we deduce a stability result. For this purpose we introduce the

notation

Λ(u) = B1/2 ∩ {u = 0}.
We also recall a general fact for solutions in the class G, which states
that for appropriate C

{0 < u < Cε
p
p−1} ∩Br(x0) ⊂ Oε ∩Br(x0).(3.7)

In fact this follows from Lemmas 2.2–2.3

Theorem 3.4. Let u1, u2 ∈ G be two disjoint solutions satisfying

‖u1 − u2‖∞ ≤ ε
p
p−1 .(3.8)

Then

LN(Λ(u1)∆Λ(u2)) ≤ Cε,

and

(Λ(u2))(−Cε) ⊂ Λ(u1) ⊂ {u2 < ε
p
p−1}.

Here C = C(N, p) is large enough, and

(Λ(u2))(−Cε) = {x ∈ Λ(u2) : dist(x, {u2 > 0}) > ε} .

Proof. The first statement follows from the facts

LN (Λ(u1) \ Λ(u2)) < Cε, Λ(u1) ⊂ {u2 < ε
p
p−1},

which in turn are consequences of (3.7) and (3.8) respectively.
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For the second statement, we notice that if x ∈ {u1 > 0} then by
nondegeneracy lemma (Lemma 3.1 in [KKPS])

sup
BCε(x)

u1 ≥ C1(Cε)
p
p−1 > ε

p
p−1 ,

for large C. Hence
sup
BCε(x)

u1 > 0,

which implies x /∈ (Λ(u2))(−Cε).
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[KKPS] L. Karp, T. Kilpeläinen, A. Petrosyan, H. Shahgholian, On the
porosity of free boundaries in degenerate variational inequalities J. Differential
Equations 164 (2000), no. 1, 110–117.

[KS] L. Karp, H. Shahgholian, On the optimal growth of functions with
bounded Laplacian Electron. J. Differential Equations, 2000, No. 03, 9 pp.
(electronic).

[T] P. Tolksdorf, Regularity for a More General Class of Quasilinear Elliptic
Equations Journal of diff. equations 51, 126-150(1984).

Department of Mathematics, University of Texas at Austin, Austin,

TX 78712, USA

E-mail address: klee@math.utexas.edu

Department of Mathematics, Royal Institute of Technology, 100 44

Stockholm, Sweden

E-mail address: henriks@math.kth.se


