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Abstract

Our objective, here, is to generalize our earlier results on the existence of classical convex
solution to a free boundary problem with a Bernoulli-type boundary gradient condition and
with the p-Laplacian as the governing operator. The main theorems of this paper assert that
the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed
pressure a(x) on the “free” streamline of the flow, have convex solutions provided the initial
domains are convex. The continuous function a(x) is subject to certain convexity properties.
In our earlier results we have considered the case of constant a(x). In the lines of the proof of
the main results we also prove the semi-continuity (up to the boundary) of the gradient of the
p-capacitary potentials in convex rings, with C1 boundaries.
Mathematics subject classification 35R35, 35J70,76S05
keywords: Free boundary, convexity, non-linear joining conditions

1 Introduction

Nonlinear potential flows, of power-law types, past convex profiles are the main object of in-
vestigation in this paper. The problem arises when a fluid flows in porous medium around an
obstacle. In certain industrial problems such as shape optimization, painting, and galvaniza-
tion, one seeks to find level lines (surfaces in higher dimension) of the potential function (i.e.,
streamlines) with prescribed pressure on it. The latter is given by Bernoulli’s law

|∇u| = prescribed on the free stream line,

where u is the potential function which corresponds to the flow vector −γ∇u; here −γ is the
conductivity of the flow.

∗The first author thanks Göran Gustafsson Foundation for several visiting appointments, to RIT in Stockholm.
†The second author was partially supported by the Swedish Natural Science Research Council and STINT. He

also thanks Institute Elie Cartan for their hospitality. Both authors thank A. Petrosyan for some crucial remarks.
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A more general, and maybe realistic, situation is the case of power-law flows

−γ|∇u|p−2∇u, (1 < p <∞).

To describe the problem mathematically let K be a convex domain in IRn (n ≥ 2) and a(x) be
a continuous function. Then we seek to find another convex domain Ω containing the closure of
K (this is called the exterior problem) such that the p-capacitary potential u of Ω \K satisfies
the Bernoulli boundary condition

(1.1) lim
x→y
|∇u(x)| = a(y), x ∈ Ω, y ∈ ∂Ω.

Similarly one may ask for an interior domain (the interior problem) Ω ⊂ Ω ⊂ K such that
(1.1) holds on ∂Ω, with x ∈ K \ Ω.

We recall that the p-capacitary potential u of a ringshaped region D2 \D1, where D1 and
D2 are two nested open domains (D1 ⊂ D2) is the solution of ∆pu = 0 in D2\D1

u = 1 on ∂D1

u = 0 on ∂D2

.

Here ∆p, for 1 < p <∞, denotes the p-Laplace operator

∆pu := div(|∇u|p−2∇u).

This is to be understood in a weak sense, see below. The case p = 2 is the ordinary Laplacian.
The general case is an important prototype of degenerate elliptic operators. We also remark
that we may abuse the terminology by also calling the function (1 − u) for the p-capacitary
potential.

Because of its importance, the flow problem described above, for p = 2, has gain a lot of
attention in the past 20 years, both numerically and analytically (see [FR] for a good account
of backgrounds, overview and references of the subject). However, until recently the case of
general p has been out of reach due to the lack of smoothness of the operator ∆p. We refer
the author to [HKM] for backgrounds about such degenerate operators. Cf. also [Di] for the
parabolic case.

It is noteworthy that the technical parts of the proofs of the so far existing results for the
case p = 2 rely heavily on, by now classical, papers such as [AC] and [CS]; see e.g. [A] and the
references therein. The core difficulty of the problem is the C1-regularity of the boundary and
the semi-continuity of the gradient up to the boundary, see Theorem 1.3 below. Yet another
difficulty that appears in such problems is to show the non-vanishing of the gradient of the
p-capacitary potential on the boundary. This is called non-degeneracy of the solution and it
enters into the proof (all proofs the authors know) in a crucial way. These problems are tackled
for the first time in this paper, and we believe they constitute, besides the old ideas of the
supersolutions technique of A. Beurling, the operator method of A. Acker, and the use of Nash-
Moser inverse function theorem by R. Hamilton, the main technical ingredients in any proof for
the existence of classical solutions. We use the term classical since it is known that p-capacitary
potentials in convex rings are real analytic functions inside the ring (see [L]). However, the term
”classical” in this paper refers to (1.1).

At this stage we want to refer the reader to the previous papers by the authors [HS1-3] and
the references therein.

Our main result in this paper is a generalization of [HS2-3] to the case of the non-constant
Bernoulli boundary condition

|∇u| = a(x) on ∂{u > 0},

with a(x) a positive continuous function such that 1/a(x) is locally concave on IRn \K for the
exterior problem. The latter means that 1/a is concave on each line segment in the set IRn \K.
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The same generalization is made for the interior problem where 1/a(x) is assumed to be convex
on K. Obviously we need also to assume that a(x) stays away from zero, since otherwise there
may be no solutions at all. The latter can easily be checked for spherical solutions. In general
we need to have a “supersolution” for the given function a(x), in order to start a Perron method;
see the proof of Theorems 1.1–1.2. Now let us define two classes of test functions.

Definition 1.1 (Exterior) Let D be a bounded domain in IRn, and a(x) a continuous function.
Define E = E(D, a(x)) to be the class of all continuous functions v on IRn such that:

1) v ∈ C0,1(IRn \D);
2) v = 1 on ∂D;
3) ∆pv ≤ 0 in {v > 0} \D;
4) v has compact support;
5) |∇v|(x) ≤ a(x) on ∂{v > 0}.

The set {v > 0} will be denoted by Ω = Ω(v). Similarly we define the “interior” class, I.

Definition 1.2 (Interior) Let D be a bounded domain in IRn, and a(x) a continuous function.
Define I = I(D, a(x)) to be the class of all continuous functions v on IRn such that:

1) v ∈ C0,1(D);
2) v = 1 on IRn \D;
3) ∆pv ≤ 0 in {v > 0} ∩D;
4) the interior of {v ≡ 0} is non-void;
5) |∇v|(x) ≤ a(x) on ∂{v > 0} ∩D.

For the interior case we let the set {v = 0} be denoted by Ω = Ω(v). The dependence of E
and I on D and a(x) will be suppressed if there is no ambiguity. The requirement 3) in these
definitions is to be understood in the weak sense, i.e.,

0 ≤
∫
|∇v|p−2∇v · ∇ψ,

for all 0 ≤ ψ ∈ C∞o ({v > 0} \ {u ≡ 1}).
Since the class E and I only contain Lipschitz functions, 5) in definition 1.1–1.2 also needs

attention. The best way to interpret 5) is to require u to satisfy the following condition. For
δ > 0 there exists a small neighborhood Uδ of ∂Ω such that

sup
x∈Uδ∩Ω

lim
ε→0

|u(x+ εe)− u(x)|
ε

≤ a(x) + δ,

for all directions e.

Theorem 1.1 (Exterior) Let K be a convex domain, and a(x) a continuous function with
0 < c0 ≤ a(x) ≤ C0 on IRn. Suppose moreover 1/a(x) is locally concave on IRn \ K. Then
there exists a convex C1 domain Ω such that the p-capacitary potential u of Ω ⊃ K is a classical
solution to the exterior Bernoulli free boundary problem. Moreover, if K is bounded and for
some x0 ∈ K,

t : → ta(t(x− x0) + x0)

is increasing for all x ∈ IRn, then Ω is unique.

In a recent work [MPS] J. Manfredi, A. Petrosyan and H. Shahgholian have considered the
case of p = +∞ for Theorem 1.1. The analysis in [MPS] is based on the existence of classical
solution for 1 < p < ∞, i.e., Theorem 1.1 above. The core difficulty that appears in [MPS] is
that as

p→∞,

the solutions have a tendency of becoming irregular and the uniformity in the C1 norm is lost.
See [MPS] for more details.
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Theorem 1.2 (Interior) Let K be a convex domain, and a(x) a continuous function in K,
with 0 < c0 ≤ a(x) ≤ C0. Suppose moreover I(K, a) is non-empty and that 1/a(x) is a convex
function on K. Then there exists a (not necessarily unique) convex domain Ω ⊂ Ω ⊂ K, with
C1 boundary such that the p-capacitary potential u of K \Ω is a classical solution to the interior
Bernoulli free boundary problem.

The same technique, used by [MPS], for the exterior problem as p→∞ appears to work in
the case of generalization of Theorem 1.2 to p = ∞. However, the ”small” technical details to
be field out are yet to be handled.

The regularity of the free boundary in both theorems depends strongly on the regularity of
the function a(x), and it is in general a hard problem. We refer to the paper of A. Vogel for
some details for the case of constant a(x). The regularity of the free boundary, in the general
case of non-constant a(x), remains yet to be studied.

Finally let us formulate a technical result, which, besides being the main technical ingredient
in this paper, is of more general interest in partial differential equations.

Theorem 1.3 Let D1 and D2 be two nested open convex domains (D1 ⊂ D2) and denote by u
the p-capacitary potential of D2 \ D1. Suppose also that ∂D1 and ∂D2 are C1. Then |∇u| is
semi-continuous in D2 \D1, and non-tangentially continuous up to ∂D1 ∪ ∂D2.

Since Theorem 1.3 is rather of technical character, we prove it in the next section, before
the proofs of the main results.

2 Technical lemmas and the proof of Theorem 1.3

In this section we will first introduce some basic definitions that will be used for proving the
theorems. We will also prove the main technical difficulties that arise in the case of non-constant
a(x).

Definition 2.1 (Extremal points) For a bounded domain D ∈ IRn, a point x ∈ ∂D is said to
be extremal if there exists a supporting plane to D touching ∂D at x only. We denote the set of
all extremal points of D by ED.

Remark 2.1 By Krein-Milman’s theorem

convex hull(D) = convex hull(ED).

Lemma 2.2 (Exterior Barrier) Let D be a convex domain in IRn and suppose u is a continuous
nonnegative function on B(x0, r), p-harmonic in B(x0, r) ∩ D, with x0 ∈ ∂D. Let also u = 0
on ∂D. If ∂D is not C1 at x0, i.e., D has (at least) two supporting planes at x0 then

lim
x→x0

|∇u(x)| = 0, x ∈ D.

Lemma 2.3 (Interior Barrier) Let D be a convex domain in IRn and suppose u is a continuous
nonnegative function on B(x0, r), p-harmonic in B(x0, r) \D, with x0 ∈ ∂D. Let also u = 0 on
∂D. If ∂D is not C1 at x0, i.e., D has (at least) two supporting planes at x0 then

lim
x→x0

|∇u(x)| =∞, x ∈ B(x0, r) \D.

The proof of these lemmas follow from standard theory using barriers on conical boundary
points. The existence of such barriers are proven in [Do], see also [K].

Definition 2.2 (Blow-up) Let the function u be defined in B(x0, 1). Then we define the scaled
function ur(x) in B(0, 1) by

ur(x) =
u(rx+ x0)− u(x0)

r
.
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Suppose now that u is Lipschitz in B(x0, 1). Then ur is uniformly Lipschitz. Thus for any
sequence {rj} ↘ 0, there exists a subsequence (again labeled rj) such that urj converges locally
in Cα(IRn) to a function u0. Moreover if u is p-harmonic in {u > 0} then u0 is p-harmonic in
{u0 > 0} and u0(0) = 0.

Lemma 2.4 Let u be the p-capacitary potential of an annular domain D = D2 \D1 with convex
C1 boundaries. Suppose moreover the gradient of u satisfies

|∇u| ≤ Λ0 <∞,

uniformly in the region D. Then any convergence blow-up of urj at any boundary point gives
a linear function u0 = αx+

1 , after suitable rotation and translation. In particular, for any
boundary point x0

u(x) = u(x0) + α(x1 − x0
1)+ + o(rj),

in some rotated system. Here o(rj) depends on x0.

Proof: The case x0 ∈ ∂D1 was treated in [HS3; Lemma 2.7]. Let us suppose x0 ∈ ∂D2. We
scale u at x0 with the sequence {rj}, where rj ↘ 0; i.e.,

urj (x) =
u(rjx+ x0)

rj
.

Recall J. Lewis’ result [L] about convexity of the level sets of u, where D1 and D2 are convex.
In particular the level sets of urj are convex. Next, by Lipschitz regularity, the functions urj
will be uniformly Lipschitz in B(0, 1/rj). Hence for a subsequence they converge in Cαloc(IR

n)
to a limit function u0.

Now if u0 ≡ 0 then we are done. So suppose u0 6≡ 0. In this case one readily verifies that
after suitable rotation

∆pu0 = 0 in {x1 > 0} =: Ω0, u0 = 0 on {x1 = 0}, and |∇u0| ≤ Λ0.

By convexity of the level sets of u we also have {u0 > t} is convex for all t ≥ 0. Finally one
verifies that

sup
x1<2k

u0(x) ≤ Λ02k.

Now define
Ck := 2−k sup

x1<2k
u0,

which is bounded according to the above estimate, and consider two cases:
Case 1: Ck ≥ c > 0, for all k;
Case 2: Ckj → 0, for some subsequence kj .

In Case 1) we show that the level sets are hyperplanes parallel to {x1 = 0}. Then the function
u0 will be one dimensional and one can see (by direct computation) that the one dimensional
solution is to be the linear function. Indeed, one has to use that u′ > 0, which in turn is a result
of the convexity of the level sets.

Next take an arbitrary level set Lt = {u0 > t} and suppose that ∂Lt is not a hyperplane
parallel to {x1 = 0}. By convexity of the level sets we may take x1 ∈ ∂Lt, with e ⊥ ∂Lt at
x1, and such that the supporting plane Π = {(x − x1) · e = 0} of Lt at x1 has the following
properties

Lt ⊂ Π+ := {(x− x1) · e > 0},
and

u0(x) ≤ u0(x1) in Π− := {(x− x1) · e < 0}.
Now we want to perform a second blow up of u at∞, i.e., a first blow-up of u0 at the infinity

point. Hence we define

(u0)R =
u0(Rx+ y1)

R
,
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where y1 is any fixed point on Π ∩ {x1 = 0}. Then once again by compactness argument
(|∇(u0)R| ≤ Λ0) we have a convergence subsequence (u0)Rj converging to a limit function u0∞
locally in the entire space IRn, with the following properties:

(2.1) u0∞ 6≡ 0, ( since Ck ≥ c > 0),

∆pu0∞ = 0 in {x1 > 0} obvious,

u0∞ ≡ 0 in {x · e ≤ 0}.
The latter depends on the fact that by (2.1) and the convexity of level sets we have

u0(Rx+ y1)
R

≤ u0(x1)
R

→ 0 for x ∈ {x · e ≤ 0} = Π− − y1.

Now e is not parallel to the x1-axis, so that the cone K ′ = {x1 > 0}∩{x ·e < 0} is non-void.
Since u0∞ is nonnegative p-harmonic in the domain {x1 > 0} and it is zero in K ′ ⊂ {x1 > 0},
it follows by the minimum principle that u0∞ ≡ 0. This contradicts (2.1).

For Case 2) we apply comparison principle in the region {x1 < 2kj}. Indeed, u0 ≤ Ckjx1 on
{x1 = 0} ∪ {x1 = 2kj}. Using the comparison principle in the strip {0 < x1 < 2kj} (see [GT;
Theorem 3.7], the same proof works for the p-Laplacian) we’ll have u0 ≤ Ckjx1 in {x1 < 2kj}.
As kj →∞ we obtain u0(x) = 0 for any x ∈ IRn. Hence again u(x) = o(rj) with α = 0 and the
proof is completed. ut

Lemma 2.5 Let u be a solution to ∆pu = 0 in a domain Ω, and introduce the linear elliptic
operator Lu defined everywhere, except at critical points of u, by

Lu := |∇u|p−2∆ + (p− 2)|∇u|p−4
n∑

k,l=1

∂u

∂xk

∂u

∂xl

∂2

∂xk∂xl
.

Then Lu(|∇u|p) ≥ 0 in Ω \ {|∇u| = 0}.

For a proof see [PP1], [PP2] and the discussion in [HS2]. Observe that Lu is uniformly elliptic
in {u > 0} \ {λ0 ≤ |∇u| ≤ Λ0}, with Cα coefficients.

For two nested convex sets D1 ⊂ D2, and for x ∈ ∂D1 we denote by Tx,a the supporting
hyperplane at x with the normal a pointing away from D1. Obviously, Tx,a is not necessarily
unique, depending on the geometry of ∂D1. Now for each x ∈ ∂D1 there corresponds a point yx
(not necessarily unique) on ∂D2∩{z : a ·(z−x) > 0} and such that a ·(yx−x) = max a ·(z−x),
where the maximum has been taken over all z ∈ ∂D2 ∩ {z : a · (z − x) > 0}.

Lemma 2.6 Let D1 and D2 be two nested open convex domains (D1 ⊂ D2) and denote by u
the p-capacitary potential of D2 \D1. Then

lim sup
z→x

z∈D2\D1

| ∇u(z) | ≥ lim sup
z→yx

z∈D2\D1

| ∇u(z) | ∀ x ∈ ∂D1,

where yx is the point indicated in the discussion preceding this lemma.

For a proof of this lemma see [HS2–3]. Our next lemma is an infinitesimal version of Lemma
2.6.

Lemma 2.7 Retain the hypothesis in Lemma 2.6 and suppose also that ∂D1 and ∂D2 are C1.
Let z ∈ D2 \D1 with u(z) = s ∈ (0, 1). Define a curve γz(t) by

d

dt
γz(t) =

∇u(γz(t))
|∇u(γz(t))|2

, γz(s) = z.

Then γ(t) is defined on (0, 1), u(γz(t)) = t, and

|∇u(γz(t))| ↗ as t↗ .
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For a proof see [MPS, Lemma 5.1]. Cf. also [V]. The proof uses representation of the
p-Laplacian in level sets coordinates, and the fact that the level sets are convex.

Using the technical lemmas above we can prove Theorem 1.3, which in turn is needed for
the proof of the main theorems in this paper.

Proof of Theorem 1.3: Let us first show that

(2.2) lim
D2\D13x→∂Di

|∇u(x)| exists non-tangentially (i = 1, 2).

Non-tangentially here means that if we fix any cone of opening π/2 − ε with vertex at x0 on
the boundary of Ω and with the normal vector to the boundary at x0, pointing inwards Ω as
the axis of the cone, then the limit of the gradient exists if we approach the boundary point x0

from this cone.
Now suppose (2.2) fails. Let us take a point y ∈ ∂Di where (2.2) fails. We suppose y is the

origin and that the interior normal to Di at the origin (i.e. y) is e1 (the first coordinate axis).
Now the failure of (2.2) implies that there exists zj → 0 and xj → 0 such that

|∇u(zj)| → α1 |∇u(xj)| → α2,

with α1 ≥ α2 + ε0 for some ε0 > 0. Moreover by the non-tangentiality

dist(zj , ∂Ω) ≥ c0|zj |, dist(xj , ∂Ω) ≥ c0|xj |,

for some c0 > 0.
Let us define

Szj = {x : u(x) = u(zj)} Sxj = {x : u(x) = u(xj)},

rj = |zj |, tj = |xj |.

We may also rearrange zj and xj such that tj > rj . Now by Lemma 2.4 for a subsequence and
locally in IRn

urj (x)→ u1(x) := α1x
+
1 , utj (x)→ u2(x) := α2x

+
1 .

Let us define, accordingly, the scaled versions of the sets Szj and Sxj by

S̃zj = {x : urj (x) = urj (z̃
j)} S̃xj = {x : utj (x) = utj (x̃

j)}.

Let moreover z̃j = zj/rj , x̃j = xj/tj , z̃0 = lim z̃j , and x̃0 = lim x̃j . The existence of the latter
are obvious, at least for a subsequence. Next for any fixed ball B(0, R) we have

S̃zj ∩B(0, R) → {x1 = z̃0
1} ∩B(0, R),

S̃xj ∩B(0, R) → {x1 = x̃0
1} ∩B(0, R),

with z̃0
1 > 0 and x̃0

1 > 0.
An important observation at this stage is that

|∇urj | → α1 locally in {u1 > 0},

and

(2.3) |∇utj | → α2 locally in {u2 > 0}.

Let now γzj (t) be the curve introduced in Lemma 2.7, starting at zj with t ≥ sj := u(zj). From
the same lemma we’ll have

(2.4) |∇u|(γzj (t)) ≥ |∇u|(zj) ≥ α1 − εj ,

for t ≥ sj and εj → 0 as j →∞.
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Next we estimate the length of γzj (t) from zj to the point yj where γzj (t) hits the set Sxj .
Let ρj be such that

γzj (ρj) = yj , u(yj) = u(xj) = ρj .

Obviously ρj ≤ Ctj since utj is bounded. Now∫ ρj

sj

‖γzj (t)‖dt =
∫ ρj

sj

dt

|∇u|(γzj (t))
≤ ρj − sj
α1 − εj

≤ Ctj ,

where in the first inequality we have used (2.4). From this we conclude that

(2.5) |yj | ≤ |yj − zj |+ |zj | ≤ Ctj + rj < 2Ctj .

Moreover

(2.6) |∇u|(yj) ≥ α1 − εj .

Next (2.5) gives that

(2.7) yj/tj =: ỹj ∈ S̃xj ∩B(0, 2C).

But from (2.6) it follows that
|∇utj |(yj) ≥ α1 − εj .

On the other hand by (2.3), (2.7) and Lipschitz continuity of u we have

|∇utj |(x)→ α2 ≤ α1 − ε0 < α1 − εj ,

on compact sets of {u2 > 0} and in particular at ỹ0 := lim ỹj . This is indeed a contradiction
and (2.2) is proved for points on ∂D2.

To prove (2.2) for points on ∂D1, we replace u by 1−u and reverse the role of xj , zj and tj ,
rj respectively. Then once again the curve γzj (t) hits the set {u(x) = u(xj)} at point yj and
that |∇u|(yj) ≥ α1. Now the same holds for the part of the curve γzj (t) which goes from yj to
∂D1, and again the length of the curve from yj to ∂D1 is approximately ≈ tj .

To complete the proof let xj → x0 ∈ ∂D2. Consider a path γxj (t) starting at xj with
t ≥ sj := u(xj). Then as in (2.4)

(2.8) |∇u|(γxj (t)) ≥ |∇u|(γxj (sj)) = |∇u|(xj).

Now let t0 be large enough and set zj := γxj (t0). Then, if necessary, by taking t0 even larger
we may verify that

1
2
|zj − x0| ≤ dist(zj , ∂D2),

i.e., zj approaches x0 non-tangentially. In particular, by (2.8),

lim |∇u(xj)| ≤ non-tangential limit of |∇u|.

For xj → ∂D1 one makes a similar but reverse argument. ut

Lemma 2.8 Retain the hypothesis in Lemma 2.6 and suppose also that ∂D1 and ∂D2 are C1.
Then

|∇u(x)| ≥ inf
y∈ED2

|∇u(y)|, for all x ∈ D2 \D1.

This lemma is a consequence of Lemma 2.6.
The next lemma is due to P. Laurence and E. Stredulinsky and has a crucial role in our

analysis. Indeed, besides the new technicalities that arise in the case of non-constant boundary
gradient data, one of the main ideas in this paper is the use of the next lemma.
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Lemma 2.9 (See [LS, Lemma 4.1]) Retain the hypothesis in Lemma 2.8. Suppose moreover
∂Di (i = 1, 2) contains a line segment li, and that |∇u| ≥ c0 > 0. Then |∇u|−1 is convex on l2
and it is concave on l1.

In the above lemma (and also in the sequel) when we refer to |∇u| on the boundary ∂Di (i = 1, 2)
we mean the non-tangential limit from interior of the domain. This exists according to (2.2).

Next we announce the following geometric property of convex domains. The proof is ele-
mentary and left to the reader.

Lemma 2.10 Let D∗ denote the convex hull of a domain D, and suppose all points of ∂D∩∂D∗
have unique tangent planes. Then ∂D∗ is C1.

Lemma 2.11 Let DR = {x1 < 1} \ B(xR, R), where xR = (−R, 0, · · · , 0). Then for α, δ > 0
and small, there exists uR such that

∆puR = 0 in DR

uR = α+ δ/2 on {x1 = 1}
uR = 0, on ∂B(xR, R)

0 ≤ uR ≤ α+ δ/2 in DR

|∇uR| ≤ α+ δ on ∂B(xR, R)

Proof: The existence follows by taking a sequence of bounded domains B(xt, 1 + t) \B(xR, R)
(xt = (−t, 0, · · · , 0), t ≥ R) converging to DR, and considering the corresponding solution utR
in the limit as t→∞. Now let CR = B(xR, R+ 1) \B(xR, R) and set

vR = (α+ δ/2)
(
|x− xR|(p−n)/(p−1) −R(p−n)/(p−1)

(R+ 1)(p−n)/(p−1) −R(p−n)/(p−1)

)
(p 6= n),

and

vR = (α+ δ/2)
(

log |x− xR| − logR
log(R+ 1)− logR

)
(p = n).

Then vR is p-harmonic in CR and |∇vR| ≤ α + δ on ∂B(xR, R), if R is large enough. Now by
comparison principle uR ≤ vR and hence |∇uR| ≤ |∇vR| ≤ α + δ on ∂B(xR, R), if R is large
enough. ut

Lemma 2.12 Let uR be as in the previous lemma and define for ε > 0

wR = wR,ε = (α+ δ/2)
(

uR − ε
α+ δ/2− ε

)
+

.

Then the following hold:
1) There exists ε0, R0 (positive) such that for ε ≤ ε0, and R ≥ R0

|∇wR| ≤ α+ 2δ on ∂{uR ≤ ε} = {wR = 0}.

2) There exist δ1, δ2 > 0 such that

wR > α(x1)+ + δ2 on Γ := ∂B(0, 1) ∩ {x1 > −δ1}.

Here we may fix δ1 small and choose

0 < δ2 = 2 inf
Γ

(uR(x)− α(x1)+).

The proof is obvious.
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3 Proof of Theorem 1.1. (Bounded and regular case)

Let K be bounded and consider the subclass E∗ of E = E(K, a) defined as

E∗ = {u ∈ E : Ω(u) = convex , ∆pu = 0 in Ω \K}.

Let us also associate the support Ω = Ω(u) of u to the function itself by the notation (u,Ω),
which we refer to as a supersolution, even though u is a solution to the p-Laplacian.

Now we aim to take the intersection of all Ω(v) with v ∈ E∗. A different way of seeing this
is that we actually take infv∈E∗ v(x). The only difference is that in our way of doing it we work
directly with the p-capacitary potentials rather than all elements of E with convex support.

Now if we have two elements u1, u2 ∈ E∗ then inf(u1, u2) ∈ E and it has convex support
Ω = Ω1 ∩ Ω2. In particular (by comparison principle) the p-capacitary potential u of Ω \K is
in E∗; see more details in [HS2].

Hence we define
Ω =

⋂
v∈E∗

Ω(v),

where Ω(v) indicates the support of v. In order for this to have a meaning we need to show that

(3.1) E∗ 6= ∅, and dist(Ω(v),K) ≥ δ0 > 0,

where v ∈ E∗. The latter means that the intersection of all Ω(v) with v ∈ E∗ does not degenerate
to K, i.e. K ⊂ Ω(u). To show this let us take B(0, R) ⊃ K, with R large enough such that
the p-capacitary potential uR of B(0, R) \K has the property |∇uR| ≤ a on |x| = R. This is
possible due to the fact that a(x) ≥ c0 > 0, see e.g. [HS2, Section 4]. This implies that uR is a
supersolution and that E∗ is nonempty.

Next define the function

vR = vR,ε =
(
uR − 1 + ε

ε

)
+

,

with ε small enough to ensure

|∇vR| =
|∇uR|
ε
≥ C0 ≥ a(x) on {uR = 1− ε};

in the first inequality we have used Hopf’s boundary point lemma (see [T]). Now applying
Lavrentiev principle (see [Lav] or e.g. Step 5 below) we conclude

vR ≤ u ≤ uR,

for u ∈ E . Consequently
K ⊂ Ω(vR) ⊂ Ω(u) ⊂ Ω(uR).

Actually the stronger result (3.1) follows from this.
By the stability argument above we can, therefore, extract a sequence (Ωj , uj) of supersolu-

tions with p-harmonic uj and such that

uj ≥ uj+1, Ωj ⊃ Ωj+1, Ω = ∩Ωj .

Here Ωj = Ω(uj). It is also obvious that u = inf uj . Indeed, by Cα convergence we have that
uj converges uniformly to u. (See more details in [HS2].)

The main difficulty is to show that

lim
Ω3x→∂Ω

(
|∇u(x)|
a(x)

)
= 1.

Step 1: We claim ∂Ω is C1:
It suffices to show that at each boundary point there exists a unique tangent plane. Suppose the
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latter fails. Let x0 ∈ ∂Ω, with two supporting planes Π1, Π2 at x0. Then by barrier arguments
(Lemma 2.2)

lim
Ω3x→∂Ω∩Π1∩Π2.

|∇u(x)| = 0.

Let Π3 be a third plane supporting ∂Ω at x0 and such that Π3∩∂Ω ⊂ Π1∩Π2, i.e., Π3 does not
touch any other boundary points of Ω than those on the intersection of the planes Π1 and Π2.
Now, move Π3 towards Ω such that it cuts off Ω a small cap Σ; it may well be a tub-like region.
Then a similar argument as that of [SH2; proof of Lemma 3.4] will imply that the p-capacitary
potential of domain (Ω \ Σ) \K is in the class E∗. This contradicts the minimality of Ω. This
completes the proof.

Step 2: limy→x |∇u|(y) ≥ a(x) (non-tangentially) for x ∈ EΩ and y ∈ Ω:
By (2.2) and a similar reasoning as that in the proof of Theorem 1.3 we need only to show that

lim sup
y→x

|∇u|(y) = a(x), x ∈ EΩ, y ∈ Ω.

Observe that in the latter we only work with the set EΩ and not the closure of it. The statement
actually follows in the same vein as that in the constant boundary condition, i.e. a(x) =
constant. There is a minor modification in the proof given in [HS2, Lemma 3.4]. However, the
continuity of a(x) is crucial to force through the same technique. We leave the details to the
reader.

Step 3: lim supy→x |∇u|(y) ≤ a(x) for x ∈ ∂Ω:
Let us first indicate that by Lemma 2.8 and Step 2 above we have |∇u(x)| ≥ minΩ a(x) ≥ c0 for
all x ∈ Ω \K. Therefore, for large j, the operator Luj (where {uj} is the minimizing sequence
and Luj is defined in Lemma 2.5) is uniformly elliptic.

Next let Ks = {x : d(x,K) < s}, where s is small enough such that Ks ⊂ Ω(u). Define also
Sj = Ωj \Ks. In particular Sj ⊃ Sj+1. Now we define the function vj to be a solution of the
Dirichlet problem 

Lujvj = 0 in Sj
vj = |∇uj |p on ∂Ks

vj = (a(x))p on ∂Ωj
,

In particular vj ≥ |∇uj |p on ∂Sj . Inside the domain Sj , Luj is uniformly elliptic with uniformly
Cα coefficients. Since also |∇uj |p is a subsolution to the operator Luj (Lemma 2.5) we can
apply the comparison principle to obtain |∇uj |p ≤ vj in Sj . As j →∞ we can invoke classical
results on stability [Lan] (cf. also [He]) to conclude that vj → v where v is the corresponding
solution in S = ∩j≥1Sj = Ω \Ks. In particular |∇u|p ≤ v(x) in Ω and near the boundary ∂Ω.
Since v(x)→ a(x)p (continuously) as Ω 3 x→ ∂Ω we conclude the desired result. ut

The convergence of the functions vj to the corresponding solution in the limit domain, is
actually not standard. Since both the domains and the operators vary. However, using the
uniform ellipticity (since |∇uj | ≥ c0 > 0) and the convexity of the domains we can apply the
same techniques as that in [He] to conclude the result.

Step 4: limy→x |∇u|(y) = a(x) (non-tangentially) for x ∈ ∂Ω and y ∈ Ω:
In view of the previous steps we need only to show that the gradient condition |∇u| = a holds
on ∂Ω \ EΩ, i.e. on all line segments of ∂Ω. We first notice that by Lemma 2.8 and Step 2)

|∇u(x)| ≥ inf
x∈EΩ

|∇u(x)| ≥ min a(x) > 0, for x ∈ Ω \K,

so that limx→∂Ω |∇u(x)| > 0. Hence by Lemma 2.9 and the concavity of 1/a the function

g(x) =
1

|∇u|(x)
− 1
a(x)

is convex, on all line segments I ⊂ ∂Ω. Now any point on ∂Ω \EΩ can be considered as a linear
combination of n points on EΩ. Therefore it suffices to consider (maximal) line segments with
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end points on the set EΩ. Since by previous steps g(x) = 0 if x is an endpoint of any of such
segments, i.e. x ∈ EΩ, we conclude that the convex function g on I must be zero, and thus the
desired result.

Step 5: limy→x |∇u|(y) = a(x) for x ∈ ∂Ω and y ∈ Ω:
This follows from the previous steps and the continuity of the functions a(x). The latter is
crucial for the fulfillment of the proof.
Step 6: The uniqueness now follows by the method of Lavrentiev:
Suppose two solutions exist, call them (u1,Ω1), (u2,Ω2). Suppose also Ω1 \ Ω2 is nonempty or
the reverse. Define t0 = sup t such that t < 1 and {u2(t(x− x0) + x0) > 0} ⊃ {u1 > 0}, where
x0 is the given point in the theorem. By comparison principle u2(t0(x − x0) + x0) ≥ u1(x) in
{u1 > 0} \ t−1

0 K. Hence

t0|∇u2|(t0(x− x0) + x0) ≥ |∇u1|(x) at y0 ∈ ∂({u2(t0(x− x0) + x0) > 0} ∩ {u1(x) > 0});

the latter is obviously nonempty since otherwise there is nothing to prove. In particular
t0a(t0(y0 − x0) + x0) ≥ a(y0), with t0 < 1. This contradicts the assumption in the theorem.

4 Proof of Theorem 1.2. (Bounded and regular case)

For the interior problem, we consider a similar situation as that in the exterior. Here, however,
it has an advantage working with the class I rather than with a subclass of functions with
convex support. The reason is that the support of min(u1, u2) is not convex. Even though we
may be able to take the convex hull of the support of min(u1, u2), it would be hard to show
that on the new boundary points the gradient condition is verified.

It will be more direct to consider the class I itself specially when we want to use barriers of
the type constructed in Lemmas 2.12–2.13. So let us first assume K is bounded and then, as in
[HS3], take

u = inf
v∈I

v.

Observe that by the assumptions of the theorem

I 6= ∅ and 0 < c0 ≤ a(x) ≤ C0.

Therefore the infimum function u exists, and ∂{u > 0} does not degenerate to ∂K (see the
beginning of the proof of Theorem 1.1). One also observes that u is continuous (Liploc(K) ∩
Cα(IRn)), and it is the p-capacitary potential of the set {u > 0}; see [HS2] for more details.

Now let us consider a minimizing sequence uj . Since the minimum of two elements in I is
again in I, we may consider a decreasing sequence

uj ≥ uj+1, Ω(uj) ⊂ Ω(uj+1).

Observe that Ω(u) = {u ≡ 0} in the interior case. Next we take the convex hull Ω∗ of Ω. We
show that the p-capacitary potential u∗ of K \Ω∗ is also in I. Since it is also smaller than u we
may only work with convex domains and the p-capacitary potentials of the ring-shaped region.
To verify that claim, we first observe that |∇u∗| ≤ |∇u| ≤ a(x) on ∂Ω∗ ∩ Ω, and in particular
on EΩ∗ .

Now, ∂Ω∩ ∂Ω∗ has a unique tangent plane. Since otherwise we may use the interior barrier
argument in Lemma 2.3 to reach a contradiction to the Lipschitz regularity of u near ∂Ω∗.

Next Lemma 2.11 applies to conclude that ∂Ω∗ is C1. Hence Lemma 2.10 in conjunction
with the convexity assumption of a−1 implies that

g(x) =
1

|∇u|(x)
− 1
a(x)

is concave on line segments of ∂Ω∗. We also need that |∇u| > 0 on ∂Ω∗. This follows by Hopf’s
Lemma (since ∂Ω∗ satisfies the interior, w.r.t. K \Ω, sphere condition). Now realizing that any
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point of ∂Ω∗ \EΩ∗ can be put on a line segment with endpoints on EΩ∗ and since g ≥ 0 on these
endpoints we conclude that g ≥ 0 also on the rest of the boundary of Ω∗. This in particular
implies that u∗ ∈ I, and that the minimal element u∗ is such that Ω∗ is convex. As in Step 1)
in the proof of Theorem 1.1, we conclude that

|∇u∗| ≤ a(x)

for the minimal element u∗ of I. Here, again, we need to assure that |∇uj | ≥ c0 > 0. By the
interior sphere condition, this can be done using the Hopf’s boundary point lemma [T].

Now we must show that |∇u∗| ≥ a. To this end, Lemmas 2.12–2.13 are helpful to construct
a new smaller element in I if the gradient u becomes smaller than a(x) at some boundary point.

Let y ∈ ∂Ω∗ and suppose |∇u|(y) < a(y). Then we reach a contradiction.
To simplify the geometric picture, we assume y is the origin and the outward normal vector

to Ω at y is the x1-axis. Then by Lemma 2.8 the sequence urj = u(rjx)/rj converges to α(x1)+.
Hence, for rj small enough,

u < α(x1)+ + o(rj),

inside a ball of center 0 and radius rj .
Now using Lemma 2.13, we may take the function wR constructed there in a rescaled form

w̃ = rjwR( xrj ). By part 2) of Lemma 2.13

w̃ > α(x1)+ + rjδ2 > u on ∂B(0, rj),

provided rj is small enough.
Let now

v =
{

min(u, w̃) in B(0, rj)
u in IRn \B(0, rj).

Then v ∈ I, and since v is identically zero in a small neighborhood of the origin we’ll have a
contradiction to the minimal property of u. Therefore |∇u| = a on ∂Ω. The proof of Theorem
1.2 is now complete.

5 Unbounded/irregular K, and some retrospect

5.1 Unbounded and irregular case

The irregular case of K, can be handled easily by either approximation of the set K by smooth
domains, or that one from beginning enlarges the definition of the classes E and I to Cα

functions, where α depends on the regularity of ∂K. Observe that if we already have considered
the minimum u in the class E∗ or in I we may replace the set K by a level set K ′ := {u > 1/2}
in the exterior case and K ′ := {u < 1/2} in the interior case. Since then we just consider the
problem over the new domains K ′ in each case. These domains have analytic boundaries by
results of John Lewis [L]. Obviously any solution for the new problem is also a solution to the
original problem with K replaced by K ′, due to the minimal properties of u. We leave the
obvious detail to the reader.

The unbounded case of Theorems 1.1–1.2 are handled again by approximation. We take
KR := K ∩ B(0, R) and solve the problem for KR. Then we let R → ∞, the solutions are
monotone increasing and have a limit. So we only need to study the properties of the limit
function. First one easily verifies that the limit solution is indeed the p-capacitary potential for
the corresponding problem, due to the fact that the increasing family uR are locally uniformly
Cα. Actually they also are bounded by construction.

The core difficulty is the use of Lemma [2.9]. Here however, again one applies the same
lemma and it works perfectly even though we consider unbounded line segments, i.e., rays. One
should notice that the function g(x) introduced in the proofs of the Theorems remain bounded
on the rays. Once again the details are left to the reader.
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5.2 Qualitative Analysis

An interesting qualitative analysis in lines with the results in [GS, Theorem 3.9] can be done
here as well. In order not to repeat the same arguments, already done by [GS], and many others
for that matter, we only mention what type of qualitative results are to be expected for our
problems. We focus on the exterior problem only.

Suppose, in addition, the continuous function a(x) is non-decreasing in direction e. Let also
T be a supporting plane to Ω with normal e so that T− := {x : x · e < 0} ⊃ K. Then one
can show that the set Ω ∩ T−, has this property as well. This can be verified, by building this
property into the construction of the solution and then using uniqueness for the exterior case.
Since the uniqueness fails in general for the interior case we may only construct solutions with
this property. But we can’t prove this property for an already existing solution in the interior
cases.

The method of moving plane is a well known technique for such qualitative analysis; see
e.g. [GNN], [S]. The technique of Serrin cannot be adopted directly since the boundary ∂Ω is
only known to be C1. However, in our construction we may take a sequence of minimizer that
already have such a property, and hence the limit domain (function) will have such a property.
See [GS, the proof of Theorem 3.9] for details.

Yet another property that might be of interest is the asymptotic behavior of the solution
uλ for the function aλ(x) = λa(x) (or one may consider even more complicated functions, but
carefully). Indeed, the same analysis of reflection, moving planes, (see [GS, Theorem 3.9]) will
show that the solution will eventually converge to a ball of radius ∞ as λ → 0. It would be
interesting to analyze the exact quantitative behavior of such solutions in terms of the inner
and outer radius, i.e., the radius of the largest ball inside and the radius of the smallest ball
outside.

5.3 Further Horizon

As already mentioned in the introduction, the free boundary problem discussed in this paper,
for p = 2, has been studied intensively in the past 20 years. Even though the case 1 < p < ∞
seems more realistic in applications, there are today not many results for this most simple case,
simple in nonlinear degenerate setting.

The development of the Bernoulli free boundary problem (in the multi phase, and uniformly
elliptic case) has flourished since the Pioneering works of Carleman (1918), Friedrich (1934),
and A. Beurling (1957) (see the introduction in [GS] for some historical accounts). One of the
major contributions, for the existence in a general frame work is given in the paper by H. Alt
and L. Caffarelli [AC], where the authors use minimization of certain cost functionals. It would
be interesting, and it is definitely tantalizing, to see a similar development for the case of the
p-Laplacian.

The more milder method, of A. Beurling, developed in [HS2–3], seems also possible for
the general problem, i.e., with no geometric assumptions on data. This was developed by L.
Caffarelli in [C1–3] for uniformly elliptic operators. The difficulty in this type of approach
is the consideration of the space function and the boundary gradient condition. L. Caffarelli
overcame this problem by replacing the gradient condition with an asymptotic development for
the solution (a better version of Lemma 2.4). This also seems to be a possible way to develop
the theory for the p-Laplacian using viscosity solutions.

Other methods that have, in some extend, been developed (and they probably are under
investigation) are the operator method of A. Acker [AM], and the use of Nash-Moser inverse
function theorem by Hamilton [H]. The latter technique has gained some renewed interest in
the porous medium equation [DH].

Finally, let us mention the method of singular perturbation, which also has been in much
focus lately. The technique of singular perturbation is much reminiscent of the penalizing
technique for the obstacle problem. One replaces the problem with a new one by finding a
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function uε which solves, say locally,

∆uε = βε(uε).

Here βε is the absorption term and it vanishes outside the set Dε := {0 < uε < ε}. In particular
uε becomes harmonic outside Dε. To derive the boundary gradient condition |∇u|(x) = a(x)
we need to impose certain conditions on β. One such condition is that

lim
ε→0

βε(uε) = (n− 1)-Hausdorff measure restricted to ∂{u > 0}.

This technique has also been developed thoroughly for both elliptic and parabolic problems,
see [BCN], [CLW]. However, still in the frame work of uniformly elliptic (and parabolic) case.

A recent attempt has been made by the second author, D. Danielli, and A. Petrosyan to
generalize the technique of singular perturbation to the case of p-Laplacian [DPS].

In closing, we would like to mention that the Bernoulli free boundary problem seems yet to
surprise us with the contribution of many varieties of beautiful and strong techniques, which
are widely used in many other areas of partial differential equations. We thank the reader for
his/her time.
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